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Abstract A collocation method with the modified equilibrium on line method (ELM) for
imposition of Neumann and Robin boundary conditions is presented for solving the two-dimensional
acoustical problems. In the modified ELM, the governing equations are integrated over the lines on
the Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. In
other words, integration domains are straight lines for nodes located on the Neumann boundary.
Numerical examples of two-dimensional acoustical problems are presented to demonstrate the
stability, accuracy and convergence of the proposed method.
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1. INTRODUCTION

The Helmbholtz equation is a linear mathematical
model that describes time-harmonic acoustics,
elastic and electromagnetic steady state waves.
Analytical solutions to these problems are used
only in relatively few cases. Therefore, numerical
techniques such as finite element and boundary
element methods are widely used in these analyses.
In recent years, meshless methods have been
developed and used to solve partial differential
equations. Comprehensive reviews of meshless
methods can be found in the literature [1-3]. These
methods also have been applied for solving
Helmholtz equation, such as [4-7].

The attractive advantage of the collocation-
based meshless methods is that they are simple to
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implement and have less computational cost in
comparison to the weak form-based methods.
However, collocation-based meshless methods are
often found less accurate and most importantly they
are usually suffering from instability, especially for
problems governed by partial differential equations
with derivative boundary conditions. For alleviating
this deficiency and improving the solution accuracy
of the collocation-based meshless methods several
techniques have been proposed so far, such as [8-
11]. Sadeghirad, et al [12] proposed the equilibrium
on line method (ELM) for imposition of Neumann
boundary conditions in the finite point method
(FPM). The ELM presents a formulation for
satisfying the Neumann (or Robin) boundary
conditions by a set of weak form equations
consistent with the governing equations. Recently,
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Sadeghirad, et al [13] proposed a modified version
of the ELM. In the modified ELM, for any node
located on the Neumann (or Robin) boundary, weak
formulation of the governing equations is satisfied
on two lines that connect the node in question to the
two neighboring nodes on Neumann (or Robin)
boundary.

In this paper, a collocation method with the
modified ELM is applied to solve the two-
dimensional acoustical problems. The performance
of the modified ELM is studied for collocation
methods based on two different schemes to
construct meshless shape functions: moving least
squares (MLS) approximation and locally
supported radial basis point interpolation (RPIM).
Two numerical examples of two-dimensional
acoustics are presented to demonstrate the stability,
accuracy and convergence of the proposed method.

2. MESHLESS SHAPE FUNCTIONS
CONSTRUCTION SCHEMES

A number of ways to construct shape functions
have been proposed. In this section, a brief
description of the MLS and RPIM is given below.

2.1. Moving Least Squares (MLYS)
Approximation The MLS interpolant u"(x) of
the function u(x) is defined in the domain Q by
[14]:

u(x) = uh(x) = %l

P08 (0 =p" (x)a(0) (D
J =

17

Where p(x) is a vector of basis monomials and

al(x)=[a;(x),ay(X)a, ()] is  a
coefficients; where m is the number of basis
monomials. a(x) is obtained at any point x by

vector of

minimizing a weighted, discrete L, norm as
follows:

w(x — xi)[ﬁi _— (Xi)f =

1
, @

n

_ T
2 wx=x:)lu. —p- (x;)a(x;)
i:l 1 |: 1 1 1 :|

J:
i

I M=

12 - Vol. 23, No. 1, January 2010

Where n is the number of nodes in the
neighborhood of point x for which the weight
function w(x-x;)#0. u; is the nodal value

parameter of u at x=x;, while u"(x;,) is the
approximate value.

Using the stationarity condition for J in
Equation 2 with respect to a(x), we can solve for
a(x). By substituting it into Equation 1, the final
approximation is obtained as follows:

h L -
ul)= ¥ 6,08, 3)
i=1
Where the MLS shape function ¢;(x) is defined
by:

- p-<x>[A‘1<x>B<x)) @)
b= ji

Where A(x) and B(x) are the matrices defined by:

AR= T w,(0p(x)p T (x:)
X)= W (X X. X-,
i:ll p lp 1 (5)

Wi(X) =w(x-— Xi)

B(x)=

6
[, (OPx ) W (Ipxy ) w, (O] O
A Gaussian weight function with the compact
support property is adopted in the present work.
The weight function corresponding to node i may
be written as:

Wi(ri)=

(7

Where 1, =[x —x;| is the distance from node x; to
point X, ¢; is a constant controlling the shape of
the weight function w; and r, is the size of the

support domain.
It can be deduced from the above discussion
that the MLS approximation does not pass through
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the nodal values, i.e. the MLS shape functions
given by Equation 4 do not, in general, satisfy the
Kronecker delta condition.

2.2. Radial Basis Point Interpolation
Method (RPIM) The interpolation of a function
u(x), using RPIM, can be written as [15]:

h 3 n m
u(x)= X Ri(r)ai + 2 pj(X)bj (3
i=1 j=1

With the constraint condition

n

X pi(xa; =0, j=12..m €))
i=1

Where R,(r) is the radial basis function (RBF), r is

the distance between the interpolation point x and
node x;, n is the number of nodes in the

neighborhood of x, p;(x) is the basis monomials,

m is the number of basis monomials, scalar
coefficients a; and b; are interpolation constants.

By satisfying Equation 8 at the n nodes
surrounding point x, Equations 8 and 9 can be
rewritten in matrix form as follows:

ol ol w

Where u= [ﬁl,...,ﬁ ] is the vector of nodal value

n
parameters of the function u(x), a=[a,,...,a,] and
b=][b,.....b,, ] are the vectors of the interpolation

constants, R and P are defined as follows:

Ri(x) - R, ()
R = : : ,
f) (1
pl(xl) pm(xl)
P= : :
py(x,) PmnEn) ]

The coefficients a; and b; can be solved by using

the following algorithm: From Equation 8, a can be
solved,

a=R 1a-R7Ipb (12)
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Substituting Equation 12 into Equation 9 gives:

b=S,@ S, =(PR7Ip)IpTR™! (13)
Also, substituting Equation 13 back into Equation
12 gives:

QT _p-l
a=S_u, Sa—R (I

. ~PS}) (14)

nxn

Where 1, is the identity matrix. By substituting

Equations 13 and 14 into Equation 8, the final
approximation is obtained as follows:

P x) = o) (15)

Where the RPIM shape function ®(x) is defined
by:

CD(X) = [¢1 (X)a ¢2(X)’ co ¢Il (X)] =

(16)
RT (s, +pT (S,
There are a number of forms of radial basis
functions used by the mathematics community. In
this paper the following multiquadrics (MQ) radial
basis is applied.

R,(0)=(2+C?)d (17)

There are two parameters (C and q) that influence
the performance of RPIM using the MQ radial
basis function. C is the characteristic length related
to the nodal spacing in the support domain of the
interpolation point x.

It can be deduced from the above discussion
that the RPIM passes through the nodal values, i.e.
the RPIM shape functions given by Equation 16
satisfy the Kronecker delta condition.

3. DISCRETIZATION OF HELMHOLTZ
EQUATION IN A COLLOCATION
METHOD

The governing equation of the acoustic wave
propagation is derived from the fundamental
equations of continuum mechanics. Consider a fluid
inside a domain Q with boundary T . The equation
of acoustical wave propagation (small perturbations
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around a steady uniform state) is as follows:

a2pl a2pl B 1 aZp,

+
ox2 8y2 2 a2

in Q (18)

Where p’ and c¢ denote the field of acoustic

pressure and speed of sound in the fluid,
respectively.

We assume that the phenomena are steady
harmonic, i.e.

p'=pexp(jot) (19)

Where o is the angular frequency. By substituting
Equation 19 into Equation 18 the spatial
distribution p of the acoustic pressure (which is
now a complex variable) can be obtained from
Helmholtz equation as follows:

2. 2
a—§+a—§+k2p=0 in Q (20)
0x“~ 0Oy

Where the wave number k is defined by the ratio
between the angular frequency and the speed of
sound:

k= 1)

Q)
C
In order to completely address the acoustic
problem, Helmholtz Equation 20 is associated with
boundary conditions. Assume that problem domain
Q enclosed by boundary I'=T,UTUTx with
corresponding Dirichlet, Neumann and Robin
boundary conditions as follows:

p=p on I (22a)

V_=V_ or P__; ckv_ on T (22b)
n n on IPEKVy N

v.=A_p or P _ ckA_p on T (22¢)
n =AgP OF 2 -==jpckAp R

Where p, A, and n are the specific mass of the

fluid, the admittance coefficient modeling the
damping and the unit outward vector to the
boundary I', respectively. Also, v is the particle
velocity linked to the gradient of the acoustic
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pressure through the equation of motion as follows:
jpckv+Vp=0 (23)

The discretized system of equations in a collocation
method is formed by substituting the approximation
(3 or 15) into Equations 20 and 22 and collocating
the differential equation at each node in the analysis
domain. Note that if RPIM shape functions are used
in the collocation method, the Dirichlet boundary
conditions can be imposed simply by substituting
the prescribed pressures. In contrast, If MLS shape
functions are used, the standard collocation method
is applied to impose the Dirichlet boundary
conditions because in contrary to the RPIM, the
MLS approximation does not satisfy the Kronecker
delta condition. This discretization leads to a
system of algebraic equations of the form:

Kp=b (24)

Where K is the ‘stiffness’ matrix; b is the vector
containing the prescribed values of the pressure
and particle velocity on the boundaries; and p is a
vector of unknown nodal pressures p;. It can be

easily seen that the stiffness matrix in the presented
collocation method is banded because the support
domains are compact. However, in general, K is
asymmetric.

4. THE MODIFIED ELM FOR IMPOSITION
OF NEUMANN (ROBIN) BOUNDARY
CONDITIONS

On Neumann and Robin boundaries, the
derivatives of pressure exist in boundary condition
equations. In the modified ELM, by integrating the
governing differential Equation 20 over segments
of the Neumann and Robin boundaries and a
simple finite difference approximation, these
derivatives of pressure emerge in the formulation.
In contrary to direct imposition of Neumann
boundary conditions, in the modified ELM, these
boundary conditions are satisfied by a set of weak-
form equations consistent with equations governing
the body itself. Line I} connects two nodes i—1

and i; and Line T, connects two nodes i andi+ 1.

Nodes i—1 and i + 1 are the neighboring nodes of
node i on the Neumann boundary as illustrated in
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Figure 1. Hence for node i on the Neumann or
Robin boundary, the governing differential
Equation 20 in the global coordinate system is
integrated over two lines I, and T, generated by
slightly moving the lines T} and T, (Figure 2).

In the modified ELM, two balanced areas (B-
Areas) are defined for any node i on the Neumann
boundary. These surfaces are constructed by
dragging the lines T} and T, along the unit vector

n" which is inward and orthogonal to line segment
(Figure 2). The width of these surfaces is determined
by the following equation:

5, =alg (25)

Where 3, is the width of B-Area, I, is the length
of line T, and « is a user defined parameter. The

local coordinate system (t',n") for these surfaces
is defined as follows: its origin is located on node
i; the orientation of local axis t* is from node i to
node i—1 or i+1; and the local system is a right-
handed orthogonal system. Lines 1 and T, are the

mid lines of these surfaces (Figure 2). Additionally
it should be mentioned that curved boundaries are
being treated by approximation with straight lines.

In the following, the formulation of the
modified ELM is presented for the 2-D Helmholtz
equation. By substituting Equation 23 into
Equation 20, Helmholtz equation can be rewritten
in the following form:

ov 8Vy k
—X 4+ —24+j—p=0in Q (26)
ox oy pc

Where v, and v, are the components of the

y
particle velocity respect to the x and y directions,
respectively.

In order to impose the Neumann (Robin)
boundary conditions, Equation 26 should be

integrated over two lines I’ and I, for any node i
on the Neumann (Robin) boundary. Lines I} and T,
are the mid lines of two balanced areas (Figure 2),

S Px _avy i pyw(r) dr=0 27
+ + =
Szll rs(ax o Jpcp) () (27)

Where w(r,) is the test function and r, is the
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*

Neumann (Robin) Boundary

Figure 1. Determination of the integration domain of node x;
located on the Neumann boundary.

Neumann (Robin)
Boundary

Figure 2. Balanced areas and their local coordinate systems
for node i on the Neumann boundary.

distance from node i along line T,. In the present
work, the Gaussian test functions are used [13]:

exp[—(rS /e sz]—exp[—(ls /05)2], 1_s:4 (28)
l—exp[—(l S /Cs)z] Cq

Where |, is the length of line T .

The derivatives appearing in Equation 26 can be
rewritten with respect to the local coordinate

system (t',n"),

Ny OV 4

2 k
* t 0 452 )yw(r) dl =0 29
SEII r( o JpCP) (t,) (29)

The following finite difference approximations can
be used so that the normal heat flux can appear in
the formulation (Figure 2):

K

s=12  (30)

s
* 5. Vn* n
on r: § 18 S
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Where 0, is the width of B-Area, and «; is defined as,
K =ng-n 31)

Where ng and n’ are the unit outward vectors and
unit vector along local axis n* corresponding to
line I, respectively (Figure 2). By substituting
Equations 22b, 23 and 30 into Equation 29 and
rewriting the derivatives with respect to the global
coordinate system (x,y), final formulation for
satisfying the Neumann boundary conditions can
be obtained as follows:

2 52
Y] (t P A P (1))
s=1 FS 6 Ox0y
2
+ a—zp(tsy)2 +k2p)w dr
(32)

K

2
S—S Yr (@ty—@t yw drr
_ s

aXS ayS

=—jpck—s Z I'r v,w dl
65521 S

Where t}

vector along the local axis t* corresponding to line
I's. The integrals in Equation 32 can be easily
evaluated over the straight lines via the Gauss
quadrature technique.

In the similar way, the final formulation for
satisfying the Robin boundary conditions can be
obtained as follows:

and t} are the components of unit

3 pe@raxy
S

s=1 8x2
%D x ¥y 8D Y2 12
+ axay(ts )(t )+ (t ) +k“p)yw dI'
5 (33)
5 o apty P Xy dr
+65 SEII S ( ay S)W

K 2
+ jpck—= A _pw dI'=0
ip SSSEII r, AnP

5. NUMERICAL EXAMPLES

Two numerical examples of two-dimensional
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acoustics problems are considered to illustrate the
performance of the collocation method with
modified ELM in comparison to the direct
collocation method. The size of the support
domains (r,, ) is defined as,

r_ =vcC., C.=max
m. yl’ 1

X=X,
i J

, je Si (34)

Where S; is minimum set of neighboring nodes of
x; which construct a polygon surrounding node
x;; and y=3.5 is used in the computation. Also,

the weight function in the MLS approximation is
the Gaussian weight function (Equation 7) with

I

——=5; and in application of the MQ-RBF

Ci

(Equation 17), q=2.05 is used, and C is defined
as,

C=pC, (35)

Where C, is the average distance between all
nodes in the support domain, and B=1 is chosen.

The ratio of width of the balanced area to its length
in Equation 25 is chosen as «=0.3. Also,
Numerical integration is carried out using 5 Gauss
points along any line. The second order basis
functions (m=6) are used in the MLS
approximation (Equation 1) and the linear
polynomial is added in the RPIM (Equation 8).
The above values were chosen based on the results
obtained on the previous work [13].

For the purpose of error estimation and
convergence studies, the following error norm is
adopted,

Iif (ugxact_uapp)Z
. i i
Error= [1=1 36
o N exact,2 (30
> ()

i=1

Where u* and ul™ are respectively the exact
and approximate values of u; and N is the total
number of discrete values.

5.1. Closed Wave-Guide In this example,
performance of the modified ELM for satisfying
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the Neumann boundary conditions is studied for a
standing plane wave within a 1 m x 1 m domain.
This problem deals with the following boundary
conditions:

p(0,y)=1Pa, p(l,y)=0Pa,

%(X,O) =%(x,1) ~0Pa/m

The standing plane wave can be calculated
analytically by:

_ sinfk(1 - x)]

(37

The speed of sound in the media is assumed to be
¢ = 300 m/s. The problem is solved for three
different frequencies f; = 500 Hz, f, = 700 Hz and
f; = 1000 Hz. The calculations are carried out
using four irregular nodal distributions, with 121,
441, 961 and 2025 nodes, as depicted in Figure 3.
For comparison, the convergence curves for the
direct collocation method and modified ELM are
plotted in the same figures (Figures 4-6). By
application of the modified ELM an improvement
in the error values of pressure field p and its
derivatives is observed in comparison to the direct

p(X,y) =—, (38) . . ;
sin(k x1) collocation method. Also, the modified ELM with
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Figure 3. Four nodal distributions for modeling the square domain:
(a) 121 nodes, (b) 441 nodes, (c) 961 nodes and (d) 2025 nodes.
0.5 0.5
—_— i - i
. 057 . 0571
5 [ 2 s
£ e
w L w L
—— i ~a N
o o
o B o "
- — 1 5--
-1.5 —o— Direct+MLS e | —o— Direct+MLS
—4&— MELM+MLS —&— MELM+MLS
i —— Direct+RPIM L —¥— Direct+RPIM
L —*— MELM+RPIM L —+— MELM+RPIM
-2‘5 L 1 L L ; L 1 1 L ; 1 L 1 L -2‘5 L L 't L ; L ' A L : L ' A 'l
(a) -1.8 -1.5 -1.2 -0.9 (b) -1.8 -1.5 -1.2 -0.9

Log (h)

(a)

Log (h)
10

(b)

Figure 4. Rate of convergence for closed wave-guide problem with frequency
f; = 500 Hz:(a) pressure p and (b) pressure gradient Op/0x .
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Figure 5. Rate of convergence for closed wave-guide problem with frequency
f; = 700 Hz: (a) pressure p and (b) pressure gradient Op/0X .
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Figure 6. Rate of convergence for closed wave-guide problem with frequency
f; = 1000 Hz: (a) pressure p and (b) pressure gradient Op/0X .

RPIM interpolation scheme leads to slightly more
accurate results.

The distributions of pressure p along the line
y = 0.5 m are depicted in Figure 7. As shown in
this figure, the results obtained from the modified
ELM and the analytical solutions are in a good
agreement.

18 - Vol. 23, No. 1, January 2010

The effects of the width of balanced areas in the
modified ELM on the convergence curves are
depicted in Figure 8 for a nodal distribution of 441
nodes. In this figure, the error norms for different
values of o in Equation 25 are shown. It can be
seen that the values in the range between from 0.3
to 0.5 are suitable for a in the considered range.
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Figure 7. Distributions of pressure P along the line y = 0.5 for frequency f= 1000 Hz obtained from the direct collocation method
and collocation method with modified ELM using: (a) MLS approximation and (b) RPIM interpolation.
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Figure 8. The error norms of closed wave-guide problem with frequency f; = 700 Hz for different values of a in the modified ELM:
(a) pressure P and (b) pressure gradient Op/0X .
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5.2. Square Cavity This example deals with a
square cavity (1 mx1 m) in which a plane wave
propagates. The corresponding Dirichlet and Robin
boundary conditions are as follows:

The analytical solution of this problem is given as:

p(x,y) = COS(kg(X +y)+ jsin(k%(X +y) (40

p(0,0) =1Pa (39a) The problem is solved for three different
frequencies f; = 500 Hz, f, = 700 Hz and f; =
ap 22 1000 Hz. Also, the speed of sound in the media is
a—=jkp7 for x=0m assumed to be ¢=300 m/s. The calculations are
X . . . . .
op 22 carried out using four regular nodal distributions of
&:jka for x=1m 11 x 11,21 x 21,31 x 31 and 45 x 45 nodes.
o NS (39b) The convergence curves for the direct
—:jpT or y=0m collocation method and modifie are plotte
k i 0 llocat thod and modified ELM lotted
oy in Figures 8-11. Based on these figures, the results
9 _ Jkp_z for y=1m obtained from the collocation method with modified
oy 2 ELM are more accurate than those obtained from
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Figure 9. Rate of convergence for square cavity problem with frequency f; = 500 Hz:
(a) pressure p; (b) pressure gradient Op/0x and (c) pressure gradient Op/dy .
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Figure 10. Rate of convergence for square cavity problem with frequency f; = 500 Hz:
(a) pressure p; (b) pressure gradient Op/0x and (c) pressure gradient Op/ 0y .
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the direct collocation

ELM with RPIM interpolation scheme leads to
more accurate results in comparison to the modified

method. Also, the modified

ELM with MLS approximation.
The distributions of pressure p along the
diagonal x =y are depicted in Figure 12. As shown
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Figure 11. Rate of convergence for square cavity problem with frequency f; = 1000 Hz:
(a) pressure p; (b) pressure gradient Op/0x and (c) pressure gradient Op/ 0y .
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Figure 12. Distributions of pressure p along the diagonal x =y for frequency f= 1000 Hz obtained from the direct collocation
method and collocation method with modified ELM using: (a) MLS approximation and (b) RPIM interpolation.
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in this figure, the results obtained from the
modified ELM are more accurate than those
obtained from and the direct collocation method.

6. CONCLUSION

In this work, the application of the collocation
method with modified ELM is extended for solving
two-dimensional acoustic problems. In the modified
ELM, equilibrium over the lines on the Neumann
(Robin) boundary is satisfied as Neumann (Robin)
boundary condition equations. In other words,
integration domains are straight lines for nodes
located on the Neumann boundary. The
performance of the MLS and RPIM interpolations
has been examined in this paper. It can be
concluded that application of RPIM interpolation
leads to more accurate results in comparison to
application of the MLS approximation. Numerical
studies in section 5 show that the results obtained
from the modified ELM are more accurate than
those obtained from the direct collocation method.
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