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Abstract   In this paper, the homotopy perturbation method (HPM) is considered for finding 
approximate solutions of two-dimensional viscous flow. This technique provides a sequence of 
functions which converges to the exact solution of the problem. The HPM does not need a small 
parameters in the equations, but; the perturbation method depends on small parameter assumption and 
the obtained results. In most cases, it ends up with a non-physical result, so homotopy perturbation 
method overcomes completely the above shortcomings. HPM is very convenient and effective and the 
solutions is compared with the exact solution. 
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درنظر  يلزج دوبعدان يجر يبيتقر يافتن راه حل هاي يبرا (HPM) ين مقاله روش اختلال هموتوپيدر ا چكيده    

روش . شود يق مسئله همگرا ميدهد که به راه حل دق يرا ارائه م ييعملکردها ين روش، تواليا. گرفته شده است
ج يکوچک و نتا يکوچک در معادله ندارد، اما روش اختلال به فرض پارامترها ياز به پارامترهاين ياختلال هموتوپ

 ين، روش اختلال هموتوپيبنابرا. شود يختم م يکيزيرفيجه غين به نتدر اغلب موارد، آ. بدست آمده وابسته است
ارمناسب و موثر است و راه حل ها بـا راه حـل   يروش بس ياختلال هموتوپ. کند يبالا غلبه م يکاملا بر کمبودها

  .شود يسه ميق مقايدق
 

 
 

1. INTRODUCTION 
 

Most of engineering problems, especially heat transfer 
and fluid flow equations are nonlinear. Therefore, some 
of them are solved using computational fluid dynamic 
(numerical) method and the other using analytical 
perurbation method [1-3]. In the numerical method, 
stability and convergence should be considered  to 
avoid divergent or inappropriate results. In analytical 
perturbation method, the small parameter should be 
exerted in the equation [4]. Thus, finding the small 
parameter and exerting it into the equation are the 
problems of this method. The perturbation method is 
one of the well-known methods to solve the nonlinear 
equations which was studied by a large number of 
researchers such as Bellman [5] and Cole [6]. Actually, 
these scientists paid more attention to the mathematical 
aspects of the subject which included a loss of physical 
verification. This loss in the physical verification of the 
subject was recovered by Nayfeh [7] and Van Dyke [8].  

In recent years, an increasing interest of scientist 
and engineers in analytical techniques for studying 
nonlinear problems was appeared. Such techniques 
have been dominated by the perturbation methods and 
have found many applications in science, engineering 
and technology. However, like other analytical 
techniques, the perturbation methods have their own 
limitations. For example, all the perturbation methods 
require the presence of a small parameter in the 
nonlinear equation and approximate solutions of 
equation containing this parameter are expressed as 
series expansions in small parameter. Selection of small 
parameter requires a special skill. A proper choices of 
small parameter gives acceptable results, while an 
improper choice may result in incorrect solutions. 
Therefore, an analytical method is welcome which does 
not require a small parameter in the equation modeling 
the phenomena.  
Since, there are some limitations with the common 
perturbation method, and also because the basis of the 
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common perturbation method was upon the existence 
of a small parameter, developing the method for 
different applications is very difficult. Therefore, many 
different new methods have recently introduced some 
ways to eliminate the small parameter such as artificial 
parameter method by Liu [9], the homotopy analysis 
method (HAM) by Liao [10] and the variational 
iteration method (VIM) by He [11-12, 21-22]. One of 
the semi-exact methods is HPM [13-16] and other 
methods are also introduced [23]. In this paper, we 
solve the flow field due to stretching boundary with 
partial slip by HPM. The flow due to a stretching 
boundary is important in extrusion processes. The 
bathing fluid is entrained by the tangential velocity of 
the extrusate and thus affects convective cooling [17]. 
Vleggaar experimentally showed the velocity of an 
extrusate which is initially proportional to the distance 
from the orifice [18]. The boundary condition are 
similar to those due to a stretching surface and exact 
solutions of the Navier-Stokes equations can be found 
[19]. 
 
 
 

2. BASIC CONCEPTS OF HPM 
 
We consider the following ODE  

( ) ( ) 0, ,A u f r r− = ∈Ω                                          (1) 
(1)  

subject to boundary condition 

( , ) 0, .uB u r
n

∂
= ∈Γ

∂                                                 (2)
 

(2)  

The operator A  can, generally speaking, be 
divided into two parts: a linear part L  and a nonlinear 
part .N  Therefore, equation (1) can be rewritten as 
follows: 

( ) ( ) ( ) 0,L v N v f r+ − =                                            (3) 
(3)  

we construct a homotopy of equation (1)  
( , ) : [0,1]v r p Ω× → ℜ  which satisfies 

0( , ) (1 )[ ( ) ( )]
[ ( ) ( )], [0,1, ], ,

H v p p L v L u
p A v f r p r

= − − +

− ∈ ∈ Ω                   (4) 
(4)  

where [0,1]p ∈  is an embedding parameter and 0u  is 
an initial guess approximation of equation (3) which 
satisfies the boundary conditions. 

 
 
 

3. GOVERNING EQUATIONS 
 
Consider a two-dimensional stretching boundary (Fig. 
1) where the lateral surface velocity is proportional  

 
 

Figure 1. Two dimensional viscous flow 
 
 
to the distance x  from the origin. The velocity is as 
follows: 

.U a x=                                                                
(5) 

Let ( , )u v  be the fluid velocities in x  and y  
directions, respectively. The Navier’s condition is then 
[17] 

( ,0) ( ,0),uu x U k x
y

υ
∂

− =
∂                              

(6) 

where k  is a proportional constant and υ  is kinematic 
viscosity of the bulk fluid. The steady 2-D Navier-
Stokes equations can be written as 

0,x yu v+ =
                                                          (7)

 

( ) / ,x y xx yy xu u vu u u pυ ρ+ = + −
                    (8)

 

( ) / ,x y xx yy yu v v v v v pυ ρ+ = + −
                     (9)

 

where p  and ρ  are pressure and density, 
respectively. For solving equations (7)-(9), we must 
apply boundary conditions (equations (5) and (6)). 
Other boundary conditions are no lateral velocity and 
pressure gradient far from the stretching surface. For 
similarity solutions we set [17]: 

( ),u a x f t′=                                                          (10) 

( ),v a f tυ= −                                                     (11) 

/ .t y a υ=                                                           (12) 
Continuity equation automatically is satisfied. 

equation (8) can be written as follows: 
2( ) ( ) ( ) ( ) 0,f t f t f t f t′′′ ′ ′′− + =                          (13) 

with the boundary conditions 
(0) 0,f =                                                                 (14) 

( ) 0,f ′ ∞ =                                                               (15) 

(0) (0) 1.f K f′ ′′= +                                             (16) 

equation (15) shows there isn’t lateral velocity at 
infinity. On the other hand, in 0y =  the velocity v  is 
equal zero (equation (14)). equation (16) is from 
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equation (6) and K k aυ=  is a non-dimensional 
parameter indicating the relative importance of partial 
slip. For 0K = , the fluid is inviscid. 
    In this section, HPM is used to find approximate 
solutions of the equation (13). Suppose the solution 
have the form as below: 

2
0 1 2

3 4 5
3 4 5

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

f t f t p f t p f t
p f t p f t p f t

= + + +

+ + +L                      (17) 
(17) 

if we apply Eq. (4) to Eq. (13), then 

2

(1 ) ( )

( ) ( ) ( ) ( ) 0 0

p f t

p f t f t f t f t

′′′− +

′′′ ′ ′′ − + = =            (18)
 (18) 

 
Then substituting equation (17) into equation (18) and 
rearanging based on powers of p - terms, we have 

                   
0

0: 0,p f ′′′ =                                                             (19) (19) 

                   
1 2

1 0 0 0: 0,p f f f f′′′ ′′′− + =                                     (20) (20) 

                   
2

2 0 1 0 1 1 0: 2 0,p f f f f f f f′′′ ′′ ′′′ ′− + + =               (21) (21) 

                   

3 2
3 1 0 2 0 2

1 1 2 0

: 2

0,

p f f f f f f

f f f f

′′′ ′′′ ′ ′− − + +

′′ ′′+ =
                        (22) (22) 

                    

4
4 0 3 1 2 0 3

1 2 2 1 3 0

: 2 2

0,

p f f f f f f f

f f f f f f

′′′ ′′′ ′ ′ ′− − +

′′ ′′ ′′+ + + =
                   (23) (23) 

                    

5 2
5 2 0 4 1 3 0 4

1 3 2 2 3 1 4 0

: 2 2

0,

p f f f f f f f f

f f f f f f f f

′′′ ′′′ ′ ′ ′ ′− − − +

′′ ′′ ′′ ′′+ + + + =
          (24) (24) 

                    

6
6 0 5 1 4 2 3 0 5

1 4 2 3 3 2 4 1 5 0

: 2 2 2

0,

p f f f f f f f f f

f f f f f f f f f f

′′′ ′′′ ′ ′ ′ ′ ′− − − + +

′′ ′′ ′′ ′′ ′′+ + + + =  
(25) (25) 

                    

7 2
7 3 0 6 1 5

2 4 0 6 1 5 2 4

3 3 4 2 5 1 6 0

: 2 2

2

0, .

p f f f f f f

f f f f f f f f

f f f f f f f f

′′′ ′ ′ ′ ′ ′− − − −

′′ ′′ ′′′ ′ + + + +

′′ ′′ ′′ ′′+ + + = L             (26)

 (26) 

To determine ( )f t , the above equations should be 
solved with appropriate boundary conditions (equations 
(14)-(16)). The solutions of above equations for 

0K =  and 20K = , are as follows 
15 16

17 18

31 116383( )  
1307674368000 20922789888000

626881 419
355687428096000 12934088294400

f t t t

t t

= − −

+ −
 (27) 

19 201718011 70525699
11058645491712000 2432902008176640000

t t+ +  

21 221323139 6597271
4644631106519040000 28820531481477120000

t t− −  

23 2

3 4 5 6 7

18992159 1
1988616672221921280000 2
1 1 1 1 1
6 24 120 720 5040

t t t

t t t t t

+ + −

+ − + − + +
 

8 9 10 11

12 13

1 1 13 13
13440 51840 1209600 4435200

29 307
479001600 1245404160

t t t t

t t

− − + +

−
 

14839
12454041600

t+
                                                  (27)

 

 
and  

18

19

26454129170347965799( )  
1335965400000000000000000000000000000000

34981592008374802708157
290095344000000000000000000000000000000000

f t t

t

= −

− +

 

20

2

9610620390380100302367991
1099944846000000000000000000000000000000000000

0.124 0.0219

t

t t+ −

 

15

3 5 4

152109012706142059
1135134000000000000000000000000000

961 15987 2263
375000 1000000000 10000000

t

t t t

−

+ + −
 

216636411496225660841695231
146659312800000000000000000000000000000000000000

t−

1694928946234172707119
1089728640000000000000000000000000000

t−  

224137391052244534387257825723
483975732240000000000000000000000000000000000000000

t− +

7 67342381 70153
157500000000000 75000000000

t t− +

231384631564415805048337910253
10703309463000000000000000000000000000000000000000000

t +  

8 1049660951 679770225707
14000000000000000 7560000000000000000000

t t− −  

9 113799829309 30866371688293
5670000000000000000 3118500000000000000000000

t t+ +

17470250127393223949061
42882840000000000000000000000000000000

t −  

13

12

87749876813408687
972972000000000000000000000000

3550152787477
62370000000000000000000000

t

t− +
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1428171951570650389 .
2837835000000000000000000000000

t
              (28)

 

 (28) 
When 0K = , Crane [20] found the exact solution 

( ) 1 .tf t e−= −                                                              (29) 
(29) 

The perturbation solution for small K  is 

( ) 1 (1 ) 1
2

t tKf t e t e− − = − + − − + 
                             (30)

 

 

{ }2

3

0.087459 1.221835(1 ) 0.25 ( ) 5

( ),

t t tK e t e h e t

O K

− − − + + − − + 

+
 

(30) 

2 3 4

5 6

1 1 1( )
4 72 864

1 1 .
9600 108000

h t t t t

t t

= − +

− + −L                                         (31)
 (31) 

 
 
 
 

4. DISCUSSION 
 
In this paper, the HPM is used to find approximate 
solutions of two-dimensional Navier-Stokes 
equations. In this work, we use the Maple Package 
to solve the obtained differential equations. In 
Table 1, we compare obtained values for ( )f ∞  
by the HPM and the numerical method. 
 
 
TABLE 1. Comparison between ( )f ∞  by HPM and 
numerical method. 

K  0.3  1  2  5  20  
HPM 

method 
0.84021

 
0.70068  

 
0.60123

 
0.46442

 
0.31119

 

Numerical 
method 

[17] 

0.887  0.748  0.652
 

0.514  0.322  

 
 
    The accuracy of the method is very good and 
obtained results are near to the exact solution. The 
approximate solution obtained in Fig. 2 in 
comparison with exact solution admit a 
remarkable accuracy. 
 

t

f(t
)

0 1 2 3
0
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0 .4

0 .6

0 .8

1

E x a c t
H P M ( K = 0 )

 
 
Figure 2. Comparison of the exact and approximate 
solution obtained by HPM 
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Figure 3. Comparison of the approximate solution 
obtained by HPM and the perturbation method. 
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Figure 4. Comparison of the approximate solution 
obtained by HPM and the perturbation method 
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Figure 5. Comparison of the approximate solution 
obtained by HPM and the perturbation method 
 
The approximate solutions of function ( )f t  have 
been shown in the Figs. 3-5. The approximate 
solutions by the perturbation method is only valid 
for small values of K . For example the 
approximate solutions that are presented in Figs. 4 
and 5 are nonphysical solutions, because the value 
of ( )f t  must be less (or equal ) than one for 
different values of K  parameter. In the Figs. 6 
and 7, the approximate solutions of ( )f t  and 

( )f t′  for different values of K  are presented. 
Figs. 8 and 9 show the velocities in x  and y  
directions, respectively. 
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Figure 6. The approximate solutions of ( )f t  for 
different values of K  
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Figure 7. The approximate solutions of ( )f t′  for 
different values of K  

 

 
 

Figure 8. The distribution of velocity in x  direction 
versus , .x t  
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 Figure 9. The distribution of velocity in y  direction 
for different values of .K  
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