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NUMERICAL INVESTIGATION OF CRACK ORIENTATION IN 
THE FRETTING FATIGUE OF A FLAT ROUNDED CONTACT 
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Abstract   The growth of slant cracks by fretting fatigue of a half plane in contact with a flat rounded 
pad was studied. The mode I and mode II stress intensity factors for cracks of various lengths and 
directions were calculated using the semi-analytical method of the distribution of dislocations, and their 
cumulative effect on the crack growth was investigated using the strain energy density criterion.  The 
results showed dominance of mode I fracture on crack growth, and based on the observation of strain 
energy density factor versus crack orientation, the results also suggest that depending on the crack 
length, the most critical orientations of cracks are at 00 to 200 outward the contact zone.  Good agreement 
was observed between the results of this semi-analytical approach, and the corresponding results from 
finite element method, for selected crack lengths and orientations. 
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رشد ترك هاي ناشی از اریب خستگی سایشی یک نیم صفحه در تماس با یک کفشک مسطح لبه    چکیده
 براي ترك هایی با طول و جهات مختلف، با 2 و 1ضرایب شدت تنش مدهاي . گرد مورد مطالعه قرار گرفت

ی آنها بر روي رشد  محاسبه گردیدند و همچنین تاثیر تجمیع" توزیع نابجایی ها"بکارگیري روش نیمه تحلیلی 
 را در رشد ترك 1نتایج، برتري شکست مد . ترك با استفاده از معیار انرژي کرنشی، مورد بررسی قرار گرفت

همچنین نتایج مبنی بر مشاهدات تغییرات چگالی انرژي کرنشی در رابطه با جهت رشد ترك نشان می . نشان داد
ضمنا .  درجه به سمت منطقه تماس می باشد20 تا 0 دهند، که بسته به طول ترك، بحرانی ترین جهت ترك

توافق خوبی بین نتایج روش نیمه تحلیلی و نتایج اجزاء محدود براي ترك هاي با طول وجهت مختلف مشاهده 
 .شد

 
 

1. INTRODUCTION 
 
Fretting fatigue induces damage at or near the 
contact surfaces and results in the reduction of 
fatigue life compared to the normal fatigue with no 
contacting components. Fretting is caused by 
micro-slip of the contact surfaces and the 
formation of highly stressed zones near the contact 
surfaces. This damage is widespread in the dovetail 
regions of aero engine compressor disks which 
experience fretting in a flat-on-flat contact with a 
relatively large radius at the edge of the contact [1-
4]. Since experimental setups are costly and stress 
states are mostly unknown, simplified models of 

the dovetail region are widely used for analysis 
purposes. One such model is that of a flat and 
rounded pad in contact with a half plane placed 
under the fretting loading. This model is favorable 
because of its similarity to the mechanism of 
contact in the dovetail region and also its analytical 
simplicity [2, 5-12]. 
     Fretting cracks generally undergo mixed 
loading, and a proper study on them requires the 
consideration of crack growth under mixed modes 
fracture patterns. Several studies have shown that 
there is much tendency for the short fretting cracks 
to grow in an oblique manner rather than simply 
normal to the contact surfaces [13-17]. 
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     In the present work, the growth of slant fretting 
cracks from a fracture mechanics point of view 
was studied. Fretting fatigue of a half plane in 
contact with a flat rounded pad placed under 
fretting loading was taken into consideration. The 
stress intensity factors (SIF) of resulting slant 
fretting cracks in the first and second modes were 
calculated and their cumulative effect on crack 
growth was investigated using the strain energy 
density criterion. Cracks were assumed to appear at 
the contact boundary and various lengths and 
angles are considered for them. A semi-analytical 
method of the distribution of dislocations was 
applied for the calculation of SIFs and a good 
agreement was observed with finite element 
method results. 
 

 
 
Figure 1. A schematic illustration of a flat and rounded 
contact configuration 
 
 
     Distribution of dislocations method is based on 
the numerical calculation of integral equations 
which relates the stress state of the uncracked half 
plane and relative displacement of crack faces, so 
that the first step in its application is to calculate 
the stress state of the uncracked half plane [16]. 
Results of the study show the most and least 
critical angles of slants cracks and their variations 
with respect to the crack length.  
 
 
 

2. STRESS STATE IN THE HALF PLANE 
 
2.1. Normal and shear tractions calculation     In 
this section, we describe the method employed to 
calculate stress state with respect to a typical 
geometry of the pad. Figure 1 shows the 

configuration of the contact model. The contact 
area has a width of 2a and a stick zone width of 2c. 
The pad has a flat central part of width 2b and two 
rounded corners of radius R. These corners are 
approximated by parabolic curves. The half plane 
is subjected to not only the normal force, P, and 
tangential force, Q, but also to a bulk stress, σb. As 
the result of bulk stress introduction to the half 
plane, the stick zone shifts by a value of e, and the 
shear traction distribution becomes asymmetrical. 
Although the presence of bulk stress results in 
more complications in analytical solutions, it is 
necessary to be taken into account as the fretting 
fatigue which normally takes place in the presence 
of bulk stresses within one or both of the 
contacting bodies caused by loading other than 
contact itself.  
     For the case that flat rounded pad and half plane 
have the same modulus of elasticity, E, and 
Poisson's ratio, v, the equation used for calculation 
of the normal traction, p(x), can be written as [17]: 
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G is the modulus of rigidity. In this paper we only 
consider the case of moderate bulk stress, for 
which tangential traction has the same sign over 
the entire contact area. Using the relation between 
shear traction, q(x), and the tangential relative slip 
of surface points, g(x), we calculate the unknown 
q(x) [17]: 
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The shear traction can be defined as: 
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where f is the coefficient of friction. By 

substituting Eq. 4 into Eq. 3 in the stick zone we 
obtain [17]: 
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Gauss-Chebyshev quadrature method can be 

used to solve Eq. 5 [18]. The same procedure used 
in ref. [19] is also applied here to find the shear 
traction in certain points. The stick zone shift and 
σb are related variables and only one of them can 
be chosen. The relation between the mentioned 
variables can be found by invoking the consistency 
condition [20].Through the calculation of normal 
and shear tractions on the contact surface, the 
values of normal and tangential forces can be 
found using the equilibrium conditions of the pad 
[17]. 
 
2.2. Interior stress state   Stress state in the half 
plane is given by the superposition of the contact-
induced stress state and the bulk stress. In order to 
evaluate the contact-induced stress state, we 
consider the pressure and the shear tractions as 
arrays of overlapping triangular traction elements. 
The use of such elements results in a piecewise 
linear approximation to the surface tractions and is 
thus free from discontinuities associated with the 
piecewise method [21]. The stress state due to each 
traction element is calculated and used to obtain 
the total contact-induced stress state. For the 
convenience, we use only the first component of 
the stress state, σx , for demonstration purposes in 
the following sections, although one should note 
that this method can be used to efficiently calculate 
all three of the σx, σy and τxy components of the 
stress state. 
 
3. FINITE ELEMENT MODELING    
 
The finite element modeling of normal cracks of 
different lengths were carried out using ANSYS 
software. The configuration of the contact model is 
shown is Figure 2. This model has been 
excessively used in the literature [5, 6, 19, 22] 

because of its similarity to most of the fretting 
fatigue experimental setups. In finite element 
modeling of this configuration, the lower plate 
should be taken large enough to appropriately 
approximate a half plane. 
     The model is loaded in two steps. In the first 
load step, normal force is exerted to the pad and in 
the second step the bulk stress, σb, is applied to the 
lower plate. Notice that the bulk stress 
automatically brings about the tangential force Q.  

 
 
Figure 2. The configuration of the finite element model 
of the contact under fretting loading, and the applied 
loads 
 
  
As shown in Figure. 3, in order to create the 
moment, M, necessary for the equilibrium of the 
pad, the pressure distribution over the contact 
surface should be asymmetric. However, pressure 
distribution in homogeneous contacts should be 
independent of the tangential loads, thus in the 
case of flat and rounded contact it has to be 
symmetrical. The symmetry of pressure 
distribution is a significant concern in the finite 
element modeling and can be greatly overcome by 
coupling the nodes of the pad's upper side in y 
direction.   
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Figure 3. A schematic view of the applied loads and 
reactions forces on the pad. 
 
 
     The crack tips in the finite element model were 
meshed using triangular PLANE2 singular 
elements.  These elements have triangular shape, 
and are defined by six nodes having two degrees of 
freedom at each node.  These singular elements are 
capable of obtaining the well-established singular 
stress field near the crack tip by shifting the mid-
side nodes one-quarter away from the crack tip. 
The crack tips were meshed with 12 singular 
elements of 0.05% of crack length, according to 
the results presented in [23]. 
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Figure 4. An arbitrarily oriented dislocation in a half 
plane 
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Figure 5. A half plane subjected to an arbitrary inclined 
crack 
 
 

4. DISTRIBUTION OF DISLOCATIONS 
METHOD 

 
The distribution of dislocations method is a 
convenient approach for calculating SIFs of cracks 
in the half planes under complicated stress states 
[5, 16, 24, 25]. This method is based on the 
numerical solution of integral equations which 
relate the relative displacement of the crack faces 
and the stress state of an uncracked half plane. The 
values of SIF can be obtained using the relative 
displacements of the crack faces as follows: First 
the stress values along the line of the crack in its 
absence are obtained. Then, a distribution of 
dislocations is introduced along the line of the 
crack. A dislocation can be formed by cutting out a 
narrow strip in the half plane and gluing the faces 
of the cuts together along their entire length. 
      In the notation of Figure 4 the stress state 
induced by a dislocation located at (c, 0) whose 
Burger vector has components (bx, by) [24] is 
presented as follow: 
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where the functions Gijk are defined explicitly in 
Ref. [16]. The crack to be analyzed is depicted in 
Figure5. By transforming the stress components 
from the global coordinate to the local coordinate 
depicted in Figure 5, we can find a new set of 
functions, which will become the kernels of 
integral equations, expressed exclusively in the 
local coordinate set, viz. 
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     Now, if instead of installing a discrete 
dislocation, we introduce a distribution of 

dislocations of densities )(ˆ cBx  and )(ˆ cBy  
defined by: 
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We can see that the total normal traction, )ˆ(xN , 

and shear traction, ˆ( )S x , across the crack are 
given by: 
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where )ˆ(xTσ  and )ˆ(xTτ  are the values of the 
tractions induced along the line of the crack by 
applied loads. One should note that for traction 

free crack faces we have 0)ˆ()ˆ( == xSxN . 
     The first step in numerical solution of Eq.9 is to 
normalize the variables, which can be 
accomplished by introducing new variables given 
by: 

1/ˆ2,1/2 −=−= bxsbcr                             (10) 
By introducing the unknown function of Eq. 9 as: 
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And switching to a series representation such that a 
system of simultaneous linear algebraic equations 
remain: 
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Eq. 12 and Eq. 13 yield 2n simultaneous 

unknowns )(ˆ ix rφ , )(ˆ iy rφ . Once these values have 
been found, the SIFs can be deduced from the 

basic fracture mechanics equations as: 
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5. STRAIN ENERGY DENSITY CRITERION 

 
As noted earlier, fretting fatigue cracks generally 
experience growth on a mixed mode fashion. Thus, 
having a knowledge on SIFs alone cannot lead to a 
fine evaluation of crack behavior and one should 
use a certain criteria developed for this purpose. 
Characterizing a combination of SIFs in different 
modes of fracture, these criteria generally are 
adopted in predicting both the direction of crack 
growth and the critical applied load under 
monotonic loadings for mixed mode problems. The 
strain energy density criterion, also called S-
criterion, has shown to be very efficient for this 
purpose [26-29], and is applied in this study. In 
this criterion, attention is focused on the singularity 
strength of the strain energy field around the crack 
tip. This energy filed has a singularity whose 
strength is designated as the “strain energy density 
factor”, S.  The basic assumption in this criterion is 
that cracks initiate to grow when the interior 
minimum of the strain energy density factor 
reaches a critical value [26]. The strain energy 
density factor S is related to the strain energy 
density function dW/dV=S/r where r is the distance 
from the crack tip. The critical value of dW/dV can 
be determined from the area under uniaxial stress 
and strain curve. For the asymptotic analysis S 
depends only on the angle θ. For the plane 
problems, S as a function of θ, can be found as 
follows [26]: 
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The initial crack growth takes place in the direction 
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of minimum S, so that: 

0=
θd

dS
   at θ=θ0                                           (17) 

 
where -π< θ<  π. This criterion also suggests crack 
initiation occurs when S reaches a critical value Scr, 
which: 
 

2
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6. DISCUSSION 
 
Fretting fatigue of a half plane in contact with a 
flat rounded pad placed under fretting loading is 
taken into consideration. The SIFs of resulting 
slant fretting cracks in the first and second modes 
of fracture are calculated and their cumulative 
effect on crack growth is investigated using the 
strain energy density criterion. 
     The first step in the present study of fretting 
fatigue is to determine the stress state of the half 
plane in contact with a flat rounded pad. The 
specifications of the contact and its loading are 
given in Table 1. The values of σx in the depth of 
0.1mm from the half plane surface are shown in 
Figure 6.  
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Figure 6. σx in the depth of 0.1mm from contact surface 
 

ω l 

 
 
Figure 7. An arbitrarily slant crack at the edge of 
contact with the length of l and orientation angle   
 
 
TABLE 1.  Flat rounded contact problem specifications 

E 
(MPa) v R 

(mm) 
a 

(mm) 
P 

(N) 
Q 

(N) 
σb 

(Mpa) 
f 

126000 0.3 100 5 896 376 23.68 0.5 

 
 
Good agreement between the results of described 
method and FEM can be seen in Figure. 6. A peak 
value of σx can be observed near the contact 
boundary which may justify rapid crack growth in 
this zone. The calculated stress state in the half 
plane and also FEM results show that the contact 
boundary zone undergoes the maximum tensile 
stress. 
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Figure  8. The KI values of normal fretting cracks in the 
half plane 
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Figure 9. The KII values of normal fretting cracks in the 
half plane  
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Figure 10. The KI values of slant cracks with different 
lengths and inclinations 
 
     Experimental studies also show that fretting 
fatigue cracks tend to appear in this zone [30, 31, 
32][30-32]. Therefore, we consider the cracks at x 
= 5.7mm, where is the contact boundary. Slants 
cracks with length l (0.1mm ≤ l ≤ 1mm) and the 
orientation to surface normal varying over the 
range -50<φ<60 are taken into consideration 
(Figure 7).  
      The values of KI and KII are calculated for 
normal cracks with different lengths using finite 
element method and compared to the results of 
distribution of dislocations method (Figure 8 and 
Figure9). The values of KI and KII for slant cracks 
are shown in Figure 10 and Figure 11, respectively.  
There is a limitation on the calculation of SIFs for 
cracks with negative values of φ as the crack may 

be partially closed which is not in the scope of the 
present study. As shown in Figure 10, for every 
specific length of the crack, a peak in the KI values 
can be found. The orientation of the crack in these 
peak points depends on the crack length, so that for 
shorter cracks it is almost zero but it increases for 
the longer cracks. A quite different pattern can be 
observed in the variations of KII .  
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Figure 11. The KII values of slant cracks with different 
lengths and inclinations 
 
     As shown in Figure 11, the lowest absolute 
values of KII belong to almost normal cracks. A 
slight orientation of the crack in negative direction 
causes an abrupt increase in the absolute value of 
KII. Note that in regard to the KII values, we are 
more interested in the absolute values rather than 
their signs. It is because the sign of KII has no 
intrinsic implication and is utilized in Figure 11 for 
a deeper conception of its variations with respect to 
the crack length and orientation. 
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Figure 12. The S values of slant cracks with different 
lengths and inclinations 
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     Figure 12 shows that any crack longer than 
0.1mm exhibited the maximum S values at 
approximately same angles, whereas this angle 
decreases sharply when the crack length is reduced 
to 0.1mm.  This is an indication than the crack 
growth direction is strongly affected by the crack 
length when the cracks are approximately 0.1mm 
long.  This sensitivity however decreases at longer 
crack lengths such that beyond 0.1mm crack 
length, the direction of crack growth is generally 
unaffected by the crack length. 
     One may notice that for the normal studied 
cracks, KI dominates KII , therefore, scrutinizing 
the KI values may well suffices for the evaluation 
of crack behavior from a fracture mechanics point 
of view. However, for the case of slant cracks, KI 
and KII have analogous values and a convenient 
criterion for mixed mode fracture should be 
applied. Using the obtained SIFs for different 
cracks, we apply the S-criterion in this study 
specially to evaluate the slant cracks behavior. The 
strain energy density factors, S, pertinent to the 
examined cracks are shown in Figure 12. The S 
value variations have almost the same pattern 
observed for KI over a wide range of orientation 
angles. This conformity attests to the dominant role 
of KI on crack growth. For the most negative 
oriented cracks, KII increases abruptly and affects 
the S values accordingly. However, this sudden 
increase in the S values of quite long slant cracks is 
not a significant concern, because the creation of 
this form of crack is far from the experimental 
observations. Thus, it may be concluded that peak 
values in the calculated Ss show that cracks with 
the angle of orientation 00<φ<200 are the most 
critical ones.  
     The predictions of the crack growth in the 
current study were compared with the available 
experimental observations.  Several experimental 
studies show that the initial growth of fretting 
cracks is slightly inclined toward the direction of 
applied bulk stress (direction of applied σx in 
Figure 2), followed by a relatively perpendicular 
direction to the applied load [14, 16, 32].  The 
inclination of the cracks toward the applied bulk 
stress is quite in agreement with the current study, 
where it was predicted that cracks tend to deviate 
from perpendicularity up to 20° in the direction of  

 
 
applied bulk stress.  It was also expected from the 
current study that as cracks grow longer, they 
should follow a perpendicular direction to the bulk 
stress, where the mode II stress intensity factor 
becomes negligible, and the mode I stress intensity 
factor drives the crack growth.  The current study 
however fails to accurately predict the crack 
trajectory accurately, as it cannot take into account 
the curved crack path normally observed in the 
experimental studies. 
 
 
 

7. CONCLUSIONS 
 
The growth of slant cracks induced by fretting 
fatigue of a half plane in contact with a flat 
rounded pad is studied. The SIFs of resulting slant 
cracks in the first and second modes of fracture are 
calculated and their cumulative effect on crack 
growth is investigated using the strain energy 
density criterion. The length of studied cracks 
varies from 0.1 mm to 1 mm and a wide range of 
orientation angles to surface normal is taken into 
consideration.  
     For every examined length of the crack, a peak 
in the first mode SIFs can be found. The 
orientation of the crack in these peak points 
depends on the crack length, so that for shorter 
cracks it is almost zero but it increases for longer 
cracks to about 200 outward the contact zone for 
cracks with 1 mm length. 
     A quite different pattern can be observed in the 
variations of second mode SIFs, so that their 
lowest absolute values belong to almost normal 
cracks. A slight inward orientation of the crack 
causes an abrupt increase in the absolute value of 
second mode SIFs. 
    The variation of strain energy density factor, S, 
have almost the same pattern observed for the first 
mode SIFs over a wide range of orientation angles. 
This conformity attests to the dominant role of first 
mode of fracture on crack growth. Based on the 
observation of S versus crack orientation, one may 
conclude that depending on the crack length, the 
most critical cracks are those orientated 00 to 200 
outward the contact zone. 
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Nomenclature 
a  half of the contact width 
b  half of the pad flat central part; crack length 
bii component of the burger vector of a dislocation 
Bi density of distribution of dislocations in i 
direction 
c half of the stick zone width 
e contact stick zone shift 
E modulus of elasticity 
f coefficient of friction 
g tangential relative slip of contact surface points 
G modulus of rigidity 
KI stress intensity factor in mode I 
KII stress intensity factor in mode II 
M moment created by asymmetrical pressure 
distribution of the contact area 
N total normal traction on crack path 
p normal traction on contact area 
P normal contact force 
Q shear traction on contact area 
Q tangential force on pad 
r distance from crack tip 
R pad corners radius 
S strain energy density factor; total shear traction 
on crack path 
Scr critical strain energy density factor 
v Poisson's ratio 
W strain energy 
σb bulk stress 
σT normal traction on crack path due to loading 
τT shear traction on crack path due to loading 
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