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Abstract   This paper considers a bi-objective scheduling problem in a flexible manufacturing cell 
(FMC) which minimizes the maximum completion time (i.e., makespan) and maximum tardiness 
simultaneously. A new mathematical model is considered to reflect all aspect of the manufacturing cell. 
This type of scheduling problem is known to be NP-hard. To cope with the complexity of such a hard 
problem, a genetic algorithm (GA) is proposed and hybridized by four priority dispatching rules. 
Different scheduling problems are generated at random and solved by both mathematical programming 
model and the proposed hybrid GA. The related results illustrate that this proposed algorithm performs 
well in terms of the efficiency and quality of the solutions. 
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که هدف آن حداقل  دينمايم يک سلول ساخت منعطف را بررسيدر  دو هدفه يله زمانبندأمس ٍ،اين مقاله چكيده    

گردد تـا  يه مايجديِد ار ياضيک مدل رين، يهمچن. زمان ديرکرد است کردن حداکثر زمان تکميل کارها و حداکثر
ل سـخت  يجزء مسا يل زمانبنديسته از مسان ديا. دينمارا منعکس  ک سلول ساخت منعطفي يهايژگيو يتمام

 ،ب شدهيترک يبندتيک که با چهار قانون اولويتم ژنتيک الگوري، سختله أمساين  يدگيچيبه منظور رفع پ. هستند
و  ياضيمدل ر با استفاده ازحل سپس و  شدهد يتول يبه صورت تصادف يمختلف يل زمانبنديمسا. شودميشنهاد يپ

ت ي ـفيو ک يياز جنبـه کـارا   يشـنهاد يکرد پيدهد که رويج نشان مينتا. گردديه مياراشده  يلفيقک تيتم ژنتيالگور
  .کنديها خوب عمل مجواب

 
 

 
1. INTRODUCTION 

 
Flexibility is a key concept in the management 
of modern manufacturing systems. Flexible 
manufacturing systems (FMSs) came to exist in 
order to achieve two goals, namely flexibility in 
production and increasing productivity, which 
are naturally in conflict with each other. These 
systems have many potential advantages, such 
as high flexibility, high machine utilization, low 

work-in-process inventory, and an unsupervised 
production system. In FMS, the flexibility to 
process numerous parts provides a number of 
ways of routing a group of parts within the cell. 
Scheduling is the major factor of the efficiency 
of this computer-controlled system. Thus, it 
plays a crucial role to achieve intended goals [1, 
2].  FMS combines the advantages of both job 
shop and flow shop production systems. The 
high level of automation previously reserved for 
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mass production is also achievable for medium-
sized production, and the manufacturing 
flexibility enables companies to react quickly to 
change in customer demand [3]. This system is 
an integrated computer-controlled complex of 
automated material handling devices and 
numerically controlled (NC) machine tools, 
along with tool magazines, jigs, fixtures and 
pallets, that can process medium-sized volumes 
of a variety of part types [4, 5]. 

Scheduling in FMSs is a difficult task in 
comparison with conventional systems like job 
and flow shops for a number of reasons, such as 
machine setup and tool changing, part 
assignment and part sequencing. These 
characteristics and other resources, such as 
material handling systems, tool magazine, jigs 
and fixtures, are the main reasons of difficulty 
of such problems. These resources should be 
regarded, since considering machines may result 
in the system blocking or dead lock. 

The following list supports the above-
mentioned reasons explicitly [6]: 
1. Each machine is capable of holding different 

tools to perform different operations. Thus, 
different part types can be manufactured at 
any given time.  

2. In addition to machines, material handling 
systems, such as automated guided vehicles 
(AGVs), jigs, fixtures, and pallets should be 
also scheduled. In other words, the number 
of decision variables for the scheduling 
purpose is greater in FMSs than in job shops. 

3. There may be a rapid change of demand, or 
random entering of the new products with 
high priority. 

4. An operation is capable of being performed 
on a number of alternative machines with 
possibly different processing times. 

5. Setup times may be significant and sequence 
dependent. 

6. Capacity of storage buffers and material 
handling devices are limited. 

7. The FMS configuration has a major impact 
on the scheduling system, which can be 
classified based on the measures used. These 
measures can be classified into different 
groups as follows [7]: 
• Completion-time-based measures 
• Due-date-based measures 
• Idleness-penalty-based measures 

In many studies, just one objective or criterion 
is considered. However, there are a vast amount 
of the literature therein more than one objective 
are considered simultaneously [8]. 

As pointed out by MacCarthy and Liu [6], 
from the point of view of scheduling and 
controlling, four types of FMSs are defined, 
namely single flexible machines (SFMs), 
flexible manufacturing cells (FMCs), multi-
machine flexible manufacturing systems 
(MMFMSs), and multi-cell flexible 
manufacturing systems (MCFMSs).  

The complexity of FMS scheduling problems 
is greater than in classical scheduling problems 
[9], and mathematical programming approaches 
need to be better suited and improved for real-
world FMS scheduling problems [1, 6, 9, 10]. 
Therefore, the success of FMS depends on 
designing an appropriate scheduling procedure 
that optimizes the performance measures of the 
system [11]. Such an effective FMS scheduling 
system should have the following capabilities 
[12]:  

1) Select orders for processing to achieve the 
system’s global production goal. 

2) Meet the multiple performance objectives 
of the system, such as reducing tardiness 
and inventory costs, meeting the due dates, 
and maximizing order profits. 

3) Be computationally efficient for real-time 
applications. 

4) Offer the flexibility to allow the user to 
make informed production control 
decisions and choose scheduling rules that 
suit particular applications. 

5) Support the flexible software 
implementation and easy modification to 
accommodate system changes.   

The scheduling problem in FMS has received 
attention in recent years. Different approaches 
have been defined to cope with this problem 
[13]. These approaches can be categorized into 
three classes: 

1) Mathematical programming formulation 
2) Heuristics, dispatching rules, and simulation 
3) Artificial intelligence (AI)-based techniques  

AI-based techniques consist of evolutionary 
algorithms, neural networks, fuzzy logic, and 
expert systems. Along with this classification, 
there is another classification for scheduling 
techniques in FMS environment. These 
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approaches are conventional and AI-based 
approaches, respectively [14]. The conventional 
approach can be further broken down into 
optimization-based and priority-based 
techniques. 

There is a surge of research interest in 
applying genetic algorithms (GAs) to this 
problem [5]. In recent years, new algorithms, 
such as non-sorting genetic algorithm–II 
(NSGA-II) and strength Pareto evolutionary 
algorithm–2 (SPEA-2), have been developed 
and widely used to address the multi-objective 
problems [15]. 

In a real-world case, there is more than one 
criterion or objective to be considered. Some of 
these criteria or objectives include the 
minimization of makespan, tardiness, earliness, 
etc. These multi-objective problems with 
conflicting objectives in most cases are more 
complex and combinatorial in nature and hardly 
have a unique solution. This phenomenon 
results in multi-objective scheduling problems 
that are the core of this research. 

In this paper, a scheduling problem in one of 
the special configuration of FMS known as 
flexible manufacturing cell (FMC) is 
considered. FMC consists of a set of single 
flexible machines (SFM) and only one material 
handling device. It can be used when it is idle 
and when the whole system is under computer 
control [1, 6]. Most of researchers have 
addressed machine and vehicle scheduling as 
two independent problems and most of the 
research has been emphasized only on single 
objective optimization. On contrary, this paper 
focuses on both machines and automated guided 
vehicles (AGVs). FMCs are common place 
within many manufacturing companies, offering 
numerous advantages, such as the production of 
a wide range of part types with short lead times, 
low work-in-progress, economical production of 
small batches, and high resource utilization. 

This paper is organized as follows. In the 
following section, the related research studies 
are reviewed. In Sections 3 and 4, multi-
objective optimization and GAs are briefly 
discussed, respectively. Section 5 outlines the 
problem definition and assumptions. Section 6 
shows the experimental results, and finally 
conclusions and further directions are given in 
Section 7. 

2. LITERATURE REVIEW 
 

Scheduling of FMSs has been received enormous 
attentions over the last three decades. Three 
different approaches are mainly utilized. One 
approach is mathematical programming 
formulation or analytical model. This class often 
leads to an optimum solution, but due to their 
combinatorial structures, other efficient 
approaches are required. In this class, optimization 
algorithms are mainly based on linear 
programming, integer programming and mixed-
integer programming. However, this approach 
depicts the exact characteristics of these systems 
because other resources are regarded as 
constraints. Over the last three decades, many 
studies have been tried to develop operations 
research (OR)-based models for FMS scheduling. 
These models are majorly used for part routing 
and scheduling, and include implicit enumeration, 
mathematical programming, and approximate 
techniques, such as integer programming, dynamic 
programming, goal programming, network 
models, branch-and-bound and Lagrangian 
relaxation [11].  

Liu and McCarthy [1] developed 
comprehensive global MILP for the class of FMSs 
known as FMCs. Their model considers both 
aspect of a scheduling procedure, i.e. loading and 
sequencing and scheduling the machines, material 
handling systems and storages. Three objective 
functions are defined, namely the mean 
completion time, maximum completion time (i.e., 
makespan), and maximum tardiness. Based on the 
model, a global heuristic procedure is described. 
The results show that the optimality performance 
of the global heuristic procedure is much better 
than loading and then sequencing approach. The 
main disadvantage of this model, in which is the 
case for large scale industrial problems, is the time 
required to solve the problem as its size increases. 
Therefore, recently developed methods should be 
employed.  

Low and Wu [16] developed a 0-1 
programming model for scheduling parts in a 
flexible cell that minimizes the total tardiness with 
setup times for all the jobs. They also proposed a 
heuristic method based on the combination on two 
dispatching rules, namely SPT and EDD, to 
generate initial solution. Then, they improved the 
initial solution by two heuristics, called sequence-
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improving procedure and routing exchanging 
procedure which obtained from simulated 
annealing (SA) algorithm.  

Choi and Lee [17] proposed a mixed-integer 
programming (MIP) model for job sequencing in 
order to minimize the makespan. Two 
shortcomings of their model are as follows: 1) 
There is no restriction on material handling 
devices and 2) Setup times of jobs are not 
considered.  

The second approach is heuristic, dispatching 
rules and simulation that are very common in 
practice. Simulation is a descriptive modeling 
technique that is used to evaluate schedules 
through computer-based experiments. This type of 
modeling is a bridge to AI approaches. 

Priority dispatching rules (PDRs) are the most 
frequently applied heuristics for solving job 
shop/combinatorial scheduling problems in 
practice because of their ease of implementation 
and low complexity, when compared with excel 
algorithms. None of the proposed PDRs can 
provide an “optimal” solution to the specific 
problem environment and objective function [14]. 
Sridharan and Babu [18] applied a simulation 
technique to make multi-level decisions for FMS 
scheduling problem. Then, the results of this 
simulation model have been used for developing a 
meta-model which investigates how accurate these 
results are. They finally concluded that these 
meta-models are useful for FMS under study to 
evaluate various multi-level scheduling decisions 
in the FMS.  

Xu and Randhawa [19] studied the effect of 
tool selection policies on scheduling jobs in FMS. 
Instead of a job movement, they considered the 
tool movement for a dynamic job shop in a tool-
shared flexible manufacturing environment. This 
approach is worth considering in those kinds of 
flexible systems that tools in terms of cost 
reduction policy play a major role. Sabuncuoglu 
and Karabuk [20] presented a heuristic algorithm 
based on the filtered beam search for scheduling 
FMSs. The main assumptions considered are 
buffer capacity, routing and sequence flexibility 
that is used in generating schedules for machines 
and AGVs. The performance criteria are the mean 
flow time, mean tardiness, and makespan. To 
further explore of the algorithm efficiency, 
statistical experiments were designed to show 

considerable improvements in the system 
performance. 

Chan and Chan [21] conducted a simulation 
modeling study on FMS that minimizes three 
performance criteria (i.e., mean flow time, mean 
tardiness and mean earliness). They used priority 
dispatching rules that frequently changed 
according to the system status. To monitor criteria, 
three indices were used and ranked in descending 
order to show how worse the system condition is. 
In such case, an appropriate rule is selected to 
tackle that criterion with the largest index. This 
mechanism is called preemption. The results show 
that a solution (range of frequency) can be 
obtained for changing the dispatching rule so that 
the system is better than one which just uses fixed 
FMS scheduling rules. 

The third and last approach is based on AI 
techniques. Ulsoy et al. [22] proposed a GA-based 
approach to schedule jobs and AGVs concurrently 
in FMS. Their work is worth considering since a 
new chromosome representation is used. Another 
aspect of this GA is the crossover operator used 
for the first time.  

Logendran and Sonthinen [23] presented a tabu 
search (TS) method for the job-shop type of 
FMSs. First, MIP model is developed and then a 
strong heuristic algorithm, based on the concept 
known as TS, is developed to tackle problems. So, 
they introduced six different versions of the 
proposed TS method. To measure the performance 
of this method, a randomized complete block 
design is experimented.   

Jerald et al. [9] considered two major resources 
in FMS (i.e., machine and AGV) and developed 
an adaptive GA. The objective function is to 
minimize the penalty cost and the machine idle 
time. These two aspects, to some extent, are 
interconnected. In other words, if an AGV is 
properly scheduled, then the idle time of machines 
can be minimized. Thus, their utilizations can be 
maximized. The penalty cost minimizes not 
meeting committed due dates.  

Noorul Haq et al. [24] proposed a multi-level 
scheduling for FMS to generate realistic schedules 
for the efficient operation of the FMS. They also 
considered other resources such as material 
handling device, AS/AR and tool management. To 
generate schedules, they combined a heuristic 
method with GA and SA [25, 26].  
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Reddy and Rao [15] developed a hybrid multi-
objective GA (HMOGA) for scheduling machines 
and AGV in FMS concurrently. Three objectives 
or criteria are considered, namely makespan, mean 
flow time, and mean tardiness. This proposed 
algorithm is combined with a heuristic approach in 
order to schedule AGVs. As mentioned before, 
this type of hybridization is capable to reduce the 
size of strings, and the number of constraints 
increases algorithm efficiency. The initial 
population is randomly generated. Kim et al. [5] 
modeled a static environment which in the 
scheduling literature means that all jobs are ready 
or ready time is zero. They presented a multi-
objective mathematical programming model that 
minimizes the makespan, total flow time, and total 
tardiness. Then a network-based hybrid GA 
combined with a neighborhood search procedure 
was developed. As numerical experiments show, 
this algorithm is both effective and efficient for 
scheduling jobs in FMSs. 

In many real cases, there is more than one 
objective that should be considered 
simultaneously [5, 10, 15]. Prabaharan et al. [27] 
considers sequencing and scheduling of jobs and 
tools in FMC. To achieve this aim, two 
methodologies are used to derive optimal 
solutions. The first method, which is commonly 
used, is priority dispatching rules (PDRs), and the 
second one is the SA algorithm. One aspect of 
their proposed algorithm is use of a heuristic 
procedure [25, 26] for the active feasible schedule 
generation. The performance of these algorithms 
is compared with the makespan and computational 
time. The analysis reveals that the SA provides an 
optimal or near-optimal solution in a reasonable 
computational time.  

Tung et al. [12] presented a hierarchical 
approach to FMS scheduling that pursues multiple 
performance objectives and considers the process 
flexibility of incorporating alternative process 
plans and resources for the required operations. 
For doing so, they proposed a multi-objective 
priority index that simultaneously considers order 
tardiness cost, inventory cost, order profit, 
processing time, due date, and order size. Using 
the just mentioned multi-objective priority index, 
rough-cut schedules are generated and evaluated 
for performance measure at the system level. 

Two common approaches used in FMS 
scheduling are the job movement and tool 

movement [27]. In this paper, the former approach 
is utilized for scheduling machines and AGV. 

From the related previous studies, it can be 
concluded that although a scheduling problem 
received researchers’ attentions from different 
points of view, there is no any relevant research 
that solves multi-objective scheduling of machines 
and AGV in a flexible manufacturing cell 
simultaneously. Therefore, the aim of this paper is 
to tackle such a hard problem by developing the 
hybrid genetic algorithm (HGA). 

By considering the problem–solving method, 
the HGA presented in this paper differs from other 
existing ones. In this algorithm, four priority 
dispatching rules are defined and imbedded in 
order to generate schedules from a chromosome. 
In other words, these priority dispatching rules are 
utilized to encode a chromosome generated from 
the GA procedure.   

 
 

3. MULTI-OBJECTIVE OPTIMIZATION 
 

The main goal of a multi-objective optimization 
problem is to obtain a set of Pareto-optimal 
solutions satisfying all the constraints that will be 
explained in details. The formal definitions of a 
general multi-objective optimization problem are 
given below: 
    
Definition 1: In optimization problems, when 
there are several objective functions, problems are 
called multi-objective optimization problems 
(MOP) [28]. These problems can be stated in the 
following mathematical form.  

( ) ( ) ( )( )1max/ min ,...,
T

nf x f x f x=  
s.t. 

( )
( )

0 ; 1,...,

0 ; 1,...,
i

j

g x i l
h x j k

≤ =

= =  

where, [ ]1, , T
mx x x= …  is a set of decision 

variables. In the above definition, n is the number 
of objective function ℜ→ℜ m

if : . The aim is to 
determine from among the set F of all vectors that 
satisfy the constraints, in particular those values 

**
2

*
1 ,,, mxxx K  which yield the optimum values for 

all objective functions.  
Usually, these maximization/minimization 

objective functions cannot be solved 
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simultaneously; therefore, as mentioned before, 
one of the goals of MOPs is to find a set of Pareto-
optimal solutions as defined below. 

 
Definition 2: A point F∈*x  is Pareto optimal if 
for every F∈x and { }nI ,,2,1 K=  either, 

( ) ( )( )*
i ii I f x f x∀ ∈ =  

 
or, there is at least one Ii ∈  such that, for 
minimization problem 

( ) ( )*
i if x f x>  

 
and for maximization problem 

( ) ( )*
i if x f x<  

 
There are other important definitions regarding 
Pareto optimality [29]. 

 
Definition 3: A vector [ ]1, , T

mx x x′ ′ ′= …  is said to 

dominate [ ]1, , T
mx x x′′ ′′ ′′= …  (denoted by X X′ ′′p ) 

if and only if X ′ is partially less than X ′′ (i.e., 
{ }1,2, , ,i n∀ ∈ … { }1,2, , :i ix x i n′ ′′≤ ∧ ∃ ∈ …

)i ix x′ ′′<  [29]. 
After establishing such relation in the set of 

solutions, some of the solutions are discarded 
because they are dominated by other solutions. 
After discarding this phase, there exists a set of 
solutions that the domination relation cannot be 
established among them. For better illustration, 
assume that m=2; the problem is scaled down to a 
bi-objective problem. So if there are two 
relations )()(,)()( 22122111 xfxfxfxf fp , then it will 
be impossible to say which solution (i.e., x1 or x2) 
is preferred. Such solutions are called optimal 
solutions in the Pareto sense. Vector 

[ ]Tmxx ′′=′ ,,x 1 K is called local optimal in the 
Pareto sense if: 0 : xδ ′∃ f dominates any given 
vector x ′′ , where ( ),mx B x δ′ ′∈ℜ ∩  and 

( )x ,B δ′  is a bowl with x ′as center and δ  as 
radius. 

The local optimal solution is just for a limited 
region of a feasible solution and not for all region 
of the feasible solution. In optimization problems, 
our interest is in global optimum in the Pareto 
sense defined bellow: 

Definition 4: Vector [ ]1, , T
mx x x′ ′ ′= … is called the 

global optimal solution in the Pareto sense, if there 
does not exist a vector [ ]1, , T

mx x x′′ ′′ ′′= … in the 
feasible space of the problem such that it 
dominates x ′ [30]. 

A multi-objective optimization problem 
(MOOP) in a domain of scheduling has received 
attention. There are different approaches for multi-
objective scheduling, as is the case for the MOOP. 
One approach is lexicographical approach, in 
which, for a given bi-objective namely f1 and f2 
with one (say f1) is far more importance than the 
other. Attempts are first made to find the optimum 
schedules with respect to f1 and then, among those 
found, to choose schedules that perform well on f2.  

If no criterion is dominant, then 
lexicographical optimization may lead to a 
schedule that is unbalanced. The score on the 
second criterion can be greatly improved while it 
lose only a little on the first criterion. In this case, 
simultaneous optimization may be a better choice. 
There are three types of simultaneous optimization 
as pointed out by Evans [31] and Fry et al [32], 
which are priory optimization, interactive 
optimization and posteriori optimization. In case 
of priory optimization, known as aggregating 
functions, both criteria are aggregated into one 
composite objective function L(f1(δ), f2(δ)) for the 
given function L, where δ is the schedule under 
consideration, after which an optimum solution is 
determined for this one problem as a whole. This 
function L can be linear, for example like 
α×f1(δ)+β×f2(δ), where α and β are given constants 
which α+β=1. It indicates the relative importance 
of criterion f with respect to criterion g. However, 
it may be a quadratic or even more exotic 
function. In fact, this approach is to be known the 
oldest mathematical programming approach for 
tackling multi-objective optimization problems. 
The reason can be stated as it can be derived from 
Kuhn-Tucker conditions for non-dominated 
solutions [33]. What is left is to specify the 
properties that a composite objective function 
should possess to be reasonable. The only 
restriction, which should be put on function F, is 
that it should be non-decreasing in both 
arguments. 
 
Definition 5. Function F(f, g) is said to be non-
decreasing in both arguments if for any pair of 
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outcome values (x, y) of the functions f and g, we 
have the following formula for each pair of 
nonnegative values A and B. 

( ) ( )ByAxFyxF ++≤ ,,  

Theorem. If the composite objective function F is 
non-decreasing in both arguments, then there 
exists a Pareto-optimal schedule that minimizes F. 

The best scheduling approach is to minimize 
the makespan and total tardiness penalty. 
However, in the case of manufacturing system 
problems, it is difficult for those with traditional 
optimization techniques to cope with this problem. 
In terms of multi-objective scheduling and 
according to the statement in the above theorem, 
these criteria are non-decreasing. Therefore, the 
weighted-sum method can be used. 

 
 

4. MULTI-OBJECTIVE GENETIC 
ALGORITHM 

 
GAs are widely used in the last three decades to 
address multi-criteria decision problems. In this 
section, some basic ideas behind various 
approaches to the GA implementation are briefly 
described. The basic feature of this algorithm is 
multiple directional and global searches through 
maintaining a population of potential solutions 
from one generation to the next generation.  

The population-to-population approach is 
useful when exploring Pareto solutions. Moreover, 
GAs do not have many mathematical requirements 
and can handle all types of objective functions and 
constraints; hence, its use in multi-objective era is 
promising.  

One special issue arising in solving the MOOP 
by the use of GAs is how to determine the fitness 
value of individuals according to the multiple 
objectives. These methods can be classified as 
follows [34]: 

1) Vector evaluation approach 
2) Weighted-sum approach 
3) Pareto-base approach 
4) Compromise approach 
5) Goal programming approach 

 
Conceptually, the weighted-sum approach can 

be viewed as an extension used in multi-objective 
optimization to GAs. In fact, the weighted-sum 

approaches used in GAs are very different in 
nature from those approaches in traditional multi-
objective optimization. There are three types of 
weighted-sum approaches, namely fixed-weight 
approach, random-weight approach and adaptive-
weight approach [35]. The fixed-weight approach 
can be viewed as analogous to conventional 
scalarization techniques, while the random and 
adaptive-weight approaches are designed for GAs 
to fully utilize the power of genetic search. 
However in this paper, the first approach is used. 

 
 

5. PROBLEM DEFINITION AND 
ASSUMPTIONS 

 
Scheduling of the material handling system in 
FMS has equal importance as of machines and 
should be considered together for the actual 
evaluation of cycle times and due date related 
criteria, such as jobs tardiness. In this paper, both 
completion time and due date related criteria, 
namely makespan and maximum tardiness, are 
considered.  

The problem can be stated as follows. In FMC, 
there are several machines with different 
configurations. Each machine can process any job 
only if is equipped with necessary tools. There are 
two buffers with limited capacity before and after 
each machine. The route of each job to be 
scheduled is known a priori. Once an operation is 
started and then should be continued until it is 
completed. In other words, preemption is not 
allowed. 

In each FMS, there is a load/unload station for 
jobs that need to be scheduled and for those 
already finished their processing and are ready to 
leave system [36]. However, in this problem, such 
configuration is not considered. Instead, a central 
buffer with infinite capacity is assigned to the 
system. 

A material handling device is an AGV that is 
regarded as a constraining resource in the system. 
There are some robots for transferring a part 
from/to AGV/machines and vice versa. The AGV 
has capacity of one part. The loading and 
unloading times are not considered explicitly. As 
mentioned before, to avoid from system deadlock, 
a central buffer with the unlimited capacity is 
designed and located in the cell. Such issues as 
machine failure or downtime, scrap, rework and 
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vehicle dispatch for battery charger are ignored 
here and left as issues to be considered during 
real-time control.  

As mentioned earlier, two objective functions 
are considered, namely makespan and maximum 
tardiness. The first objective is the most important 
criterion among the completion time related 
criteria. It implies that the cost of any schedule 
depends on the duration, for which the whole 
system is allocated to process a job. Another 
criterion of interest is due date related criterion, 
namely maximum tardiness. The reason of using 
this performance measure is mainly the changing 
market environment.  

In the following subsections, the model 
assumptions and definitions are presented. Then, 
the HGA is proposed to solve this type of the 
multi-objective scheduling problem.  
 
5.1. Model Assumptions     This section presents 
a number of model assumptions based on which a 
under-consideration problem is stated and solved. 
These assumptions are as follows: 
1) Processing time of each operation is known 

in advance. In other words, the problem is 
considered in a static environment.  

2) Transportation times between machines are 
based on the AGV speed and distance 
between two different machines.  

3) Loading and unloading times are considered 
in the processing time of each operation. 

4) Setup times in this model are sequence-
dependent. 

5) Machines and AGV breakdown are not 
considered. 

6) All machines can process every part and 
related operations, only if equipped with 
appropriate tools. 

7) Tooling constraints are not considered. In 
other words, the considered resources are 
machines, material handling device and 
buffers. 

8) Each machine can process only one part at a 
time. 

9) Preemption is not allowed. 
10)  Processing times are scheduling-

independent; however, machine-dependent 
(i.e., machine eligibility) is taken into 
account. 

11) Technological constraints are known as a 
priori. 

12) There are two buffers before and after each 
machine with limited capacity. 

13) To avoid the system dead lock, it is assumed 
that there is a central buffer with unlimited 
capacity to keep in-line parts. 

As mentioned above, processing times are 
machine-dependent, mathematically, if pij is 
processing time of operation j of job i and vm is 
speed of machine m to process the assigned job, 
then pijm = (pij / vm) will be the time needed to 
process operation j  of job i  on machine m. 

In this paper, the HGA is proposed and 
developed to generate an optimal (or near-optimal) 
solution for a scheduling problem considering 
resources, such as machines, AGV, and buffers. 
Minimizing both the maximum completion time 
(i.e., makespan or Cmax) and maximum tardiness 
(Tmax) is defined as main objective functions. 

 
5.2. Hybrid Genetic Algorithm    In this section, 
the proposed HGA is outlined. Genetic algorithms 
are non-deterministic stochastic search methods 
that utilize the theories of evolution and natural 
selection to solve a problem within the complex 
solution space, or more specifically combinatorial 
optimization problems [25, 34, 37]. 

The element and mechanism of GAs are 
representation, population, evaluation, selection, 
operator, and parameter. The algorithm starts with 
a randomly generated initial population consisting 
of sets of “chromosomes” that represent the 
solution of the problem. These chromosomes are 
evaluated for the fitness function, or equivalently 
objective function, and then selected according to 
their fitness value. As pointed out by Gen and 
Cheng [34], there are three types of hybridization 
in the GA domain as follows: 
1) Incorporate heuristics into initialization to 

generate a well-adapted initial population. 
2) Incorporate heuristics into an evaluation 

function to decode chromosomes to 
schedules. 

3) Incorporate a local search heuristics as an 
add-on to the basic loop of the genetic 
algorithm, working together with mutation 
and crossover operators to perform quick, 
localized optimization to improve offspring 
before returning it to be evaluated. 
 

The proposed algorithm uses the advantages of 
second category. In other words, it combines some 



 
IJE Transactions A: Basics                                                         Vol. 23, Nos. 3 & 4, November 2010 - 243 

priority dispatching rules in order to generate 
schedules from just generated chromosomes for 
evaluation. The elements of the proposed GA are 
explained hereafter.  

 
Representation: Every solution of the given 
problem has equivalent representation in the GA 
domain. To link each solution to a chromosome, a 
coding scheme is needed. In this paper, each 
solution is coded as string of integer numbers [15], 
which is called phenol style [10]. Here the initial 
population is generated randomly, so care should 
be taken in generating feasible solution that 
maintains the precedence relations of operations 
related to the same job. This is crucial in job shop-
based scheduling. The following example 
illustrates how this scheme works. 
 
Example: A scheduling situation with 3 work 
centers and 5 work pieces is considered. There are 
14 operations and the chromosomes consist of 14 
genes. 

 
Jobs 1 2 3 4 5 

Operation 1 2 1 2 3 4 1 2 1 2 3 1 2 3 

Machine 1 3 2 3 1 2 2 1 3 1 2 2 1 3 

Represen-
tation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 

Based on the representation above, a sample 
feasible chromosome will be as follows. 

 
1 3 2 7 4 9 12 13 5 6 8 14 10 11 

 
This representation shows the first scheduled 

operation is the first operation of the first job on 
the first machine. The second operation is the first 
operation of the second job that should be 
scheduled on the second machine. The third 
operation is the second operation of the first job 
that should go on machine three. The other genes 
can be defined in the same way. The Gantt chart 
for this representation is depicted in Fig. 1. This 
schedule is not the output of the proposed GA. In 
this algorithm, one module is considered that tries 
to generate schedule from any given chromosome 
like above. This module takes a cell situation in 
terms of resource status into account. In other 
words, AGV location, machines availability and 

number of jobs waiting before each machine are 
considered.  

 

 
 
Figure 1. Gantt chart for the given example 
 

 
Fitness function: Each generated individual is 
evaluated for its makespan and maximum 
tardiness if the completion time of job i is defined 
by: 

∑=
j

iji OC  

If di is the respective due date, then its tardiness 
is computed by ( )iii CdT −= ,0max .  

Then, the maximum tardiness is the maximum 
of absolute deviation of jobs from their due dates. 
Mathematically, the maximum tardiness is 
computed by iTT maxmax = . The maximum 
completion time (i.e., makespan) is defined by: 

( )nCCC ,,max 1max K=  

The above criteria or objectives are combined 
into one to form the objective of the scheduling 
problem. This combination as mentioned earlier 
forms the weighted-sum objective function as 
follows: 

( ) ( )STwsCwz tc maxmax +=  

where, wc+wt=1. In this paper, both objectives 
have equal importance (i.e., wc=wt=0.5).  

The goal is to minimize combined objective z 
via GAs. Since the main goal of multi-objective 
scheduling is to find those schedules that belong to 
the Pareto set, this weighted-sum fitness function 
can be applied. It is worth noting that the approach 
used here is fixed weighed-sum, meaning that the 
objective weights remain unchanged throughout 
the genetic search. Another aspect of GAs is 
operators that play a major role in finding optimal 
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(or near-optimal) solution. There are three 
operators, namely reproduction or selection, 
crossover and mutation [15].  

 
Crossover: The technique used here to cross over 
two chromosomes is named job-based crossover, 
which never violates precedence relations between 
operations [15, 34, 37]. Based on this scheme, 
once two chromosomes are selected as parents, a 
job is randomly selected, and its corresponding 
operations are directly copied into respective 
positions of offspring. This method guarantees 
that precedence relations are not violated. Then 
the remaining unfilled positions are fulfilled with 
operations of another parent. The following 
example clarifies the above method. 
 
Example: Chromosomes selected for crossover are 
as follows: 
 
P1: 1 5 8 2 6 9 3 7 10 4 

  
P2: 5 8 1 9 2 3 6 10 7 4 

 
Let the selected job is 2 and the corresponding 

operations of job 2 are 5, 6 and 7.  
 

P1: 1 5 8 2 6 9 3 7 10 4 

 
P1: 1 5 8 2 6 9 3 7 10 4 

 
Exchanging operations of job 2 result in the 

following offspring: 
 

O1: 5 1 8 2 9 3 6 10 7 4 

 
O1: 5 1 8 2 9 3 6 10 7 4 

 
As can be seen, the resulting offspring are 

feasible. This is mainly because during crossover 
procedure, the precedence relations are taken into 
consideration. 
 
Mutation: In this paper, the operation swap 
mutation is used. Two random positions on the 
chromosome are chosen and operations associated 
with these positions are swapped. This mutation 
may cause infeasibilities in terms of the 

precedence relations and a repair function is used 
to eliminate any such infeasibility [10, 15].  

 
Repair function: A repair function is used to see 
that the chromosomes do not violate the 
precedence constraints [22]. The following four-
step procedure outlines the repair function in 
details:  

Step 1: Find positions of the operations that 
violate the precedence relations. 

Step 2: Compute the distance between 
violating operations. 

Step 3: If the distance between them is less 
than half the chromosome length, then swap the 
operations, else go to Step 4. 

Step 4: Randomly pick any one operation and 
insert it before or after the other depending on the 
precedence. 
 
Selection: The method used here is known as 
roulette wheel approach that is commonly used in 
practice [37]. It belongs to the fitness-proportional 
selection and can select a new population with 
respect to the probability distribution based on 
fitness values (i.e., the more fitted a chromosome 
is, the more chance it has to be selected).  

Here it is required to adapt the selection 
method in such a way that the minimum objective 
function receives a higher chance to be selected. 
For this purpose, a normalization technique based 
on a scaling method is used [37]. For a 
minimization problem, this normalization is 
computed by: 

α
α

+−
+−

=′
minmax

max

ff
fff k

k  

where, kf ′  is the normalized fitness function, and 

maxf  and minf are maximum and minimum fitness 
function values of chromosomes in the current 
population, respectively.  

The just produced fitness values for the current 
generation are used to select chromosomes based 
on the roulette wheel approach. This approach 
gives to each chromosome in the population an 
opportunity proportionate to its fitness. This 
probability is calculated by: 

( )
∑
∈

′
′

=

Popk
k

k

f
fkR  
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Population and parameters: The initial population 
is randomly generated. The number of 
chromosomes in each generation, crossover and 
mutation rates, and also the number of generation 
that algorithm should run to give a satisfying 
solution are regarded as GA parameters. These 
parameters must be initialized at the beginning of 
the GA run. 
Termination criteria: Since every heuristic 
method does not guarantee an optimum value for 
the problem, an approach is needed to terminate 
that heuristic method. There are different methods 
to terminate a heuristic method for an optimization 
problem. One used here is the number of iteration 
that the algorithm is run. 
 
5.3. Schedule Generator Apart from the GA 
methodology, to evaluate each string or solution it 
is needed to schedule jobs on different machines 
considering problem constraints. Dispatching 
algorithms are widely used for scheduling in 
industrial practice. The algorithms are based on 
various dispatching rules that prioritize the 
products for assignment to machines and AGVs. 
So, in this paper, dispatching rules are 
incorporated to GA to schedules jobs on machines 
and AGV. For doing so, four dispatching rules are 
considered. The main idea behind this is to 
consider all resources in FMSs. Since our 
objective function is due date-related, it is worthy 
to consider a method that attempts to reduce jobs 
completion time as much as possible, which based 
on the due date tightness can reduce job tardiness. 
So as mentioned earlier, the proposed GA is the 
hybrid one that incorporates priority dispatching 
rules to do the scheduling task. To keep track of 
scheduling in terms of the tardiness objective, job 
slack [38] is computed by: 
 

( )0,max tpdMS ijmj −−=  

This rule is not regarded as those imbedded 
into the proposed GA. The main goal is to 
schedule machines in such a way that once a 
machine becomes free, this index is calculated. 
Based on this index, the next operation in the 
current chromosome is scheduled.  

These four priority rules are the earliest 
finishing (or completion) time (EFT), shortest 
processing time (SPT), shortest distance time 

(SDT) and fewest waiting jobs for machine 
(FWJM). The first two rules focus on jobs, the 
third one tries to handle the AGV constraint and 
make use of its availability and its impact on the 
objective functions. The last one plays a same role 
as the previous one, excepting that it considers 
machines buffers. 

This proposed methodology works as follows. 
First, a job with the earliest finishing time is 
selected to be processed on the corresponding 
machine. If there is more than one job, the job 
with the shortest processing time for its 
subsequent operation is selected. Then tie is 
broken by considering the distance each job 
should travel (i.e., the shortest path is selected first 
by an AGV). If again there is a tie, another PDR is 
taken into account. Based on this rule, the number 
of jobs in the target machine buffer determines 
which job should go first. 

This GA in conjunction with the proposed 
heuristic approach constructs the methodology 
presented for scheduling jobs and AGV in an 
FMC.  
 
5.4. GA Steps for Scheduling FMC In this 
section, steps for FMC scheduling are presented 
bellow.  

Step 1: Enter the input data including number 
of machines, distance between machines, number 
of jobs and corresponding operations, processing 
and setup times, and due dates. Then, enter GA 
parameters, such as population size, crossover and 
mutation rates, and termination criteria. 

Step 2: Randomly generate an initial 
population using the encoding scheme. 

Step 3: Generate schedules using schedule-
generator module. 

Step 4: Select chromosomes by using the 
roulette wheel approach to create mating pool for 
the next generation.  

Step 5: Generate offspring population using 
job-based crossover and bit-wise exchange 
mutation operators. If some precedence relations 
are violated, go to Step 6; otherwise, go to Step 7.        

Step 6: In case of any violation as a mutation 
result, run a repair function as described above 
and then go to Step 7. 

Step 7: Evaluate each chromosome in the 
current population for the objective function based 
on the generated schedule. 
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Step 8: Sort chromosomes based on the fitness 
function value.  

Step 9: If the termination criterion is met, then 
stop and print the fittest chromosome as the best 
solution found so far; otherwise, go to Step 4 for 
the next generation.  

The above-mentioned steps of this algorithm 
are schematically depicted in Fig. 2. The next 
section presents the related results of the proposed 
approach to deal with the scheduling problem in 
FMC environment. 

 
 

6. NUMERICAL EXAMPLES AND 
COMPARISON RESULTS 

 
In this section, the proposed HGA is applied to 
schedule an FMC with varying parameters. Many 
problems with different parameters and values are 
considered and solved. The related results are 
tabulated. Since the problem environment is 
somehow similar to the one considered by Liu and 
MacCarthy [1], the MILP is solved by the Lingo 
software and the associated results are compared 
with those of our heuristic approach.  

First, ten test problems are randomly generated 
and shown in Table 1. In each instance, different 
job sets with different operations are considered. 
Based on the mathematical formulation, a number 
of variables and constraints are also calculated, 
and provided in this table. To further study of the 
efficiency of the proposed model, different 
problems with different configurations are defined 
in three stages, which based on them; both the 
mathematical model and the GA methodology are 
applied. 

First, FMC with two machines is considered 
and the problem size is iteratively increased by 
adding job with varying operations. Processing 
times are randomly generated from the uniform 
distribution function, accordingly jobs due dates 
are defined. This is regarded as Case 1. Then, 
configurations of the FMC are changed in terms of 
distance between machines (Case 2), buffer size 
(Case 3), and speed of AGV (Case 4), 
respectively. In this paper, only one of the best 
and complicated cases (i.e., Case 4) is selected and 
its parameters are set. The remaining cases, the 
GA parameters are remained unchanged. 

TABLE 1. Data for the experimental study 

No. of Cons. No. of Var. Machines Total Oper. Oper. per job Jobs Prob. no 
596 208 2 8 2 4 1 
985 632 2 12 2 6 2 
4466 3732 2 30 3 10 3 
4561 5336 2 36 6 6 4 
6308 7233 2 42 6 7 5 

10186 8297 2 45 3 15 6 
19648 11891 2 54 6 9 7 
13241 14652 2 60 6 10 8 
30436 32777 2 90 6 15 9 
54681 58102 2 120 6 20 10 

 
 

TABLE 2. Experiment factors and their levels 

Type of 
factors 

Controllable factors Noise factors 

 Population Pc Pm Initial solution Selection Crossover Mutation Problem No. 
Coding A B C D E F G N 

Level 1 30 0.7 0.01 Random Tournament 
selection 

Machine-
based 

crossover 

Reverse 
order 1 (4J2M_2) 

Level 2 50 0.8 0.03 EFT Roulette 
Wheel 

Job-based 
crossover 

Swap 
mutation 3 (10J2M_3) 

Level 3 100 0.95 0.1 EFT, SPT, SDT, 
FWJM 

Ranking 
selection 

Operation-
based 

crossover 

Insert 
mutation 5 (7J2M_6) 
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 Figure 2. Flowchart for the proposed hybrid genetic algorithm 
 
6.1. Parameter Setting in the HGA We know 
that an appropriate selection of parameters and 
operators has remarkably influence on the 
efficiency of HGA. In this regard, designing the 
HGA parameters and operators highly depends on 
the problem. But, researchers often set these 
parameters manually according to the related 
literature. So, in this section, Taguchi 
experimental design is utilize as a systematic 
parameter design research method for setting the 
parameters of the HGA effectively. In this 
method, controllable factors are placed in an inner 
orthogonal array and noise factors in the outer 
orthogonal array [39]. Consequently, the measured 

values of quality characteristics are converted into 
a signal-to-noise (S/N) ratio. For the details of the 
Taguchi experimental design, readers can refer to 
the work done by Mason et al. [39]. 

Let us determine the research characteristic –
anticipating the minimization of the maximum 
completion time and the maximum tardiness as the 
objective value. Then the smaller value, the better 
cost value is. Hence, the S/N ratio should be 
calculated using Lower-is-Better formula give 
below. 

]1[ log10/
1

2∑
=

−=
n

i
iy

n
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The former formula is derived from the loss 
function given by: 

2( )L y k y= ×  
 
In the following, the controllable factors and 
levels are defined. This paper considers seven 
factors that affect the solution quality when the 
proposed HGA is applied. Furthermore, a level 
number is assigned to perform the parameter 
design. Factors and their levels are illustrated in 
Table 2. The inner and/or outer orthogonal array 
and the corresponding distribution method are 
selected. According to seven factors and each 
factor with its levels, we adopt the L27 inner 
orthogonal array supported with the L3 outer 
orthogonal array in order to satisfy the 
requirements.  

In this section, we provide 27 sets of the 
experiment results. Each set includes three noise 
factor combinations and their corresponding S/N 
ratios. Then, these data convert into the S/N value 

and lead to the response table. This table and 
related graph is depicted in Table 3 and Fig. 3, 
respectively. As illustrated in Table 3, factor E 
(i.e., initial solution) is prominent in the 
performing the HGA. Moreover, the influence of 
seven factors on minimizing the objective value in 
the scheduling problem along with the HGA is in 
the following order. 

 
(1) Initial solution; 
(2) Crossover rate; 
(3) Selection method;  
(4) Population size; 
(5) Mutation method; 
(6) Crossover method;  

     (7) Mutation rate. 
 
Since the S/N ratio has the characteristic of the 
greater the better, the computational results in Table 
3 and Fig. 3 indicate the best combination of each 
factor and level. 

 

TABLE 3. S/N ratio response table 

 

Levels Factors 
A B C D E F G 

Level 1 –44.99 –45.17 –46.34 –45.82 –46.80 –45.92 –45.06 

Level 2 –44.05 –43.79 –44.21 –42.03 –45.01 –44.01 –43.58 

Level 3 –46.61 –47.01 –44.91 –51.01 –47.73 –46.28 –45.96 

Delta 2.56 3.22 0.7 8.98 2.72 2.27 2.38 

Rank 4 2 7 1 3 6 5 

 
 

 
Figure 3. S/N ratio response graph
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Hence, the optimal factor combination is A2: 
population size = 50; B2: crossover rate = 0.8; C2: 
mutation rate = 0.03; D2: initial solution = four 
priority dispatching rules (i.e., EFT, SPT, SDT, 
FWJM); E2: selection method = roulette wheel; F2: 
crossover method = job-based crossover; G2: 
mutation method = swap mutation.  

6.2. Algorithm Coding and Results    This algorithm 
is coded in Visual C++ 6 along with the coded MILP 
model in Lingo 8. Both are run on a PC with 2.6 GHz 
CPU and the related results are tabulated. The results 
for this problem are given in Tables 4 to 7 for cases 
one, two, three and four, respectively. 

 

TABLE 4. Results for Case 1 

GA (II) Solution GA Solution Global Solution Prob. 
No GAP (%) Time 

(sec.) BOF GAP (%) Time 
(sec.) BOF Time 

(sec.) Iterations Optimal 
0 50 51.8 5.8 30 54.8 8 8734 51.8 1 
0 90 59.9 8.0 67 64.7 17 23075 59.9 2 
0 200 30.5 3.8 150 31.65 197 381173 30.5 3 
0 600 9 2.8 400 9.25 623 965846 9 4 
0 1105 11.5 4.3 964 12 1987 2800953 11.5 5 

1.1 1785 27.8 6.7 1630 29.35 3674 3591046 27.5 6 
3.2 3256 113 5.5 3180 117.5 6743 7541197 109.5 7 
1.2 5824 164 6.8 5342 173 10863 11311795 162 8 
2.7 8500 210 6.8 8334 218.5 15642 18664462 204.5 9 
2.4 10995 236 6.7 10045 246 24651 35462777 230.5 10 

 

TABLE 5. Results for Case 2 

GA (II) Solution GA Solution Global Solution Prob. 
No GAP (%) Time 

(sec.) BOF GAP (%) Time 
(sec.) BOF Time 

(sec.) Iterations Optimal 
0.3 35 52 6.0 20 54.9 8 13998 51.8 1 
0.0 150 60 4.2 100 62.5 30 72299 60 2 
0.5 605 102 4.9 600 106.5 547 1242305 101.5 3 
0.0 990 11.5 13 1012 13 2160 5977290 11.5 4 
0.0 2005 16 9.4 1807 17.5 4982 16543810 16 5 
1.3 3405 39 5.2 3481 40.5 10030 24815716 38.5 6 
2.5 5700 134 8.4 5690 141.5 17642 52113003 130.5 7 

4.75 8438 261 11 8519 372 26071 96409055 177 8 
- 11000 220 - 11047 224.5 - - - 9 
- 13104 276 - 13609 276.5 - - - 10 

 

TABLE 6. Results for Case 3 

GA (II) Solution GA Solution Global Solution Prob. 
No GAP (%) Time 

(second) BOF GAP (%) Time 
(second) BOF Time 

(second) Iterations Optimal 
0 53 105.4 7.0 45 112.8 10 17234 105.4 1 

1.5 152 155 5.0 150 160.4 110 380560 152.7 2 
7.0 695 38 4.2 700 37 615 1376544 35.5 3 

13.0 1301 13 13.0 1285 13 3185 7764906 11.5 4 
1.1 2100 36 6.7 2059 38 7348 14753321 35.6 5 
0.8 4105 65 7.0 3942 69 15325 32457307 64.5 6 
1.7 6900 180 6.8 7002 189 29841 63291749 177 7 
- 9300 230 - 9358 230 - - - 8 
- 11560 260 - 11803 262.5 - - - 9 
- 14001 283 - 14391 289 - - - 10 
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TABLE 7. Results for Case 4 

 
GA (II) Solution GA Solution Global Solution Prob. 

No GAP (%) Time 
(second) BOF GAP (%) Time 

(second) BOF Time 
(second) Iterations Optimal 

0.6 52 106 3.4 45 109 12 38337 105.4 1 
0.2 165 153 3.3 155 157.8 121 406834 152.7 2 
0.5 751 102 4.4 710 106 774 1648552 101.5 3 
1.2 1364 123 4.1 1315 126.5 3352 8709542 121.5 4 
2.5 2218 102 6.0 2129 105.5 7853 18725515 99.5 5 
2.3 4460 176 7.0 4519 184 16292 35391224 172 6 
0.8 6921 253 3.8 7132 260.5 30820 63704203 251 7 
- 8959 235 - 9680 238 - - - 8 
- 11624 269 - 11923 278 - - - 9 
- 13891 591 - 14571 604 - - - 10 

 
It can be concluded that how the configuration 

and layout of a manufacturing cell can increase the 
problem complexity. As results show, the use of 
GAs for solving this problem reduces time needed 
to get the best objective function dramatically. 
This shows that the use of this algorithm is 
promising. It is worth mentioning that FMS layout 
affects on production planning in general and 
scheduling in particular (i.e., the more machines 
are located away, the greater the completion time 
and tardiness is). For this reason, the cell layout 
should be considered in the system design and 
scheduling. 
 

 
7. CONCLUSIONS AND FUTURE 

DIRECTIONS 
 

The flexibility is a growing issue in modern 
industrial firms to respond varying product 
demands with the short lifecycle. Therefore, new 
approaches are needed to resolve this issue. Since 
FMS scheduling problems are NP-hardness, the 
use of heuristics are quite justified. In this paper, a 
class of a flexible manufacturing cell (FMS) is 
considered. A new genetic algorithm (GA)-based 
approach is proposed to schedule jobs and 
automated guided vehicle (AGV) for minimizing 
the maximum tardiness.  

The proposed hybrid GA was coded in Visual 
C++ and run for problems of different sizes. The 
obtained results were compared with the 
mathematical model developed by Liu and 
MacCarthy [1]. As results show, the proposed 
model outperforms the mixed-integer linear 

programming (MILP) model. One reason is worth 
considering that the required time to solve 
medium to large-sized problems is a crucial issue 
in industrial firms. 

There are several directions to work on for 
future study and some are suggested here. One 
possibility is to apply other heuristic methods 
separately or in conjunction with GAs. These 
include, but not limited to, simulated annealing 
(SA), tabu search (TS) and particle swarm 
optimization (PSO). Another possibility is to 
consider a multiple cell system or flexible 
manufacturing system. In the latter case, other 
scheduling of a fleet of AGVs can be added to the 
model. Designing a scheduling system that 
considers tool management and maintenance 
activities is another generalization of the problem.     

There are other opportunities to extend this 
paper in future. One of them is to consider the 
problem in a fuzzy environment or under an 
uncertainty condition in order to make it as close 
to real case as possible. Since the considered 
problem deals with a manufacturing system, 
integrating this problem with production planning 
in a more aggregated level is another opportunity 
for future research.  
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