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Abstract   A collocation method with the modified equilibrium on line method (ELM) for 
imposition of Neumann and Robin boundary conditions is presented for solving the two-dimensional 
acoustical problems. In the modified ELM, the governing equations are integrated over the lines on 
the Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. In 
other words, integration domains are straight lines for nodes located on the Neumann boundary. 
Numerical examples of two-dimensional acoustical problems are presented to demonstrate the 
stability, accuracy and convergence of the proposed method. 
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به منظور ارضاي  (ELM)در اين مقاله روش نقطه سنجي به همراه روش تعادل بر خط اصلاح شده    چكيده
در روش تعادل بر خط . شرايط مرزي نيومن و رابين براي حل مسايل آكوستيك دو بعدي ارائه شده است

به . شود نيومن ارضا ميبه عنوان معادلات شرط مرزي ) رابين(هاي مرز نيومن  اصلاح شده، تعادل بر پاره خط
به . دهند گيري را تشكيل مي هاي واقع بر مرز نيومن نواحي انتگرال بيان ديگر پاره خط هاي مستقيم براي گره

منظور بررسي مزاياي اين روش در تحليل هارمونيك آكوستيك دو بعدي چند مثال عددي تحليل گرديده است 
 .دهد وش مذكور را نشان ميو نتايج بدست آمده پايداري، دقت و همگرايي ر

 
 

1. INTRODUCTION 
 
The Helmholtz equation is a linear mathematical 
model that describes time-harmonic acoustics, 
elastic and electromagnetic steady state waves. 
Analytical solutions to these problems are used 
only in relatively few cases. Therefore, numerical 
techniques such as finite element and boundary 
element methods are widely used in these analyses. 
In recent years, meshless methods have been 
developed and used to solve partial differential 
equations. Comprehensive reviews of meshless 
methods can be found in the literature [1-3]. These 
methods also have been applied for solving 
Helmholtz equation, such as [4-7]. 
     The attractive advantage of the collocation-
based meshless methods is that they are simple to 

implement and have less computational cost in 
comparison to the weak form-based methods. 
However, collocation-based meshless methods are 
often found less accurate and most importantly they 
are usually suffering from instability, especially for 
problems governed by partial differential equations 
with derivative boundary conditions. For alleviating 
this deficiency and improving the solution accuracy 
of the collocation-based meshless methods several 
techniques have been proposed so far, such as [8-
11]. Sadeghirad, et al [12] proposed the equilibrium 
on line method (ELM) for imposition of Neumann 
boundary conditions in the finite point method 
(FPM). The ELM presents a formulation for 
satisfying the Neumann (or Robin) boundary 
conditions by a set of weak form equations 
consistent with the governing equations. Recently, 
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Sadeghirad, et al [13] proposed a modified version 
of the ELM. In the modified ELM, for any node 
located on the Neumann (or Robin) boundary, weak 
formulation of the governing equations is satisfied 
on two lines that connect the node in question to the 
two neighboring nodes on Neumann (or Robin) 
boundary. 
     In this paper, a collocation method with the 
modified ELM is applied to solve the two-
dimensional acoustical problems. The performance 
of the modified ELM is studied for collocation 
methods based on two different schemes to 
construct meshless shape functions: moving least 
squares (MLS) approximation and locally 
supported radial basis point interpolation (RPIM). 
Two numerical examples of two-dimensional 
acoustics are presented to demonstrate the stability, 
accuracy and convergence of the proposed method. 
 
 
 

2. MESHLESS SHAPE FUNCTIONS 
CONSTRUCTION SCHEMES 

 
A number of ways to construct shape functions 
have been proposed. In this section, a brief 
description of the MLS and RPIM is given below. 
 
2.1. Moving Least Squares (MLS) 
Approximation   The MLS interpolant (x)uh  of 

the function (x)u  is defined in the domain   by 
[14]: 
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Where p(x)  is a vector of basis monomials and 

 (x),...,a(x),a(x)a(x)a m21
T   is a vector of 

coefficients; where m is the number of basis 
monomials. a(x)  is obtained at any point x  by 
minimizing a weighted, discrete L2 norm as 
follows: 
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Where n is the number of nodes in the 
neighborhood of point x for which the weight 
function 0)xx(w i  . iu  is the nodal value 

parameter of u at ixx  , while )x(u i
h  is the 

approximate value. 
     Using the stationarity condition for J in 
Equation 2 with respect to a(x), we can solve for 
a(x). By substituting it into Equation 1, the final 
approximation is obtained as follows: 
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Where the MLS shape function )x(i  is defined 
by: 
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Where A(x) and B(x) are the matrices defined by: 
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A Gaussian weight function with the compact 
support property is adopted in the present work. 
The weight function corresponding to node i may 
be written as: 
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Where ii xxr   is the distance from node ix  to 

point x, ic  is a constant controlling the shape of 
the weight function iw  and 

imr  is the size of the 

support domain. 
     It can be deduced from the above discussion 
that the MLS approximation does not pass through 
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the nodal values, i.e. the MLS shape functions 
given by Equation 4 do not, in general, satisfy the 
Kronecker delta condition. 
 

2.2. Radial Basis Point Interpolation 
Method (RPIM)   The interpolation of a function 

(x)u , using RPIM, can be written as [15]: 
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With the constraint condition 
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Where (r)R i  is the radial basis function (RBF), r is 
the distance between the interpolation point x and 
node ix , n is the number of nodes in the 

neighborhood of x, )x(p j  is the basis monomials, 

m is the number of basis monomials, scalar 
coefficients ia  and jb  are interpolation constants. 

By satisfying Equation 8 at the n nodes 
surrounding point x, Equations 8 and 9 can be 
rewritten in matrix form as follows: 
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Where  n1 u,,uu   is the vector of nodal value 

parameters of the function )x(u ,  n1 ,a,aa   and 
 m1 ,b,bb   are the vectors of the interpolation 

constants, R and P are defined as follows: 
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The coefficients ia  and jb  can be solved by using 

the following algorithm: From Equation 8, a can be 
solved, 
 

Pb1Ru1Ra   (12) 

Substituting Equation 12 into Equation 9 gives: 
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Also, substituting Equation 13 back into Equation 
12 gives: 
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Where nnI   is the identity matrix. By substituting 
Equations 13 and 14 into Equation 8, the final 
approximation is obtained as follows: 
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Where the RPIM shape function )x(Φ  is defined 
by: 
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There are a number of forms of radial basis 
functions used by the mathematics community. In 
this paper the following multiquadrics (MQ) radial 
basis is applied. 
 

q)2C2
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There are two parameters (C and q) that influence 
the performance of RPIM using the MQ radial 
basis function. C is the characteristic length related 
to the nodal spacing in the support domain of the 
interpolation point x. 
     It can be deduced from the above discussion 
that the RPIM passes through the nodal values, i.e. 
the RPIM shape functions given by Equation 16 
satisfy the Kronecker delta condition. 
 
 
 

3. DISCRETIZATION OF HELMHOLTZ 
EQUATION IN A COLLOCATION 

METHOD 
 
The governing equation of the acoustic wave 
propagation is derived from the fundamental 
equations of continuum mechanics. Consider a fluid 
inside a domain   with boundary  . The equation 
of acoustical wave propagation (small perturbations 
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around a steady uniform state) is as follows: 
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Where p  and c denote the field of acoustic 
pressure and speed of sound in the fluid, 
respectively. 
     We assume that the phenomena are steady 
harmonic, i.e. 
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Where ω is the angular frequency. By substituting 
Equation 19 into Equation 18 the spatial 
distribution p of the acoustic pressure (which is 
now a complex variable) can be obtained from 
Helmholtz equation as follows: 
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Where the wave number k is defined by the ratio 
between the angular frequency and the speed of 
sound: 
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In order to completely address the acoustic 
problem, Helmholtz Equation 20 is associated with 
boundary conditions. Assume that problem domain 
  enclosed by boundary RND    with 
corresponding Dirichlet, Neumann and Robin 
boundary conditions as follows: 
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Where  , nA  and n are the specific mass of the 
fluid, the admittance coefficient modeling the 
damping and the unit outward vector to the 
boundary  , respectively. Also, v  is the particle 
velocity linked to the gradient of the acoustic 

pressure through the equation of motion as follows: 
 

0p vckj   (23) 
 

The discretized system of equations in a collocation 
method is formed by substituting the approximation 
(3 or 15) into Equations 20 and 22 and collocating 
the differential equation at each node in the analysis 
domain. Note that if RPIM shape functions are used 
in the collocation method, the Dirichlet boundary 
conditions can be imposed simply by substituting 
the prescribed pressures. In contrast, If MLS shape 
functions are used, the standard collocation method 
is applied to impose the Dirichlet boundary 
conditions because in contrary to the RPIM, the 
MLS approximation does not satisfy the Kronecker 
delta condition. This discretization leads to a 
system of algebraic equations of the form: 
 

bKp   (24) 
 

Where K is the ‘stiffness’ matrix; b is the vector 
containing the prescribed values of the pressure 
and particle velocity on the boundaries; and p is a 
vector of unknown nodal pressures ip . It can be 
easily seen that the stiffness matrix in the presented 
collocation method is banded because the support 
domains are compact. However, in general, K is 
asymmetric. 
 
 
 
4. THE MODIFIED ELM FOR IMPOSITION 

OF NEUMANN (ROBIN) BOUNDARY 
CONDITIONS 

 
On Neumann and Robin boundaries, the 
derivatives of pressure exist in boundary condition 
equations. In the modified ELM, by integrating the 
governing differential Equation 20 over segments 
of the Neumann and Robin boundaries and a 
simple finite difference approximation, these 
derivatives of pressure emerge in the formulation. 
In contrary to direct imposition of Neumann 
boundary conditions, in the modified ELM, these 
boundary conditions are satisfied by a set of weak-
form equations consistent with equations governing 
the body itself. Line 1  connects two nodes 1i   

and i; and Line 2  connects two nodes i and i + 1. 
Nodes 1i   and i + 1 are the neighboring nodes of 
node i on the Neumann boundary as illustrated in 
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Figure 1. Hence for node i on the Neumann or 
Robin boundary, the governing differential 
Equation 20 in the global coordinate system is 
integrated over two lines *

1  and *
2  generated by 

slightly moving the lines 1  and 2  (Figure 2). 
     In the modified ELM, two balanced areas (B-
Areas) are defined for any node i on the Neumann 
boundary. These surfaces are constructed by 
dragging the lines 1  and 2  along the unit vector 

*n  which is inward and orthogonal to line segment 
(Figure 2). The width of these surfaces is determined 
by the following equation: 
 

sls   (25) 
 

Where s  is the width of B-Area, sl  is the length 

of line s  and   is a user defined parameter. The 

local coordinate system )n,t( **  for these surfaces 
is defined as follows: its origin is located on node 
i; the orientation of local axis *t  is from node i to 
node 1i   or 1i  ; and the local system is a right-
handed orthogonal system. Lines *

1  and *
2  are the 

mid lines of these surfaces (Figure 2). Additionally 
it should be mentioned that curved boundaries are 
being treated by approximation with straight lines. 
     In the following, the formulation of the 
modified ELM is presented for the 2-D Helmholtz 
equation. By substituting Equation 23 into 
Equation 20, Helmholtz equation can be rewritten 
in the following form: 
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Where xv  and yv  are the components of the 

particle velocity respect to the x and y directions, 
respectively. 
     In order to impose the Neumann (Robin) 
boundary conditions, Equation 26 should be 
integrated over two lines *

1  and *
2  for any node i 

on the Neumann (Robin) boundary. Lines *
1  and *

2  
are the mid lines of two balanced areas (Figure 2), 
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Where )r(w s  is the test function and sr  is the 

distance from node i along line s . In the present 
work, the Gaussian test functions are used [13]: 
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Where sl  is the length of line s . 
     The derivatives appearing in Equation 26 can be 
rewritten with respect to the local coordinate 
system )n,t( ** , 
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The following finite difference approximations can 
be used so that the normal heat flux can appear in 
the formulation (Figure 2): 
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Figure 1. Determination of the integration domain of node xi

located on the Neumann boundary. 
 
 
 

 
Figure 2. Balanced areas and their local coordinate systems
for node i on the Neumann boundary. 
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Where δs is the width of B-Area, and κs is defined as, 
 

*nsns   (31) 
 

Where ns and n* are the unit outward vectors and 
unit vector along local axis n* corresponding to 
line Гs, respectively (Figure 2). By substituting 
Equations 22b, 23 and 30 into Equation 29 and 
rewriting the derivatives with respect to the global 
coordinate system (x,y), final formulation for 
satisfying the Neumann boundary conditions can 
be obtained as follows: 
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Where x
st  and y

st  are the components of unit 
vector along the local axis t* corresponding to line 
Гs. The integrals in Equation 32 can be easily 
evaluated over the straight lines via the Gauss 
quadrature technique. 
     In the similar way, the final formulation for 
satisfying the Robin boundary conditions can be 
obtained as follows: 
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5. NUMERICAL EXAMPLES 
 
Two numerical examples of two-dimensional 

acoustics problems are considered to illustrate the 
performance of the collocation method with 
modified ELM in comparison to the direct 
collocation method. The size of the support 
domains )r(

im  is defined as, 
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Where iS  is minimum set of neighboring nodes of 

ix  which construct a polygon surrounding node 

ix ; and 5.3  is used in the computation. Also, 
the weight function in the MLS approximation is 
the Gaussian weight function (Equation 7) with 

5
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mi  ; and in application of the MQ-RBF 

(Equation 17), 05.2q   is used, and C is defined 
as, 
 

0CC   (35) 
 

Where 0C  is the average distance between all 

nodes in the support domain, and 1  is chosen. 
The ratio of width of the balanced area to its length 
in Equation 25 is chosen as 3.0 . Also, 
Numerical integration is carried out using 5 Gauss 
points along any line. The second order basis 
functions ( 6m  ) are used in the MLS 
approximation (Equation 1) and the linear 
polynomial is added in the RPIM (Equation 8). 
The above values were chosen based on the results 
obtained on the previous work [13]. 
     For the purpose of error estimation and 
convergence studies, the following error norm is 
adopted, 
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Where exact
iu  and app

iu  are respectively the exact 

and approximate values of iu  and N is the total 
number of discrete values. 
 
5.1. Closed Wave-Guide   In this example, 
performance of the modified ELM for satisfying 
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the Neumann boundary conditions is studied for a 
standing plane wave within a 1 m × 1 m domain. 
This problem deals with the following boundary 
conditions: 
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The standing plane wave can be calculated 
analytically by: 
 

)1ksin(
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The speed of sound in the media is assumed to be 
c = 300 m/s. The problem is solved for three 
different frequencies f1 = 500 Hz, f2 = 700 Hz and 
f3 = 1000 Hz. The calculations are carried out 
using four irregular nodal distributions, with 121, 
441, 961 and 2025 nodes, as depicted in Figure 3. 
     For comparison, the convergence curves for the 
direct collocation method and modified ELM are 
plotted in the same figures (Figures 4-6). By 
application of the modified ELM an improvement 
in the error values of pressure field p and its 
derivatives is observed in comparison to the direct 
collocation method. Also, the modified ELM with 

 
 
 

          
 

                   (a)                                         (b)                                        (c)                                         (d) 
 

Figure 3. Four nodal distributions for modeling the square domain: 
(a) 121 nodes, (b) 441 nodes, (c) 961 nodes and (d) 2025 nodes. 

 
 
 

            
 

                                              (a)                                                                                        (b) 
 

Figure 4. Rate of convergence for closed wave-guide problem with frequency  
f1 = 500 Hz:(a) pressure p and (b) pressure gradient x/p  . 
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RPIM interpolation scheme leads to slightly more 
accurate results. 
     The distributions of pressure p along the line 
y = 0.5 m are depicted in Figure 7. As shown in 
this figure, the results obtained from the modified 
ELM and the analytical solutions are in a good 
agreement. 

     The effects of the width of balanced areas in the 
modified ELM on the convergence curves are 
depicted in Figure 8 for a nodal distribution of 441 
nodes. In this figure, the error norms for different 
values of α in Equation 25 are shown. It can be 
seen that the values in the range between from 0.3 
to 0.5 are suitable for α in the considered range. 

            
 

                                              (a)                                                                                        (b) 
 

Figure 5. Rate of convergence for closed wave-guide problem with frequency  
f1 = 700 Hz: (a) pressure p and (b) pressure gradient x/p  . 

 
 
 

            
 

                                              (a)                                                                                        (b) 
 

Figure 6. Rate of convergence for closed wave-guide problem with frequency  
f1 = 1000 Hz: (a) pressure p and (b) pressure gradient x/p  . 
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Figure 7. Distributions of pressure P along the line y = 0.5 for frequency f = 1000 Hz obtained from the direct collocation method 
and collocation method with modified ELM using: (a) MLS approximation and (b) RPIM interpolation. 

 
 
 

            
 

                                              (a)                                                                                        (b) 
 

Figure 8. The error norms of closed wave-guide problem with frequency f1 = 700 Hz for different values of α in the modified ELM: 
(a) pressure P and (b) pressure gradient x/p  . 
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5.2. Square Cavity   This example deals with a 
square cavity (1 m×1 m) in which a plane wave 
propagates. The corresponding Dirichlet and Robin 
boundary conditions are as follows: 
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The analytical solution of this problem is given as: 
 

))yx(
2

2
ksin(j))yx(

2

2
kcos()y,x(p   (40) 

 

The problem is solved for three different 
frequencies f1 = 500 Hz, f2 = 700 Hz and f3 = 
1000 Hz. Also, the speed of sound in the media is 
assumed to be s/m  300c  . The calculations are 
carried out using four regular nodal distributions of 
11 × 11, 21 × 21, 31 × 31 and 45 × 45 nodes. 
     The convergence curves for the direct 
collocation method and modified ELM are plotted 
in Figures 8-11. Based on these figures, the results 
obtained from the collocation method with modified 
ELM are more accurate than those obtained from 

 
 
 

       
 

                             (a)                                                          (b)                                                      (c) 
 

Figure 9. Rate of convergence for square cavity problem with frequency f1 = 500 Hz: 
(a) pressure p; (b) pressure gradient x/p   and (c) pressure gradient y/p  . 

 
 
 

        
 

                             (a)                                                          (b)                                                      (c) 
 

Figure 10. Rate of convergence for square cavity problem with frequency f1 = 500 Hz: 
(a) pressure p; (b) pressure gradient x/p   and (c) pressure gradient y/p  . 
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the direct collocation method. Also, the modified 
ELM with RPIM interpolation scheme leads to 
more accurate results in comparison to the modified 

ELM with MLS approximation. 
     The distributions of pressure p along the 
diagonal x = y are depicted in Figure 12. As shown 

 
 
 

        
 

                             (a)                                                          (b)                                                      (c) 
 

Figure 11. Rate of convergence for square cavity problem with frequency f1 = 1000 Hz: 
(a) pressure p; (b) pressure gradient x/p   and (c) pressure gradient y/p  . 
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(b) 
 

Figure 12. Distributions of pressure p along the diagonal x = y for frequency f = 1000 Hz obtained from the direct collocation 
method and collocation method with modified ELM using: (a) MLS approximation and (b) RPIM interpolation. 
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in this figure, the results obtained from the 
modified ELM are more accurate than those 
obtained from and the direct collocation method.  
 
 
 

6. CONCLUSION 
 
In this work, the application of the collocation 
method with modified ELM is extended for solving 
two-dimensional acoustic problems. In the modified 
ELM, equilibrium over the lines on the Neumann 
(Robin) boundary is satisfied as Neumann (Robin) 
boundary condition equations. In other words, 
integration domains are straight lines for nodes 
located on the Neumann boundary. The 
performance of the MLS and RPIM interpolations 
has been examined in this paper. It can be 
concluded that application of RPIM interpolation 
leads to more accurate results in comparison to 
application of the MLS approximation. Numerical 
studies in section 5 show that the results obtained 
from the modified ELM are more accurate than 
those obtained from the direct collocation method. 
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