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Abstract This paper deds with two-dimensiona plane stress wrinkling model of a plastic annular
plate. Based on energy method and the nonlinearity of strain-displacement law, a bifurcation function in
polar coordinates is derived analytically. This technique leads to the critical conditions for the onset of
the plastic wrinkling of flange during the deep drawing process. To find this solution, the Tresca yield
criterion dong with plastic deformation theory are employed. The materid of the plate is assumed to
behave perfectly plastic. Thisanalytical dosed-form solution is obtained by considering the nonlinearity
of the material and geometry, simultaneoudy. The main advantage of the proposed solution is better
agreement to the other researchers's experimentd results. Moreover, the influence of the blankholder
upon wrinkling, and also on the number of the generated waves, can be quantitatively predicted by the
suggested scheme.

Keywords  Energy method, Plastic wrinkling, Bifurcation function, Deep drawing process,
Geometric non-linearity, Circular plate
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1. INTRODUCTION

Wrinkling is considered as one of the critical
defects in deep drawing, together with tearing,
spring back and other geometric and surface
defects. Contrary to fracturing, wrinkling can be
treated as a recoverable defect even when they
develop during the deep drawing process. Many
investigators' efforts have been dedicated to predict
the occurrence, location, and shape of the wrinkles,

IJE Transactions A: Basics

which emphasize on the work initiated from Hill’s
general theory of uniqueness and bifurcation [1, 2].
This behavior is caused by excessive compressive
stresses during the forming. As it can be seen in
Figure 1 [3, 4], in a degp drawing operation an
initially flat round blank is drawn over a die by a
cylindrical punch. The annular parts of the blank
are subjected to aradial tensile stress, while in the
circumferential direction compressive stress is
generated during drawing (Figure 2) [3,4]. For
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particular drawing-tool dimensions and blank
thickness, there is a critica  blank
diameter/thickness ratio. Figure 3[3, 4] shows that
the critical stress causes the plastic buckling of the
annular part of the blank so that an undesirable
mode of deformation ensues with the generated
waves in the flange.

Many efforts have been made during the past
years to meet the needs of press tool designers. In
1928, Geckder [2] gave a mathematical analysis
and two useful expressions for the case where no
blankholder was used. He showed that the critical
stress, at which buckling will occur, is
Et?

2

s, = 046

. In this formula, s, is the

critical stress in the flange when buckling occurs,

t isthe blank thicknessand W shows the width of

the flange. Also, E, is the buckling modulus
4EP

Young's modulus and P is the tangent modulus of
the material. In addition, the number of waves or

determined by E, = whereE is

labes, into which the flange bucklesis n = 1.65\:—3

, Where n is the number of waves and r, is the

mean radius of the flange. Esser and Arend
developed an empirical equation to fit data, which
they obtained with annealed copper, brass and mild
steel. Ther equation reduces to b- a=4.35t,

where b is the blank radius and a is the inner
radius of the flange [3]. An outstanding approach
by Baldwin and Howald [5] in 1947 was developed
by applying Geckeler's equations for practical ends
with predictions of the limiting reductions in
diameter for given conditions of metal and temper,
etc. [3]. In 1956, Geckder's eguations were
extended by Senior. Based on his study, energy
expended in the flange by the circumferential
stress was equated to the energy dissipated in
buckling the flange, so that the theory could be
applied for buckling under both constant load and
spring-loaded blankholders [3]. Since Senior only
used a one-dimensional buckling model, the flange
was approximated as a number of linked struts and
a pressure distribution was assumed for the
boundary condition at the inner edge, which seems
not to be very realistic. Comment on this work was
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made by Alexander [3]. Most of the previous
studies on this subject are based on the one-
dimensional buckling model, hence those results
can be expected to have a good approximation only
when the width of the flange is small compared to
the radius of the blank, that is W=b- a<<b,or
X <<1. It can be easily verified that the reduction
in outer diameter is g__200W _,.,  [3]
(2r,, +W)
Alternatively, Yu and Johnson [3] used the energy
method in eastic stability theory as a basis for
plastic wrinkling analysis. They proposed an
equation for balancing the work done by stresses
induced in the flange and the strain energy due to
bending in plastic wrinkling. According to their
analysis, the onset of plastic wrinkling is governed

by \/E&E\/M
Yb 2VF(m,n)

and FP arefunctions of the wave number and the
flange dimension, respectivdly. The wave numbers
computed from the last equation are lower than those
from experimental results and also those obtained from
Geckde's and Senior's equations [6]. The reader is
referred to work of Yu and Johnson, Zhang [7] and Yu
for further details of their approaches. Subsequently,
Yossfon and Tirosh [8] extended the analysis to
investigate the fluid pressure as an additional energy
term in their equation. The analysis reported so far are
gther too smplistic, which are based on one
dimensonal beam theory or on two-dimensional
eadtic-based rigid-plastic gability theory. The one-
dimensional beam theory type of formulations ignored
the effects of shear stresses and higher-order terms in
the dtability equation and therefore cannot fully
describe the flange wrinkling phenomena of a deep—
drawn cup. While the two-dimensional formulations
have been entirdly relied on the dastic-based rigid-
plagtic stability equation of plates, most investigators
smply replaced the Young's modulus in buckling
analysisthat can be quite inadequate[4].

A hbifurcation function was proposed by Hutchinson
[9, 10] basad on Hill genera theory of uniqueness and
also hifurcation in dagtic-plagtic solids [11,12]. This
functionisgiven as.

F:%d‘jMijkij +N,e +ts w,w,) ds, 1)

, Wherethe entities H

where, S denotes the region of the shell middie
surface over which the wrinkles appear, w is the
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buckling displacement, t shows the thickness of
the plate, N, presents the force resultants, m, is

the couple resultants (per unit width), kij denotes

is the stretch strain

tensor. This bifurcation function contains the total
energy for wrinkling occurrence. In other words,
for some non-zero displacement fields, the state of
F =0 corresponds to the critical conditions for
wrinkles to occur [13-15].

the curvature tensor and e}

Punch

Blankholder

/ Blankholder

IIIIIIIIIIIIII 224

\Sheet meta/
Die block

Figure 1. Deep drawing process with cylindrical punch

t

y
. y
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Figure 2. The modd of the flange as an annular plates
with radia stress distribution in itsinner edges

Figure 3. The generated waves in the flange
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In this paper, the bifurcation function is found
using energy method along with the Von Karman
kinematic relation. To have a closed-form
analytical solution, the Tresca yidd criterion and
also plastic deformation theory are used. A
complete form of the function (1) is suggested for
the perfectly plastic materials. The results show
that the proposed solutions for the critical
conditions of the onset of the wrinkling have a
better agreement than the other available
experimental findings.

2. PLATE COORDINATE SYSTEM

In order to derive the bifurcation functional, the
energy method can be used. It is proper to utilize
the polar coordinate for the plate. This coordinate
system is set in the middle surface of the un-
deformed (pre-buckled) annular plate. All the
points in the plate are defined by coordinates r
and q, lying in the middle surface of the un-
deformed body and also z coordinate normal to
this surface.

2.1. The Lagrangian Strain At first, the strain-
displacement  rdation is discussed. The
displacement components, U, v and W, are given
beow [7]:

:E:Uzuo(KQ) Z:TT—\:V

HV=vo(r,0)- z(—— @)
i fiq

Tw=w(r,q)

{

where, U, and V, are the displacements in the

middle plane of the plate, in rand q directions,
respectively. The buckling displacement normal to
the plane of the plate in the z direction is shown
by w. The nonlinear Lagrangian strain tensor is as
follows [7]:

1
e. :_(ui+u
2 )

ij N +um,ium,j) (3)
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By neglecting some nonlinear terms and using Eq.
(3), the Von Karman kinematic relation in polar
coordinates can be written in below form [16]:

e, =T 2 (I

: ir 2 9r

.I'le :E+lﬂ+l lﬂ_W)z 4
~:-qq r rfg 2r9q

le = 1[@&4,&_ X)+(ﬂ_w Eﬂ_vv)]

T2 rig r r ﬂr)(rﬂq

2
err :ﬂ_u0+£(ﬂ_w)2- zﬂ_\gv
r 2 9r qr

Sl 1T 11w,z W 17w
r riq

2 rfq” roAqr rﬂqz) ©)

1.1 1
_[_ﬂi+ﬂi_ V;+ (ﬂ_W)(_ﬂ_W)]
r " r g

€q =
2 rqg fr r

JZ Mw_ Lfw
t rirfa rfq
For simplicity, the following Lagrangian strain
tensor and parameters are used in this work:

0
e; =€+, (6)
where,
.:.erOr =&+1(ﬂ_w)2
i ir 2°9r
:’egq :&+1M+1 }ﬂ_W)Z (7)
i r rfg9 2Tr19q
T 1.1%Mu, Tv, Vv w, 1w
R e e (wy (L Ty
i rfiaq T r Ir r g
And
i T°w
=g
i 19w 1 Pw
|k22_-__-_2_2 (8)
i rqr r-9q
: )
ik, =- 2w, 1 Tw
t roirfia r” 9q
2.2. Constitutive Equation In a degp drawing

process, the flange has large deflection and also
contains the plastic deformation. Therefore, the
plastic behavior of the material and geometric non-
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linearity of the structure should be considered,
simultaneously. To solve this plate problem, the
stress-strain relationships are required. There are
two types of theory in plasticity. The first one is
the deformation theory which neglects the loading
history dependency in the development of the
stress-strain  relationships. In fact, this theory

assumes that the stress state, s, can be

determined uniquely from the strain state, e;; , and

also plastic strain, eijp, as long as the plastic

deformation continues. Because of its reatively
simplicity; the deformational theory has been
used extensively in the engineering practice for
solving dastic-plastic problems. The general
validity of the deformation theory in plasticity is
limited to the monotonically increasing loading in
which:(1) the stress components are increased
nearly proportionally in a loading process, known
as proportional loading; and (2) no unloading
occurs.

The second way of utilizing the easto-plastic
analysis is based on the incremental theory. This
kind of the strategy is mostly used in the
numerical material non-linear techniques. In
contrast to the deformation theory, the loading
path dependency is assured in the incremental
theory [8]. It should be reminded that the loading
in the annular plate has the proper conditions
needed for the deformation theory. In order to
find a closed-form non-linear solution for the
plastic flange wrinkling of the circular plate in the
deep drawing process, it is preferred to use the
deformation theory rather than the incremental
plasticity theory. The constitutive eguation for the
three-dimensional solid problems used in the
deformation theory is given below:

Sy = Ci?l?l €y 9)
where, Ci‘f,'j, , for the perfectly plastic materials, is
determined by the following relationship [17-20]:

e 1f 9f .
ijmn pakl
. 1S m s
Ci?I)(I = Cijkl - ﬂ f ﬁqf (10)
oo G
ﬂs rs ﬂs tu

In this equation, f is a proper yidd criterion
suited for this problem and C, is the dastic
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coefficient of the hook’s law. Due to the simplicity
of one side of the Tresca yidd surface this
function is utilized in this study. According to the

loading, one of the stresses (S | ) is positive and the
other is negative (S ). In this state of stress, the

Tresca yield function of the second stress region is
a proper one. In other words, the following linear
function is used:

f=s -s,-Y=0 (11)

In this function, Y is the uniaxial yield stress.
Expanding Eq. (9) for i, j,k =1,2,3, simplifying
the results for the plane stress problem (i.e
S5 =S;3=S, =0) and using Egs. (10) and
(11), a simple plane stress dastic-plastic
constitutive equation is found. In other words, the
expanded form of Eg. (9) has the following

appearance:
é E E u
2a-n) 2@n) 0
Isllu ul ellu (12)
s,u=¢ E o Ue !
Itzz)é (:%(1-n) 2(1_n) &gzz){;
e
I *12 a 0 0 E | Y12
8 2(1+n)g

2.3. Strain Energy The density of the strain
energy for the plate, U, , can be written as follows
[16]:

U, = C‘f i deij = ukleklde
0 0 (13)
1 1
= > Ci?l?l €y€; = ES i €ij

By integrating the density of the strain energy over
the volume of the flange, and assuming the plane
stress state, the strain energy can be written in the
following form:

e, dzrdrdq =
(14)

h

1 2
Ebbds € +Sqq qq +2s rq rq )dzrdr dq

ao0_h

2
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On the other hand, the force (N;) and moment

resultant (M) are calculated from the below
equations:

!

I
'|'(Nrr’N
!

i
:
:::(M”,qu,qu) = OIS 1 1S oq S 1q) 202
. h
) 2

N,) = )dz

qq’ QQ'

(15)

'
M‘jo\, NIz
NIz
(D

These values and aso the strain from Eq. (5) are
substituted in Eq. (14). After some simplifications,
the strain energy in terms of the displacements can
be written in the following from:

U =§od N, +;('1”Tvr“) ]- n(“z—vzv)+
e S 09
R
:(1?1—11\/;- %E—W)}dzrdrdq

Substituting Eqg. (6) in Eq. (9) and aso using the
results of Eq. (16), the force and moment resultants
are found in terms of the displacement fields. The
result is given below:

i L L

. 2 2

1 N\, \ e

iNy = ¢p,dz= O Ch (efj’ +zk, ) dz

T h h

: " 3 3

: = hCiTEI ei(j) (17)
1 Lh +h

| 2 2

iM; = ¢py zdz= 0 CR (efj’ +2zk, )zdz
T h h

: 2 2

in

{ CIJIZ kkI

Finally, substituting Eg. (17) in Eq. (16) and
simplifying the results, the strain energy can be
found as follows:
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U =+ 3 00 O (0 + 0 (e 2Ty e, (T 2 P 2

racy, [ - LIy rdrdq}+1bc‘>231{cml G R (18)
O [ i+ ;(ﬂg)] r2cy, “ﬂir N e DU

40H: (F 1o+ - o (T T ) prarda

2.4. External Work
acting in the middle plane of the plate (i.e. z=10).

The external force(N ) is

It should be noted that the plastic stress distribution
in the flange before the wrinkling is
similar to the axisymmetric problem, (i.e. v=0

l

Considering this force, and also using Eq. (6), lead and — =0) [3,18]:
to the strain tensor (e; =ei?). It is easy to show Ta
I
that the external work can be written in the i r—Y|n(—)>0 o1
following form: . (21)
b 2p b 2p a —Y[In( ) <0
OON je;rdrd g = OONIJ jrdrd q = T
ao ao (19 Utilizing th|s plastic stress distribution, the
P A A ~ external work in Eq. (20) can be written as below:
OdNnen + Nye, + 2N e, rdrd g b 2p Tu, 1 9w,
= 9 We = ohs [g &+ 5(00)]
Assuming, N; =hs;, and substituting Eq. (7) ao Tr2°qr (22)
into Eq. (19), lead to the following relationship: +hsq[i+£M +1 Eﬂ_V")Z]
b 2p Tu 1, 9w, r-rfg 2 r1q
od Ny [ 0+2(ﬂr) 1+
2.5 The Total Potential Energy Having the
Q [U_0+£1Tv l(lﬂ_w) ]+ (20) strain energy and the external work in hand, the
250 1 1 r 1q total potential energy function can be formed:
2N (l[lﬂu T _ Yo p=U-W, (23)
“r20r g Tr v Using Egq. (18) and Eq. (22), the nonlinear
1 bifurcation function can be written as beow:
* (e Drad g
13%0° e (TPWo ne LW, 19w o (TPw 1 9w 17w
590_2{01111 2 ) szzz[ (T[I‘ r 1q )] 201122 T > I‘(ﬂl‘ +rﬂq2
o 1 T'w 1 11TW 1% ﬂuo 1w,
+4C5, [ r(ﬂrﬂq )] rdrdq } + O(jj{ Cin + 2( 0 ) ] (24)
epu_oEMEEﬂ_W epﬂuo 1ﬂW Yo 1o (1 19w,,
M[r+rﬂq+2(rﬂq)] +2C0 [~ +2(ﬂr)][r+rﬂq+2(rﬂq)]
o L 1Ty v ¥ 11TW 2 ‘ﬂu0 1, 9w,
+4Cp, —[ r 1 +ﬂr r+(‘“r )( )]) }rdrdq+odh{s [ +2(ﬂr) ]
U  19vy, 1, 19w,
+s,[— +rﬂq +2(rﬂ Y21} rdrdq
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Another important point in establishing the critical
conditions for onset of the wrinkling is assuming a
proper displacement field. In fact, the essential or
geometric boundary conditions of the plate must be
satisfied by the assumed displacement fields
(u,v,w). For instance, a suitable displacement

field can be expressed as a function of the radial
coordinate, r , and the polar angle, q. In this
work, it is assumed that the displacement fields of
the flange for a deep drawn cup have the following
form[21, 22]:

Tw(r,q) =c(r- a)(l+cos nq)
%uo(r,q):drcoan (25)
Lv,(r,q) =ersinnq

where, ¢, dand € are constants and n is the
wave number. It is obvious that any admissible
bifurcation mode in Eq. (25) satisfies the
kinematical boundary conditions u,v! O and

Ww=0 at the inner edge (r =a) and also the
kinematical constraint: w(r,q) 3 0, u,(r,q) 2 O,
Vo(r,q) 2 O for a£r £Db. After substituting Eq.
(21) and Eg. (25) into the function (24) and

L a . .
considering b =m, one can write the following

relationship in terms of the number of generated
waves (n):

3.2 2
b= t°c Ep; Ee"(m,n,n)-i tpr2
9%6(1-n°) 128 (1-n*)
[F®(mnn)c* +G®(mnn)d?+
H®(m,nn)e? +1%(m,nn )de+J®(m,nn )c’e

tp b?c?Y
8

(26)
+K®(m,nn)c?d] + L®(m,n)

where,

E®(mnn)=(1+n)[-m’ +4m+2|n(%)- 3|n’
+4[-(1-n)m*+(1+n)(In(m)- m)+2] n*+
6In(%)(1+n YE®(mnn)={3(1+n)[8m(1- m*)

+212In(m)m? +m* - 1])}n* +(3-n)[10(m*- 1)+
20m*In( m)+40m(1- m)In®*+[35(1+n )(n? - 1)]
G®(m,nn)=16(m*- 1)[(1-n)n*+4(1+n)]
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TH=(mn) = 16(F - 1)(1-+n )7

: 1®(m,nn ) =64 - 1)(1+n)n

13%(mnn ) =32(n? - 1)(1+n)n (27)
i K®(m,nn)=32(m- 1)[(n - 1)(m- 1)n?

ﬁ:ﬁ+2(1+n )(m+1)]

P (mny = 20an( 2 )7 +In( )+ 21 - L2

. m m- 2 2

'1|'+3[(2In(m)- 1)n? +1]

It is worth writing the suggested function in the
below matrix form:

%
[,
[y

0 0 Oucy
2 My Maugicll (28)
32 M33 M34U:d¥
2 My MMHT e.b

2

o
D
MD:D> D D D

p={c c

o o o
=< L

where,

i t*Ep p b?tY

iMy = 2

i 96(1- n?)

I:ZM _ 1 tEpb’

i 2 128(1-n?)

I 1 1 tEpb?

iM,, =M, =- = ————K®(m,nn
27 2128(1-n?) ( ) (29)

2
Z 2 B ye(mnn)
2128(1-n?)

E®(m,nn)+ L®(m,n)

F*®(m,n,n)

=M. =-

_ ptEDR?

¥ 8(@1-n?
1 1 tEpb?

My =M, =-=-——"—"_1®(mnn

#*U® 0 2128(@1-n?) ( )

1 tEpb’

128 (1- n2)

G®(m,n,n)

M, =- H®(mnn)

The critical conditions for onset of the wrinkling
arewritten below:

1p = Det(M;) =0

i _ 1 _ (30)
i— =—|[Det(M.)] =0

{ n ﬂn[ ( IJ)]

The first rdation in Eg  (30) leads

toM, M, (M ,M, - M2)=0,if M, =0 or
M,,M,, - M2 =0, leads to n=0. Therefore, the
critica condition to obtain the onset of the
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wrinkling becomesM ;; = 0.Wrinkling will occur
when the following equation is satisfied:
. E i G*(m,nn) (31)
12(1- n?) b* H®(m,n,n)

\/Ei:\/-lz(l_nZ)m (32)

Yb G*(m,n,n)

If,

\/El<\/-12(1-n2)m (33
Y b G®(m,nn)

2.6 Plastic Wrinkling With Blankholder
According to Figure 1, when a spring-type
blankholder is used, it provides a lateral load
proportion to the lateral deflection of the annular
plate. By assuming the spring coefficient of the
Blankholder (K), the total spring stiffness has the
following form:

S=Kp(b*- a%) (34)

If the effects of the blankholder are considered, the
strain energy function can be established as bel ow:

_10%ht o TPW, e 1 W 17w o TPw 1w 17w
U_EaOOOE{Cnn(ﬂr_z) +C2222[F(‘ﬂ_r+FW)] +2C,, r 2 )[r(‘ﬂr+r‘ﬂq2)]

o 1 W 19w, 108 e (Mg 1w,
+4C 5, r(‘ﬂr‘ﬂq r 19 ) rdrdq}+2991{C1111 qr +2(‘ﬂr)] + (35)
o Yo 1TV 1 1TWioun o (TUp 1 fIWoo U 1V, 1 19w,
O (% e+ Sy )t s 20, (oo s SR I 2o 2w ST ) +

402, (31 Tt e Y (T hrdrdq + 2 K (U + Vi + W)

2" r Tq qr r ?ﬁ

p =§oo';—2{ce*’ Ty regaradi ey s vaeg, i 21

+4CZ,[ %(1?rﬂv(: : ﬂ—fq“)] Zrdrdq}+§§‘)2§31{Cffn[%+§(‘%—vr“)2]z

+ce, “_0+?1%+%(%%")2]2+2c322 %+%(%)2][“T°+%%+%(?1%")2]+ (36)
4C2F, %[ %%+% \‘%+ (%)(%%)])z}rdrdq +% K (U2 + Ve ¥ W)

+§‘)2§‘j h{s,[ ﬂﬂuro +%(11TT_\;V)2] +sq[ur—°+?1ﬂﬂ\(;0 %(%%\/)z]}rdrdq

Consequently, thetotal potential energy of whole
structure can be utilized from the equation (36).

The displacementsu, ,Vv, and W can be assumed

similar to Eqg. (25). The maximum deflections have
thefollowing values:
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i
-:~uomax =drcosnq r:_b:db
' _ a0 (37)
=ersnng|,., =eb
20

w__ =c(r-a)(l+cos nq)|

max

V,

0 max

=2c(b- a)

— ] ] —] ———

r=a
q=0
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It is easy to show that the following equations are
also held:

N 2

:EK ugmax = ? 2 2b2 :i Sd 2y !

w2 2p (b°- a%) 2p (1- m*)

! (39)
11, . _ S a2 1 S€

15K Vo = 55— €07 = ————,

i2 2p (b°- a%) 2p (1- m%)

T -

itk W :%402@- a)? =2eglm

£2 2p (b°- a°) p 1+m

Based on these equations, the energy stored in the
spring—type blankholder can be written as be ow:

—K(u Ve T W )=

Omax Omax m

(39)

LS (g7« e)es slm2
2p (1- m%) 1+m

As aresult, the bifurcation function has the
following form:
3 .2 2
o= t°c Ep2 Eep(m,n,n)_i tpr2
96(1-n?) 128(1-n?)
[F®(mnn)c* +G®(m,nn)d? + (40)
H®(m,nn)e? +1®(m,nn)de+ J*(m,nn )c’e

tpb*c®Y
8

+K®(mnn)c*d] + L®(m,n)+

1S (g24e)+ 25t M
2 (1- m?) p - 1+m

It is more suitable to write this function in the
below matrix form:

eM, O 0 Ouica
0 M22 M23 M24HJ| Cz] (41)
My MydldY
M MuT ep

p=fc ¢ d e}

D: D> D> D> D>

0 M,
0 M
where,

3 2 _
t Epz Eq’(m,nn)+—pb tYL“i‘(m,n)+gs1 m
96(1-n°) 8 p 1+m
_ 1 tpr2

277128 (1-n?)

1, 1 tEpbk? 1 s
M,,=M,==[-— K®(m,nn)+-=
BoT® 2[ 128 (1-n?) (mnn) p (1- m?)

1~

F®(m,nn)

]

1.1 tEpb? 1 S
M24:M42:'_[_ P Jq](m,n,n)+—
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1 1 tEpb?

i -— -—

Vo =M= 5 1o (aony | (M) (42)
|

T - 1 tprz

M= 128(1-n2)H$(m’nn)

The critical conditions for onset of the wrinkling
are given below:
ip = Det(M;) =0

|
'“—p——[Det(M.p]

tain

(43)

This equation yieds M, M (MM, - M%) =0,
if Mgz =0 or M,M,,
to n=0. Therefore, the critical condition to obtain
the onset of the wrinkling becomesM;; =0. As a
final result, it is found that the critical condition for
the plastic buckling is the state of p =0. This

equation leads to the following value for the yield
stress:

- M2, =0, which results

D1+m (44)

S
By assumingy = B , thefollowing simplified

result will bein hand:

He" (45)

1+m

If p £0, there will be a safe domain with no
wrinkling [13-15]. To reach this state, Eq. (45)
should change to the following condition:

e
\/El< _3(1-n?) H (46)
Y b G¥, 2y, Lm

3. RESULTS AND DISCUSSIONS

The assumed properties of sted are E = 200Gpa

and N =0.3. The propeties of aluminum are
assumed to be E=70Gpaandn =0.3.
Substituting the sted properties in Eq. (46), the
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first condition of Eqg. (30) will yidd ian—Y:O.
n

This equation has 5 roots for n, but only one of
them is logical and also located in the range of

(1- %). In Figure 4, n versus (1- %) is shown
and compared with Yu's and the experimental

results [3].
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Present Result
Yu's Result x x
x Experimental Results
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Figure 4. The number of the generated waves in the
plastic flange wrinkling of the annular plate
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Figure 5. Thewrinkling limitation of the flange

After finding n_ , by substituting it into Eq. (31),

cr !

. . a
Y, isalsofound. In Figure7, |Et versus(1- E)
Yb

is shown and compared with the available
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solutions [2,3,6]. Furthermore, the critical
conditions of the onset of the wrinkling for sted
and aluminum can be compared by substituting
their properties into Eq. (31) and Eq. (32).

uer Steel e
— — Aluminum /
05t /
7
o4t /
& e
@ BUCKLED
03t e
- -~
s
0z "
- UNBUCKLED
L -
01 L
-
-
o . . . . . .
0 1 2 3 4 a B 7
LU Y th « 0%

Figure 6. Comparing wrinkling limitation of the steel
and aluminium
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Elankholder Force
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0 0ns 01 015 nz 0.2s 03
1-alb

Figure 7. Number of the generated waves in the flange

It is interesting to note that a good agreement of
the suggested non-linear solution with the
experimental one is observed in Figure 4. The
wrinkling limitation of the flange is also found. A
comparison between the current study results and
those from the Geckeler and Senior [2,6] are also
shown in Figure 5. Geckder's result is a good

approximation for small values of (1- %), (i.e.

narrow flanges), but its error rises as the width of
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the flange increases. Moreover, Yu's results are
curved shapes, which are the envelopes of the

curves for many N'S . It is worth emphasizing that
explicit determination of the boundary of the

buckling range is hard. In fact, to show n, and
Y_ inthe diagrams, numerical approximation and

cr

interpolations are usually used.

0.4

Increase in

0.351 blank holder force

03r
0.2ar

BUCKLED
02r

05y TS B ]

01r

1-a/lh

nosp UNBUCKLED

D | 1 1
1] 005 0.1 0.15 02 025 0.3
BT th

Figure 8. Limitation of the plagtic wrinkling

However, in the current study more exact
expressions for n, and Y, are obtained without

needs for any approximations or interpolations. It
should be added that in this study, Y isinthe state

of the maximum hoop stress s ;. According to

Figure 6, and with the constant value of (1- E), it

is observed that the aluminum wrinkles under the
lower loads than the stedl. Finally, asit can be seen
in Figure 7 and 8, the blankholder has influences
on the number of the wrinkles and also limitation

of the wrinkling. For the constant value of (1- %),

it is observed that increasing of the blankholder
force increases the number of the waves and also
increases the limitation of the forming without
wrinkling.
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4. CONCLUSIONS

Using energy method, the plastic wrinkling of the
flange in the deep drawing process has been
studied analytically. The proposed bifurcation
function is more general than the one previously
found. The nonlinearity of both the material and
geometry are considered in the deriving of this
bifurcation function. A closed-form analytical
solution is formed based on the Tresca yied
criterion and also the use of the plastic deformation
theory. It is assumed that the materials behave
perfectly plastic. The suggested technique leads to
the critical loads and number of generated waves.
Moreover, the analytical results of this paper have
a good agreement with the experimental findings.

Nomenclature
Force resultants

Coupleresultants
Curvature tensor

ij

® X Z z

o

Stretch strain tensor

Bifurcation functional
In-plane displacement field
Wrinkling displacement
The wave number
Lagrangian strain

® SscT
<

Young's modulus of dasticity
Poission’sratio
Elastic coefficient matrix

O -m
D

ijkl
cer Plastic coefficient matrix
ijkl

Yidld criterion

Yield stress
Density of strain energy

Strain energy
External work

Total potential energy
Blankholder force
Stiffness of the blankhol der
Thickness of the plate

Inner radius of the flange

Outer radius of the flange
a

b

IT9TRXNT SC C<
m o

Vol. 23, Nos. 3 & 4, November 2010 - 213



10.

11.

5. REFERENCES

Sivasankaran, S., Narayanasamy, R., Jeyapaul, R.
and Lognathan, C., ‘Modelling of wrinkling in deep
drawing of different grades of anneded
commercially pure aluminum sheets when drawn
through a conical die using artificial neura
network’, Materials and Design, Vol. 30, (2009),
3193-3205.

Geckeler, JW. "Pastche knichen der wandung Von
Holzheimer und einige andere
faltungserscheinungen”, Angewandte Mathematick
und Mechanik, Val. 8, (1928), 341-52.

Yu, T. X. and Johnson, W., “The buckling of
annular plates in relation to deep- drawing
process’ International Journal of Mechanical
Sciences, Vol. 24, (1982), 175-88.

Chu, E., and Xu, Y., “An elasto-plastic analysis of
flange wrinkling in deep drawing process’, Journal
of Mechanics and Physics of Solids, Vol. 43,
(2001), 1421-1440.

Baldwin W.M. and Howald T.S,, ‘Folding in the
cupping operation’, Transactions of American
Society for Metals, Vol. 38, (1947), 757-88.

Senior, B.W. "Flange wrinkling in deep drawing
operation”, Journal of Mechanics and Physics of
Solids, Val. 46, (1956), 4-235.

Zhang L.C. and Yu T.X., The plastic wrinkling of an
annular plate under uniform tension on its inner
edge, International Journal of Solids Structures,
Val. 24(5), (1988),497-503.

Yossifon S. and Tirosh J.,, The maximum drawing
ratio in hydroforming processes, Journal of
Engineering for Industry, Vol. 112, (1990), 47-56.
Hutchinson, JW., "Plastic buckling", Advances in
Applied Mechanics, Vol. 67 (1974), 14-16.
Hutchinson, JW. and Neale, K.W., "Wrinkling of
curved thin sheet meta”, in Proceedings of
International Symposium on Plastic Instability,
Consider Memorial (1841-1914), Paris, France,
(Sep, 1985).

Hill, R, "A genera theory of unigueness and
stability in elastic/ plagtic solids', Journal of

214- | JE Transactions A: Basics

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Mechanics and Physics of Solids, Val. 6, (1958), 6-
236.

Hill, R., "Bifurcation and uniqueness in nonlinear
mechanics of continua’, Society of Industrial
Applied Mathematics, (1961), 236-274.

Wang, C., Kinzel G., and Altan T., “Wrinkling
criterion for  anisotropic shell with compound
curvaturesin sheet forming”, I nternational Journal
of Mechanical Sciences, Val. 36, (1994), 945-960.
Magalhaes Corria, J. P. De, and Ferron G,
"Wrinkling prediction in the deep-drawing process
of anisotropic metal sheets", Journal of Materials
and Processing Technology, Vol. 155-156 (2004),
1604-1610.

Magalhaes Corria, J. P. De, and Ferron G,
"Wrinkling of anisotropic metal sheets under deep-
drawing anditical and numerical study”, Journal of
Materials and Processng Technology, Vol. 155-
156 (2004), 1604-1610.

Reddy, J. N., ‘Energy Principles and Variation
Methods in Applied Mechanics', John Wiley &
Sons, (2002).

Chen, W.F. and Zhang, H. "Structural Plasticity
Theory, Problems, and CAE software", Springer-
Verlag, New York, (1990).

Chakrabarty J., Theory of plasticity, New York,
McGraw-Hill book Company.

Hill R., The mathematical theory of plagticity, New
York, Oxford University press, 1950.

Khan, A. and Hung, S. "Continuum theory of
plasticity”, John Wiley & sons, (1995).

Tomita Y., Shindo A. and Fatnassi A., “Bounding
approach to the bifurcation point of annular plates
with non-associated flow rule subjected to uniform
tension at their outer edges’, I nternational Journal
of Plasticity, Val. 4, (1988), 251-263.

Tomita Y. and Shindo A., “On the bifurcation and
post-bifurcation behavior of thick circular eastic-
plastic tubes under lateral pressure’, International
Journal of Plagticity, Vol. 35, (1982), 207-219.

Vol. 23, Nos. 3 & 4, November 2010



