
IJE Transactions B: Applications Vol. 23, No. 2, May 2010 - 169 

AN ELASTICITY SOLUTION FOR STATIC ANALYSIS OF 
FUNCTIONALLY GRADED CURVED BEAM SUBJECTED 

TO A SHEAR FORCE 
 
 

A. Nasr 
 

School of Railway Engineering, Iran University of Science & Technology 
Postal Code 16844, Tehran, Iran, a_nasr@iust.ac.ir 

 

S.R. Atashipour* and M. Fadaee 
 

School of Mechanical Engineering, Iran University of Science and Technology 
Postal Code 16846-13114, Tehran, Iran, atashipour@iust.ac.ir ,  fadaee@iust.ac.ir 

 
 

*Corresponding Author 
 

(Received: November 17, 2009 – Accepted in Revised Form: July 15, 2010) 
 

Abstract   In this paper, using 2-D theory of elasticity, a closed-form solution is presented for stress 
distributions and displacements of a FG curved beam under shear force at its free end. The material 
properties are assumed to vary continuously through the radial direction based on a simple power law 
model and Poisson’s ratio is supposed to be constant. In order to verify the solution, it is shown that all 
stress and displacement relations are converted to those of a homogenous curved beam when the 
inhomogeneity constant approaches zero. The effects of inhomogeneity on stress distributions are 
investigated. It is shown that specified stress distribution profiles can be obtained by changing the 
variation of volume fraction of constituents. It is observed that for a specific value of inhomogeneity 
constant, a proper stress distribution along the radial direction is obtained for designing purposes. 
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هاي تنش و جابجايي يك تير در اين مقاله با استفاده از تئوري الاستيسيته دو بعدي براي توزيع مولفه   چكيده
ه فرض شد. بسته ارائه شده است- تحت بار برشي در لبه آزاد خود حل پاسخ FGساخته شده از مواد هدفمند 

ه خواص مواد سازنده تير بر اساس يك مدل تابع تواني ساده به طور پيوسته در راستاي شعاعي تغيير ك است
به منظور بررسي صحت حل ارائه شده، نشان داده شده . شده استكند و نسبت پواسون ثابت درنظر گرفته مي

روابط مربوط به تير است كه با ميل كردن ثابت غيرهمگني به سمت صفر، همه روابط تنش و جابجايي به 
نشان داده . هاي تنش بررسي شده استهمچنين، تاثيرات ناهمگني برروي توزيع مولفه. شودهمگن تبديل مي

. توان به توزيع تنش مطلوب و مشخصي رسيدشده است كه با تغيير در توزيع كسر حجمي مواد سازنده تير مي
خصي از ثابت غيرهمگني، توزيع تنش مطلوبي در دهد كه به ازاي مقدار مشنتايج حاصل از حل نشان مي

 .گردد كه براي مقاصد طراحي مناسب استراستاي شعاعي حاصل مي
 
 

 

1. INTRODUCTION 
 
Planar circular arches, one of the basic structural 
components, are omnipresent in most common 
engineering design structures such as arched 
bridges, turbo-machinery blades, aircraft and rail 
structures, etc. Therefore, the understanding of 
stress distributions and displacements of such 
curved beams is one of the most important issues 
for designing these structures. 

     In recent years, the development of a new class 
of materials known as “functionally graded 
materials” (FGMs) in which the material properties 
vary continuously in one or more directions 
according to a specific profile attracted interests 
for designing and manufacturing of solid 
structures. They were first introduced in 1984 by 
material scientists in Japan [1]. Due to the smooth 
variation of material properties, they offer many 
advantages over conventional materials. 



170 - Vol. 23, No. 2, May 2010 IJE Transactions B: Applications 

     The material properties within a functionally 
graded circular plane bar vary in the radial 
direction, but are constant across the depth. This 
type of inhomogeneity can be due to several 
causes: directional cooling leading to a micro-
structural gradient, phase segregation arising as a 
result of centrifugal casting, property degradation 
of the fuel cladding in nuclear reactors, chemical 
and vapor deposition, and surface modification 
using laser technology [2]. 
     There exist some studies in literature related to 
analyses of planar curved beams both made of 
isotropic and FGMs. Yu and Nie [3] presented an 
analytical solution for the shearing and radial 
stresses in curved beams based on the solution for 
a Volterra integral equation of the second kind. 
Their proposed formulae satisfy both the 
equilibrium equations and the static boundary 
conditions on the surfaces of the beams. Shafiee et 
al. [4] studied in-plane and out-of-plane buckling 
of functionally graded arches. Lim et al. [5] 
investigated temperature-dependent in-plane 
vibration of functionally graded circular arches 
based on the two-dimensional theory of elasticity. 
They obtained an analytical solution for a simply 
supported circular arch using the state space 
formulation and Fourier series. Malekzadeh [6] 
studied the in-plane free vibration analysis of 
functionally graded thick circular arches subjected 
to initial stresses due to thermal environment based 
on two-dimensional theory of elasticity. Later, 
Malekzadeh et al. [7] analyzed the in-plane free 
vibration of functionally graded thin-to-moderately 
thick deep circular arches in thermal environments 
based on first-order shear deformation theory 
(FSDT). Saidi et al. [8,9] presented exact solutions 
for stresses and displacements of functionally 
graded sector plates and spheres. Jomehzadeh et al. 
[10] investigated static analysis of thick FG sector 
plates according to a new analytical approach. 
Hosseini-Hashemi et al. [11] studied free vibration 
and buckling of FG sector plates on elastic 
foundation using differential quadrature method. 
An analytical solution for free vibration of curved 
and twisted beam was presented by Yu et al [12]. 
     The companion problem of finding the stress 
distributions and displacements of circular arches 
and curved beams has not attracted much attention 
and there are only a few studies in the literature 
related to this issue. Dryen [2] considered the 

axisymmetric problem of stress distribution across 
a functionally graded circular beam subjected to 
pure bending. However, no works were found in 
the literature for static analysis of the non-
axisymmetric problem of a functionally graded 
cantilever curved beam subjected to a shear force 
at its end. Hence, the present study is carried out to 
provide a closed-form solution for the problem 
based on the two-dimensional theory of elasticity. 
By using the present solution, the effects of 
inhomogeneity are investigated to obtain a proper 
stress distribution across a FG curved beam for 
designing purposes. It is shown that the obtained 
relations for stress and displacement components 
are converted to those of homogeneous beam when 
the inhomogeneity is vanished. 
 
 
 

2. PROBLEM ANALYSIS 
 
Consider a FG curved beam of a narrow 
rectangular cross section, which is clamped at the 
lower end and shear force P is applied at the upper 
end in the radial direction (Fig. 1). The material 
properties are assumed to vary continuously 
through the radial direction, according to the 
volume fraction of the constituents. 
 
 

 

Figure 1. Geometry and coordinate system of a FG curved 
beam subjected to shear force at its upper end. 
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The two-dimensional theory of elasticity in polar 
coordinates is applied here to analyze the problem. 
To start the analysis, the compatibility equation in 
polar coordinates is utilized, as follows 
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Considering plane stress state, the stress-strain 
relations for isotropic FG curved beam are defined 
as 
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where E(r) is Young’s modulus and considered to 
vary through the radial direction only and ν is 
Poisson’s ratio and is assumed to be constant. It is 
noticeable that in analyses of functionally graded 
materials, the Poisson’s ratio is usually held 
constant (e.g. see [13-15]). 
Substituting Eq. (2) into Eq. (1), the compatibility 
equation in terms of stress components for 
functionally graded materials is obtained as 
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In addition to the above equation, equilibrium 
equations in polar coordinates should also be 
solved. These equations in the absence of body 
forces are written as follows 
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It is assumed that the material properties of FG 
curved beam follow a simple power-law 
distribution as [16] 
 

β
0rηη(r)   (5) 

 

where η is one of the effective material properties 
such as Young’s modulus and β is the 
inhomogeneity constant. 
 
 
 

3. SOLUTION OF THE GOVERNING 
EQUATIONS 

 
Using the separation of variables approach 
and trigonometric functions, the in-plane 
components of stress field are considered as 
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where f, g and h are unknown functions of variable 
r. The proposed stress field (6) satisfies both the 
compatibility equation and the equilibrium 
equations. Substituting Eq. (6) into Eqs. (3), (4.1) 
and (4.2), a set of ordinary differential equation is 
obtained as 
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Solving the above set of equations and simplifying 
the results yields 
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in which C1 through C4 are constants which are 
obtained from the boundary conditions. The 
coefficients α1 through α4 are also defined as 
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Furthermore, Α, Β and Χ are as follows 
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Taking a look at Eq. (8) reveals that setting the 
constant C1 to be zero yields a relation between the 
functions f(r) and h(r) as 
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It is noted that the existence of Eq. (11) is 
necessary for satisfying all the boundary conditions 
of the problem. Therefore, the in-plane 
components of stress field can be expressed as 
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Now, one can consider the zero normal and shear 
stress boundary conditions at the inner and outer 
boundaries of the curved beam as follows 
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The above boundary conditions will result in the 
following two independent equations 
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By solving Eqs. (14), the constants C2 and C3 are 
obtained in term of C4 as 
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According to Fig. 1, the sum of the shearing forces 
distributed over the upper end of the curved beam 
should be equal to the shear force P. Assuming a 
FG curved beam of a narrow rectangular cross 
section and taking the width of the cross section as 
unity, this boundary condition is written as follows 
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Substituting Eqs. (15) and (12.3) into Eq. (16), an 
algebraic equation in term of C4 is obtained. By 
solving this equation, the constant C4 is determined 
as 
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Substituting Eq. (17) into Eqs. (15) and (12), the 
stress components are obtained as 
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Now, we consider the displacements produced by 
the shear force P. To this end, using Eqs. (2) and 
(12), the strain components are defined as 
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The strain-displacement relations in polar 
coordinates are expressed as 
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Substituting the radial strain component from Eq. 
(19.1) into Eq. (20.1) and integrating the results 
with respect to r, the radial displacement is 
obtained as follows 
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in which f1 is a function of θ only. Substituting εθ 
from Eq. (19.2) and also the radial displacement, u, 
from Eq. (21) into Eq. (20.2), and integrating the 
results with respect to θ, the following relation is 
obtained for circumferential displacement 
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where g1 is only a function of r. Substituting Eqs. 
(21), (22) and (19.3) into (20.3), a differential 
equation is obtained as follows 
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Solving the above equation, the unknown functions 
f1(θ) and g1(r) are obtained as 
 

r(r)g

cosθsinθθcosθ]ν)α(3ν)[(1
2E

C
)(θf

31

212
0

2
1









 (24) 
where 1 , 2  and 

3  are three constants and can 

be determined by satisfying the clamped edge 
conditions of the curved beam at θ=π/2. These 
conditions are expressed as 
 

0v
π/2θ



 (25.1) 

 

0u
π/2θ



 (25.2) 

 

0θu
π/2θ



 (25.3) 

 

Using Eqs. (21), (22) and (24), the Eqs. (25) can be 
rewritten as follows 
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By solving Eqs. (26.1) and (26.2), the constants 2  

and 
3  are obtained, 
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Applying the condition (26.1) for the middle 
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surface of the beam, yields 
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Thus, the deflection of the upper end of the FG 
curved beam is determined as 
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By using the above relation, the effect of 
inhomogeneity on the beam deflection is 
considerable. 
 
 
 

4. VERIFICATION OF THE SOLUTION 
 
The developed elasticity solution for a functionally 
graded curved beam can be validated by 
comparison with the available results in the 
literature for isotropic homogeneous curved beam. 
Apparently, stresses and displacements in the 
homogeneous curved beam can be obtained from 
the proposed solution for a FG curved beam by 
numerically setting β→0 in the corresponding 
relations. In this case, the coefficients α1, α2, α3, α4 
and also А, В and Х are simplified as follows 
 

3Χ1,Β1,Α

1α,
3

1
α1,α,

ν1

ν3
α 4321







  (30) 

 

The only indeterminate term in Eq. (17) is 
1))/(Αa(b 1Α1Α   . The limit of this term when the 

inhomogeneity constant approaches zero is 
calculated as 
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Using Eqs. (30) and (31), the stress components 
(18) are simplified for homogenous curved beam 
as follows 
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The above relations are the same as relations in 
Ref. [17] for homogenous curved beam. Also, the 
limit of Eq. (29) when the inhomogeneity constant 
approaches zero is determined 
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Equation (33) is exactly the same as the relation in 
Ref. [17] for the deflection of the upper end of a 
homogenous curved beam. 
 
 
 

5. NUMERICAL RESULTS AND 
DISCUSSION 

 
Based on the analysis of the foregoing sections, the 
stresses and displacements of a cantilever FG 
curved beam subjected to shear force are obtained. 
Numerical results are presented for various values 
of the inhomogeneity constant, β, and various 
inner-to-outer radius ratios. 
     Table 1 shows the maximum values of non-
dimensional stresses and their location in curved 
beams. It is seen that the maximum values of 
normal and shear stresses occur at the built-in end 
(θ=π/2) and free end (θ=0) of the beam, 
respectively. Also, it is concluded that the variation 
of the inhomogeneity constant affects the amount 
of maximum stresses and their radial location in  
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TABLE 1. Maximum values of non-dimensional stresses and their location in curved beams 
 

 
 
 
 

the beam. When the value of β is negative, the 
radial position of the maximum radial and shear 
stresses occurs near the inner surface of the beam. 
This is due to the fact that for a negative value of 
β, the stiffness of the beam decreases from inner 
surface to the outer one. On the contrary, when the 
inhomogeneity constant increases to a positive 
value, the stiffness of the outer surface increases 
and consequently the radial position of maximum 
stresses moves to outer surface of the beam. 
Another interesting point attracting ones attention 
is that the effect of inhomogeneity constant on the 
value and location of maximum stresses diminishes 
when the inner-to-outer radius ratio tends to unity 
(i.e. thin beam). In this case, the value of 
maximum non-dimensional shear stress approaches 
3/2 and its location is at the middle surface, similar 
to the Euler-Bernulli beam. It is worth noting that 
the maximum values of tensile and compressive 
circumferential stresses always locate on the 

surfaces of the beam. Thus, the variation of the 
inhomogeneity constant may cause the maximum 
value of tensile circumferential stress to be more 
than the value of maximum compressive 
circumferential stress and vice versa (Table 1). 
     In Fig. 2, the nondimensional normal 
circumferential stress is shown along the radial 
direction at θ=π/4, for a thick FG curved beam 
with outer to inner radius ratio b/a=3. It is seen that 
for a homogeneous curved beam, β=0, there exists 
a maximum compressive value of circumferential 
stress at the inner radius of the beam which is more 
than the amount of the maximum tensile 
circumferential stress at the outer radius of the 
beam. By increasing the value of inhomogeneity 
constant in a FG curved beam, the intensity of 
compressive circumferential stress at the inner 
radius of the beam decreases. Regarding the curves 
of this figure, it can be seen that for a FG curved 
beam with β=2, the values of the maximum 

ba    Location ),( r  r  Location ),( r   Location ),( r   r  

81  

2 (0.4857, /2) -1.4313 (1,/2) +6.6837 (0.4857,0) 1.4313 
1 (0.2097, /2) -1.5560 (0,/2) -5.1513 (0.2097,0) 1.5560 
0 (0.0975, /2) -2.2807 (0,/2) -12.221 (0.0975,0) 2.2807 
-1 (0.0646, /2) -3.4095 (0,/2) -24.985 (0.0646,0) 3.4095 
-2 (0.0480, /2) -4.8677 (0,/2) -45.742 (0.0480,0) 4.8677 

41  

2 (0.4482, /2) -1.4427 (1,/2) +7.1141 (0.4482,0) 1.4427 
1 (0.2886, /2) -1.5345 (0,/2) -6.2529 (0.2886,0) 1.5345 
0 (0.1901, /2) -1.7942 (0,/2) -10.506 (0.1901,0) 1.7942 
-1 (0.1382, /2) -2.1766 (0,/2) -16.765 (0.1382,0) 2.1766 
-2 (0.1069, /2) -2.6657 (0,/2) -25.782 (0.1069,0) 2.6657 

21  

2 (0.4510, /2) -1.4827 (1,/2) +10.403 (0.4510,0) 1.4827 
1 (0.3873, /2) -1.5109 (0,/2) -10.159 (0.3873,0) 1.5109 
0 (0.3312, /2) -1.5656 (0,/2) -12.882 (0.3312,0) 1.5656 
-1 (0.2840, /2) -1.6445 (0,/2) -16.194 (0.2840,0) 1.6445 
-2 (0.2451, /2) -1.7459 (0,/2) -20.224 (0.2451,0) 1.7459 

43  

2 (0.4767, /2) -1.4970 (1,/2) +22.112 (0.4767,0) 1.4970 
1 (0.4523, /2) -1.5020 (0,/2) -22.073 (0.4523,0) 1.5020 
0 (0.4284, /2) -1.5109 (0,/2) -24.295 (0.4284,0) 1.5109 
-1 (0.4052, /2) -1.5236 (0,/2) -26.719 (0.4052,0) 1.5236 
-2 (0.3829, /2) -1.5403 (0,/2) -29.351 (0.3829,0) 1.5403 

87  

2 (0.4889, /2) -1.4994 (1,/2) +46.042 (0.4889,0) 1.4994 
1 (0.4778, /2) -1.5004 (0,/2) -46.035 (0.4778,0) 1.5004 
0 (0.4666, /2) -1.5048 (0,/2) -48.235 (0.4666,0) 1.5048 
-1 (0.4556, /2) -1.5054 (0,/2) -50.306 (0.4556,0) 1.5054 
-2 (0.4446, /2) -1.5086 (0,/2) -52.571 (0.4446,0) 1.5086 
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compressive circumferential stress at the inner 
edge and maximum tensile circumferential stress at 
the outer edge of the beam are approximately equal 
to each other. 
     The variation of non-dimensional in-plane shear 
stress across the radial direction is depicted in Fig. 
3 for a thick FG curved beam with b/a=3 at θ=π/4. 
It can be seen that for a homogenous beam, the in-
plane shear stress has asymmetric distribution in 
radial direction with respect to the middle surface 

of the beam. This asymmetric distribution of the 
in-plane shear stress is improved for the FG curved 
beam by increasing the amount of inhomogeneity 
constant. It is clear that for β=2 the stress 
distribution along the radial direction is 
approximately symmetric. In other word, the peak 
of the stress occurs at the middle surface of the 
beam. 
     In Fig. 4, the variations of maximum values of 
the non-dimensional circumferential and shear 
stresses are depicted versus the inhomogeneity 
constant for a thick FG curved beam with b/a=3. It 
is observed that there exists an inhomogeneity 
constant, β, for which the maximum value of shear 
stress in the beam becomes minimum. Also, it is 
seen that by increasing the inhomogeneity 
constant, the maximum value of compressive 
circumferential stress in the beam (locates at the 
inner surface and θ=π/2) decreases, whereas the 
maximum value of tensile circumferential stress 
(locates at the outer surface and θ=π/2) increases. 
Thus, for a specific value of β, the maximum 
values of tensile and compressive circumferential 
stresses are equal. 
     Variations of non-dimensional radial and 
circumferential deflections of the upper end of the 
beam versus β are shown respectively in Figs. 5 
and 6 for various inner-to-outer radius ratios. It can 
be seen that by increasing the inhomogeneity 
constant, both radial and circumferential 
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Figure 4. Variation of maximum values of the non-
dimensional circumferential and shear stresses versus the
inhomogeneity constant 
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Figure 3. Variation of the non-dimensional shear stress along
the radial direction for the FG curved beam 
 



IJE Transactions B: Applications Vol. 23, No. 2, May 2010 - 177 

deflections of the beam increase. The reason for 
this is that the stiffness of the inner surface of the 
beam decreases when β increases. Also, it is 
concluded that as the inner-to-outer radius ratio 
increases, the deflection of the curved beam 
increases. 
 
 
 

6. CONCLUSION 
 
In this paper, a closed-form two-dimensional 

elasticity solution has been developed for stresses 
and displacements of a functionally graded curved 
beam subjected to a shear force at its upper end. 
The main advantage of designing and analyzing 
such a beam, composed of functionally graded 
materials, is the possibility of improving the stress 
distribution profiles. It has been shown that for a 
specific value of the inhomogeneity constant, a 
proper stress distribution along the radial direction 
is obtained. Moreover, it has been found that all 
the stress and displacement relations converted to 
those of a homogenous curved beam, when the 
inhomogeneity constant approaches zero. 
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