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Abstract   Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method 
are presented for two dimensional steady-state heat conduction problems. The MLPG method is a 
truly meshless approach, and neither the nodal connectivity nor the background mesh is required for 
solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the 
essential boundary conditions, the moving least squares approximation is used for interpolation 
schemes and the Heaviside step function is chosen for test function. As the accuracy and runtime will 
depend on definition radiuses of the moving least squares approximation and the Heaviside step 
function; therefore, a genetic algorithm is carried out to determine the optimal values for these 
radiuses. The results show that the present method is very promising in solving engineering two 
dimensional steady-state heat conduction problems. 

 
Keywords   Meshless Local Petrov-Galerkin, Moving Least Squares, Heaviside Step Function, Heat 
Conduction, Optimization, Genetic Algorithm 

 
در اين مقاله، تحليل مسائل انتقال حرارت رسانايي حالت ماندگار در فضاي دو بعدي، به روش محلي ده   يچك    

 يک روش بدون المان واقعي است، زيرا MLPGروش . ، ارائه شده است)MLPG(گالرکين -بدون المان پتروف
 به المانها نيز  يابي داده کند، بلکه جهت درون نميگيري از فرم ضعيف از هيچ الماني استفاده  انتگرالنه تنها براي 

 از تقريب ها يابي داده براي ارضاي شرايط مرزي، از روش ضريب جريمه و براي درون. بندي دامنه مساله نياز ندارد
از . ي هويساد است ون مورد استفاده، تابع پلهنين، تابع آزمهمچ. استفاده شده است) MLS(توان دوم تفاضلات 

 ها اثر مي  و پله هويسايد، بر روي زمان اجراي برنامه و دقت جواب MLSهاي دو تابع تقريب آنجا که شعاع
مقايسه . ها، از الگوريتم ژنتيک استفاده شده است اين شعاع گذارد، بنابراين در اين مقاله براي تعيين مقادير بهينه

ل با جواب هاي دقيق، بيانگر موفقيت اين روش در تحليل مسائل انتقال حرارت رسانايي حالت ماندگار نتايج حاص
 .در فضاي دو بعدي مي باشد

 
 

1. INTRODUCTION 
 
In recent years, the meshless method has emerged 
as an effective numerical approach to find 
solutions of initial-boundary-value problems. The 
MLPG method is one of the meshless schemes. 
The main advantage of this method compared with 
other meshless methods is that no background 

mesh is used to evaluate various integrals 
appearing in the local weak formulation of 
problem. Therefore, this method is a “truly 
meshless” approach in terms of both interpolation 
of variables and integration of energy. The MLPG 
method has been demonstrated to be quite 
successful in solving different branches of initial-
boundary-value problems. Atluri, et al [1] solved 
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elasto-static problems, Lin, et al [2] introduced the 
up winding scheme to analyze steady state 
convection-diffusion problems, and Liu, et al [3] 
coupled the MLPG method with the finite element 
also with the boundary element method to enhance 
the efficiency of the MLPG method. Ching, et al [4] 
augmented the polynomial basis functions with 
singular fields to determine deformations and 
stress fields near the crack tip for generally 2D 
mixed-mode problems. Gu, et al [5] and Batra, et al 
[6] used the Newmark family of methods to 
analyze 2D transient elastodynamic problems. The 
bending of a thin plate has been studied by Gu, et al 
[7] and Long, et al [8]. The objective of this work 
is to present the MLPG analysis for two 
dimensional steady-state heat conduction problems. 
First, we list governing equations next, the weak 
formulations of MLPG method and the moving 
least squares (MLS) approximation is briefly 
introduced. 
     MLPG and other meshless methods have several 
parameters that have to be chosen correctly to 
achieve good accuracy. A Genetic Algorithm (GA) 
is a computational model that emulates biological 
evolutionary theories to solve optimization 
problems. In this paper, multi-objective GA is used 
to optimal Pareto parametric analysis for two 
dimensional steady-state heat conduction. It should 
be noted that there are many different ways of 
hybridization; but most of them incorporate a local 
optimizer to the simple GA main loop. Further, a 
new method called ε-elimination diversity algorithm, 
recently proposed [9,10] that this algorithm is used 
in this article too. 
     Four examples are analyzed to demonstrate the 
validity and versatility of the method. The results 
obtained are in good agreement with the analytical 
solutions. 
 
 
 

2. MLPG FORMULATION 
 
We consider a 2D heat conduction problem, as 
shown in Figure 1, for illustrating the procedure 
for formulating the MLPG method. The problem 
domain is denoted by Ω, which is bounded by 
boundaries including essential boundary Γ1, natural 
boundary Γ2 and Robin boundary Γ3. In the MLPG 
method, the problem domain is represented by a 

set of arbitrarily distributed nodes, as shown in 
same. The weighted residual method is used to 
create the discrete system equation. 
     The major idea in MLPG is that the 
implementation of the integral form of the 
weighted residual method is confined to a very 
small local sub domain of a node. This means that 
the weak form is satisfied at each node in the 
problem domain in a local integral sense. 
Therefore, the weak form is integrated over a 
"local quadrature domain" that is independent of 
other domains of other nodes. This is made 
possible by use of the Petrov-Galerkin formulation, 
in which one has the freedom to choose the test 
and trial functions independently. 
     The heat conduction Poisson’ equation and 
boundary conditions can be written as: 
 

Ωψ=
θ

+
θ

λ in)2dy

2d
2dx

2d( &  (1) 

 

The Dirichlet boundary condition: 
 

1on1 Γθ=θ  (2) 
 

The Neumann boundary condition: 
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dy
d
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dx
d( Γ=

θ
+

θ
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The Robin boundary condition: 
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θ
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θ
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Figure 1. Domains and their boundaries. 
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Where θ represents temperature; λ the thermal 
conductivity, nx and ny are the component the 
outward unit vector to Γ, q the given heat flux, h 
the convection heat transfer coefficient, θf is the 
environmental temperature, ψ&  the heat source per 
unit mass, and Γ1, Γ2 and Γ3 the boundaries at 
which the Dirichlet, Neumann and Robin 
conditions apply, respectively. 
     In the Ωs, the weighted integral form of 
Equation 1 is given as 
 

0sd
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In Equation 5 υ  is test function. To reduce this 
high-order differentiability requirement on θ, we 
can integrate Equation 5 by parts. By using 
Gauss’s theorem, we can obtain the following local 
weak formulation equation: 
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In this equation  Ls being the other part of the local 
boundary which is inside the solution domain. 
Substituting Equation 3 and Equation 4 into 
Equation 6, we can obtain Equation 7. 
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The MLS approximation function is given by 
 

∑
=

∧
θφ=θ

N

1I
II  (8) 

Here, θ̂  is the unknown fictitious nodal values and 
ØI is usually called as the shape function of MLS 
approximation corresponding to nodal point SI. 
Substitution of Equation 7 into Equation 8 for all the 
nodes, we can obtain the following linear equations: 
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In Equation 9 M is the total number of nodes in the 
entire domain Ω, or 
 

FθK. =
∧

 (10) 
 

In Equation 10 θ̂  the vector for the unknown 
fictitious nodal values, α  the penalty parameter, 
which is used to impose the essential boundary 
conditions, and K and F are the global stiffness 
matrix and the global vector, respectively, which 
are defined as 
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In MLPG shape functions do not satisfy the 
Kronecker delta property, and hence when such 
trial functions are used, it is not easy to implement 
the essential boundary. 
     Various numerical techniques have been 
proposed to enforce the essential boundary 
conditions, such as the Lagrange multiplier 
method, the penalty approach, the transformation 
method, the direct interpolation method, etc. In the 
present work, the penalty approach has been used 
to enforce essential boundary conditions. 
     Because discretization errors can be comparable 
in magnitude to the errors due to the poor 
satisfaction of the constraint, the following formula 
has been suggested for determining the penalty 
parameter in FEM analysis [11]: 
 

n

h
1const ⎟
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Where h is the characteristic length, which can be 
the ratio of the element size to the dimension of the 
problem domain, and n is the order of the elements. 
     In extending this formula to meshless methods, 
we suggest that h be the ratio of the nodal spacing 
to the dimension of the problem domain, and n = 1. 
The constant in Equation 13 should relate to the 
material property of the solid or structure. It can be 
1010 times Young's modulus. 
     This paper prefers the following simple method 
for determining the penalty parameter: 
 

K)in elements diagonal(maxβ10α ×= 184 ≤β≤  (14) 
 
In Equation 14 K is the global stiffness matrix. In 
most of the examples reported using penalty 
methods, the foregoing equation is adopted. It has 
also been suggested to use 
 

modulus) (Youngβ10α ×= 85 ≤β≤  (15) 
 
Equation 15 works well in elasto-static problems. 
     Note that trials may be needed to choose a 
proper penalty parameter. 

3. THE MOVING LEAST SQUARE 
APPROXIMATION SCHEME 

 
Moving Least Squares (MLS), originated by 
mathematicians for data fitting and surface 
construction, can be categorized as a method of finite 
series representation of functions. The MLS method 
is now a widely used alternative for constructing 
meshless shape functions for approximation. 
     The MLS approximation has two major features 
that make it popular: (1) the approximated field 
function is continuous and smooth in the entire 
problem domain; and (2) it is capable of producing 
an approximation with the desired order of 
consistency. The MLS approximation is detailed in 
this part. 
     Consider a support domain Ωx, which is located 
within the problem domain Ω (Figure 2) and has a 
number of randomly located nodes xI (I = 1,...,N). 
The moving least squares approximate θh(x) of 
θ(x) by following definition: 
 

)x(ia)x(
m

1i
ip)x(h ∑

=
=θ  = pT(x) a(x) (16) 

 

Where pT(x)=[p1(x),p2(x),...,pm(x)] is a complete 
monomial basis, m is the number of terms in the 
basis, and a(x)=[a1(x),a2(x),...,am(x)] is the 
 
 
 

 
Figure 2. Schematics of the MLS approximation. 
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corresponding coefficient. For example, for a 2D 
problem, the basis can be chosen as 
 

]2yxy,,2xy,x,[1,(x)Tp:6)(mbasisQuadratic
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The coefficient vector a(x) is determined by 
minimizing the difference between the local 
approximation and the function, and is defined as 
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Where xI denotes the position vector of node I, 
wI(x) is the weight function associated with the 
node I, N is the number of node in Ωx for which 
the weight functions wI(x) > 0 are searched, the 
matrix P and the diagonal matrix W are defined as 
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and 
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In Equation 21 
I∧

θ  is the fictitious nodal value. It is 
not the nodal value of trial functions denoted by 
θh(x). 
     To find the coefficient a(x), we obtain the 
extremum by 
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This leads to the following set of linear relations: 
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Where the matrixes A(x) and B(x) are defined by 
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Solving a(x) from Equation 23, and substituting it 
into Equation 16, we can obtain the final form of 
the MLS approximation as 
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Where ФT(x) = pT(x)A-1(x)B(x) is the shape 
function, and its partial derivative is: 
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In practical applications, the weight function wI(x) 
is generally nonzero over the small neighborhood 
of point xI, and this neighborhood is called the 
domain of influence or the domain of definition 
(Figure 2). Typically, the shape of the domain in 
the two dimensional space can be circular, ellipse, 
rectangular or any other convenient regular closed 
lines and in the three dimensional space can be 
sphere, ellipsoid, cube or any other simple cubic 
volume. In the present analysis a circular domain 
has been selected. The choice of weight function 
wI(x) affects the resulting approximation )x(hθ ; 

therefore, its selection is of essential importance. 
Numerical practices of [1,2] have shown that a 
quadratic spline weight function works well. 
Hence in this article, the quadratic spline weight 
function is used. Thus we have 
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Where dI is the distance between points x and nod 
xI and rI is the size of support (Figure 2) for the 
weight functions. It can be seen that the quadratic 
spline weight function is C1 continuous over the 
entire domain. 
 
 
 

4. GENETIC ALGORITHMS-HOW AND 
WHY? 

 
4.1. Genetic Algorithm Basics   A Genetic 
Algorithm (GA) is a computational model that 
emulates biological evolutionary theories to solve 
optimization problems. A GA is a technique used to 
automate the process of searching for an optimal 
solution. Because it searches from a population of 
points, the probability of the searches getting 
trapped in a local minimum is limited. GAs start 
searching by randomly sampling within an 
optimization solution space, and then use stochastic 
operators to direct a process based on objective 
function values. 
     Under GA terminology, a solution to a problem 
is an individual and a group of individuals is a 
population. A generation is a new population. In 
binary GAs, each individual is represented by a 
binary string called a chromosome, which encodes 
all the parameters of interest corresponding to that 
individual. A chromosome is formed of alleles, the 
binary coding bits. The fitness of any particular 
individual corresponds to the value of its objective 
function. 
     Genetic operators control the evolution of 
successive generations. The three basic genetic 
operators are reproduction, crossover and 
mutation. The probability of a given solution’s 
being chosen for reproduction is proportional to 
the fitness of that solution. Crossover implies that 
parts of two randomly chosen chromosomes will 
be swapped to create a new individual. Mutation 
involves randomly changing an allele in a solution 
to look for new points in the solution space. 

Although there are more elaborate versions of 
these operators, the basic principles remain similar 
for most GAs. 
     A genetic algorithm starts by generating a 
number of possible solutions to a problem, 
evaluates them and applies the basic genetic 
operators to that initial population according to the 
individual fitness of each individual. This process 
generates a new population with higher average 
fitness than the previous one, which in turn will be 
evaluated. The cycle is repeated for the number of 
generations set by the user, which is dependent on 
problem complexity. 
 
4.2. Why Use A GA?   GAs offer several 
attractive features: 
 
• An easily understood approach that can be 

applied to a wide range of problems with 
little or no modification. Other approaches 
have required substantial alteration to be 
successfully used in building applications. 
For example, dynamic programming was 
applied to the problem of selecting the 
number, location, and power of lamps along 
a hallway to minimize the electrical power 
needed to produce the required illuminance 
[12]. Because the choice of the location and 
power of a lamp affected decisions made 
about previous lamps, the sequential 
decision-making approach inherent in 
dynamic programming could not be made. It 
was necessary to suspend earlier decisions 
and reconsider them, substantially increasing 
computation time and data storage. 

• Publicly available, easily implemented GA 
codes. Reduced set-up time makes them 
attractive relative to other optimization 
methods that may offer better performance 
but must be identified, obtained and properly 
configured. 

• Inherent capability to work with complex 
simulation programs. Simulation does not 
need to be simplified to accommodate 
optimization. 

• Proven effectiveness in solving complex 
problems that cannot be readily solved with 
other optimization methods. The mapping of 
the objective function for a daylighting 
design problem showed the existence of local 
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minima that would potentially trap a gradient-
based method [13]. Building optimization 
problems may include a mixture of a large 
number of integer and continuous variables, 
non-linear inequality and equality constraints, 
a discontinuous objective function and 
variables embedded in constraints but not in 
the objective function. Such characteristics 
make gradient-based optimization methods 
inappropriate and restrict the applicability of 
direct-search methods [14]. The calculation 
time of mixed integer programming (MIP), 
which was used to optimize the operation of a 
district heating and cooling plant, increases 
exponentially with the number of integer 
variables. It was shown to take about two 
times longer than a GA for a 14 hr optimization 
window and 12 times longer for a 24 hr 
period [15], although the time required by 
MIP was sufficiently fast for a relatively 
simple plant to make on-line use feasible. 

• Methods to permit GAs to handle constraints 
that would make some solutions unattractive 
or entirely infeasible. 

• Identification of optimal trade-offs among 
multiple optimization criteria, a topic to be 
discussed next. 

 

4.3. Multi-Objective Optimization   Single-
objective optimization may unnecessarily constrain 
a designer. For example, operating costs for lights 
and for space conditioning can both be expressed 
in the same units, but a designer may have reason 
to favor day lighting from north-facing windows 
over increased conduction losses and attendant 
increases in heating and cooling costs. Capital 
costs for equipment and the building envelope can 
in principle be included in a life-cycle-cost 
objective function but may better be considered 
separately, if capital and operating budgets are 
separate. Multi-criteria optimization methods move 
away from a sum (weighted or unweighted) of 
individual objectives and provide the designer with 
explicit information about the trade-offs between 
different criteria. 
     There are several approaches to multi-objective 
optimization problems using GAs: 
 

• Simple aggregation or weighting of individual 
objectives; 

• Population based non Pareto approaches; 

• Pareto-based approaches. 
 

4.4. Simple Aggregation   Individual objective 
functions can be combined by using weighting 
factors based on some knowledge of the problem, 
forming a single figure of merit that reflects the 
overall performance of the solution according to 
the different objectives. Then GAs can be applied 
repetitively, if necessary, changing the values of 
the weighting factors at each run, to gain some 
insight into the relative importance of each of the 
objectives. 
 
4.5. Population Based Non Pareto Approaches   
These approaches seek to discover multiple non-
dominated solutions, but without explicit use of 
Pareto fitness. The Vector Evaluated GA (VEGA) 
[16] selects sub populations of the next generation 
according to individual objectives. Overall fitness 
is a linear combination of individual objectives, 
with weights that depend on population distributions. 
Fourman [17] selected a new population by 
comparing pairs of individuals, each according to 
one of the objectives. 
 
4.6. Pareto Based Approaches   Pareto 
optimality makes use of the concept of dominated 
and non-dominated solutions. A solution is Pareto 
optimal if it is not dominated by any other solution. 
In Figure 3, the points represent feasible solutions to 
a multi-objective maximization problem, where 
values for each of two objective functions are 
assigned to the x and y axes. A solution dominates 
another if it is better than the other for at least one 
objective function and at least as good on all the 
others [18]. Point A(4,2) dominates point C(3,1) 
because it has both higher x and y values. Points 
A(4,2) and B(2,4) are not dominated and are 
therefore both Pareto-optimal solutions. They 
represent good trade-offs between the two objective 
functions. Point A performs better than B in terms 
of the x values but the inverse is true for y values. 
     There are several Pareto approaches to evolving 
a population that optimizes the trade-offs among 
objective functions: 
 

• Pareto optimality of an individual, with the 
same ranking assigned to all non-dominated 
individuals or with a ranking assigned to 
equal the number of individuals by which it 
is dominated [19]. 
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• Tournament selection [20]. The best of a 
randomly chosen subset of individuals is 
chosen for the next generation. 

• Pareto reservation strategy [21]. All non-
dominated individuals in a population are 
retained. If necessary to fill out the 
population of the next generation, remaining 
individuals are selected via a VEGA. 

• Pareto-optimal selection method. All non-
dominated individuals in a population are 
retained and all dominated individuals are 
discarded. 

• Non-dominated Sorting Genetic Algorithm 
(NSGA) [22]. 

 
Niche-induction techniques are used to spread the 
population of Pareto-optimal solutions over the 
entire Pareto front. 
     Crowding and fitness sharing have been used to 
maintain genetic diversity. GAs is well suited for 
generating a Pareto front because they work with a 
population of solutions. Simulated annealing, an 
optimization that offers many of the advantages of 
GAs but typically works with a single solution and 
single objective function, has also been used for 
multi-objective problems, by archiving non-
dominated solutions. On a GA comprise a set of 
individual elements (the population) and a set of 
biologically inspired operators defined over the 
population itself. According to evolutionary 

theories, only the most suited elements in a 
population are likely to survive and generate 
offspring, thus transmitting their biological 
heredity to new generations. 
 
4.7. Multi-Objective Optimization of MLPG 
Analysis   The vector [r,r0], is the vector of 
selective parameters of MLPG analysis. r is 
support domain radius and r0 is sub domain radius. 
     The amount of runtime and error of the 
analysis, are functions of this vector’s components. 
This means that by selecting various values for the 
selective parameters, we can make changes in the 
amounts of runtime and error of MLPG analysis. 
     In this paper we are concerned in choosing 
values for the selective parameters to minimize 
above two functions. Clearly this is an 
optimization problem with two object functions 
(runtime and error) and two decision variables 
(r,r0).To solve this problem, we can make use of 
single-objective optimization (SOO) or multi-
objective optimization (MO) algorithms. 
     When using SOO, we must exchange the 
multiple objective functions into one (using weight 
coefficients). Designer must decide about weight 
coefficients for all objective functions in 
proportion to optimality importance of each one of 
them. So the algorithm returns a single answer 
corresponding to weight coefficients. As compared 
with SOO, MO’s results are more complete and 
flexible. MO in a single run returns a Pareto set of 
answers which includes all SOO’s answers too. 
     A Pareto set is a set of predominant answers 
which are non-dominated to each other (don’t have 
Pareto dominance to each other). This means we 
can’t find two members of this set that one is better 
than the other respect to all of objective functions. 
A Pareto set of answers presents possible different 
states to which optimal answers can achieve with 
respect to their objective functions. It shows the 
condition of confrontation among objective 
functions and how they vary from answer to answer. 
     As a result, designers by considering the 
interaction among objective functions can haggle 
over optimality of them. So they can select an 
optimum and multipurpose answer consciously. In 
this paper we used MO to find the selective 
parameters. 
     The aim of optimization in this section is 
finding the selective parameters of MLPG analysis 

 
Figure 3. Dominated and non-dominated Pareto solutions for
a maximization problem. 
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in to minimize the error and runtime of analysis. 
     Constraint considered in the analysis is non 
singularity of total stiffness matrix. To do this 
Constraint, objective functions of design vectors 
which break the constraints are set as infinity, to be 
removed from the cycle in evolution process. 
 
 
 

5. RESULTS OF NUMERICAL EXAMPLES 
 
In this section the meshless local Petrov-Galerkin 
method is applied to compute two dimensional 
steady-state heat conduction problems. Results of 
four examples are compared with analytical 
solution. 
     We used 6 Gauss points for numerical evaluation 
of line integrals and a 4 × 4 quadrature scheme 
(i.e., 16 Gauss points) to evaluate domain integrals. 
     As the accuracy of the result and the time of the 
run are the effective by the choice of radiuses of 
the moving least squares approximation and the 
Heaviside step function, a parametric study is 
carried out on these parameters that are r and r0. 
The influence of the parameters on as the accuracy 
of the result and the time of the run for several 
problems is assessed. 
 
A. Example 1   We use these boundary conditions 
for Poisson’ equation as (see Figure 4) 
 
θ = 0            at        x = 0 
θ = 0            at        x = a 
θ = sin(x)     at        y = 0 
θ = 0            at        y = b (29) 
 
The analytical solutions for this problem are 
 

)sinh(
)xsin()ysinh(yx

π
−π
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)sinh(
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)sinh(
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−π
λ−=),(  (32) 

 
The node distribution with 49 nodes is presented in 
Figure 5 for the case of a = b = π. 
     The temperature distributions are presented in 
Figures 6 and 7. The heat flux distributions are 

presented in Figures 8 and 9. The values of r and r0 
applied in this example are the same as the values 
of r and r0 at point C which is shown in Figure 10. 
As shown in these figures, the MLPG results agree 
with the values obtained by analytical solution. 
The convergence of the MLPG approach is 
demonstrated in these figures. 
     Figure 10 is the chart resulted from multi-
objective optimization for the radius of support 
domain (r) and the radius of sub domain (r0) which 
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Figure 4. Geometry and boundary conditions used for 
example 1. 
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Figure 5. Regular node distribution for example 1. 
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all the presented points in they, are non-dominated 
to each other. Each point in this chart is a 
representative of a vector of selective parameters 
which when we choose it for MLPG analysis, the 
analysis tends to objective functions corresponding 
to that point of chart. 
     Values of r and r0 parameters for points A, B 
and C, as shown in Figure 10, are given in Table 1. 

In this table the r and r0 parameters are normalized 
and dimensionless. Results of error and runtime 
associated with each point are given as well. 
     Achieving several answers which all of them 
are considered optimum is a unique property of 
multi-objective optimization. 
 
B. Example 2   In this case boundary conditions 
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Figure 6. Comparison of temperature distribution along 
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Figure 7. Comparison of temperature distribution along 
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Figure 8. Comparison of heat flux distribution along 
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Figure 9. Comparison of heat flux distribution along 
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imposed are presented in Figure 11 as 
 
qx = 0                        at            x = 0 
qx = λsin(y)               at            x = π 
θ = 0                         at             y = 0 
θ = 0                         at             y = π (33) 
 
The exact solutions for this problem are 
 

)sinh(
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π
=),( θ  (34) 

)sinh(
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)sinh(
)ycos()xcosh(yxqy π

λ=),(  (36) 

 
The node distribution with 100 nodes is presented 
in Figure 12 for the case of a = b = π. 
     The temperature distribution is presented in 
Figure 13 and the heat flux distributions are 
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Figure 10. MO Pareto result for example 1. 
 
 
 

TABLE 1. Comparison Among Points A, B and C for Figure 10. 
 

Point r r0 Runtime (s) Error 

A 1.0605140  0.0246399 0.0780000 0.0090746 

B 1.3534751 0.0780264 0.0940000 0.0006979 

C 1.6730690  0.0862397 0.1400000 0.0003045 
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presented in Figure 14. The values of r and r0 
applied in this example are the same as the values 
of r and r0 at point C which is shown in Figure 15. 
As shown in these figures, the MLPG results agree 
with the values obtained by analytical solution. 
     The multi-objective optimization results are 
presented in Figure 15. As shown in this figure, 
when the error is decrease, the runtime is increase. 
     Values of r and r0 parameters for points A, B 

and C, as shown in Figure 15, are given in Table 2. 
In this table the r and r0 parameters are normalized 
and dimensionless. Results of error and runtime 
associated with each point are given as well. 
     Designer in facing to Pareto charts, between 
several different optimum points can choose a 
suitable multisided design point easily. 
 
C. Example 3   In this example the MLPG 

x

θ=0

θ=0

qx=0 qx=λsin(y)

y
(a,b)

ψ=0
λ=50

.

 
Figure 11. Geometry and boundary conditions used for
example 2. 
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Figure 12. Regular node distribution for example 2. 
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Figure 13. Comparison of temperature distribution along 
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approach is applied for heat conduction problem 
with boundary conditions imposed as (see Figure 16) 
 
qx = 0                    at            x = 0 
θ = y2                    at            x = a 
qy = 0                    at            y = 0 
θ = x2                    at            y = b (37) 
 
The analytical solutions for this problem are 
 
θ (x,y) = x2 + y2 - 1 (38) 

qx (x,y) = 2λx (39) 
 
qy (x,y) = 2λy (40) 
 
The node distribution with 100 nodes is presented 
in Figure 17 for the case of a = b = 1. 
     The temperature distribution is presented in 
Figure 18 and the heat flux distribution is 
presented in Figure 19. The values of r and r0 
applied in this example are the same as the values 
of r and r0 at point C which is shown in Figure 20. 
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Figure 15. MO Pareto result for example 2. 
 
 
 

TABLE 2. Comparison Among Points A, B and C for Figure 15. 
 

Point r r0 Runtime (s) Error  

A 0.6981317 0.0451732 0.1880000 0.5028957 

B 0.7421876 0.1026664 0.2180000 0.0207243 

C 3.5617650  0.0013688 2.7190000  0.0037709 
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As shown in this figure, the convergence of the 
MLPG approach is demonstrated. 
     Figure 20 is the chart resulted from multi-
objective optimization which all the presented 
points in that are non-dominated to each other. This 
figure shows the results for this example is alike 
with the results obtain from previous examples. 
     Values of r and r0 parameters for points A, B 
and C, as shown in Figure 20, are given in Table 3. 

In this table the r and r0 parameters are normalized 
and dimensionless. Results of error and runtime 
associated with each point are given as well. 
     Achieving several answers which all of them 
are considered optimum is a unique property of 
multi-objective optimization. Designer in facing to 
Pareto charts, between several different optimum 
points can choose a suitable multisided design 
point easily. 

x

θ=x2

qx=0

y
(a,b)

ψ=100
λ=25

.

qy=0

θ=y2

 
Figure 16. Geometry and boundary conditions used for
example 3. 
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Figure 17. Regular node distribution for example 3. 
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Figure 18. Comparison of temperature distribution along 
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D. Example 4   In this example the MLPG approach 
is applied for heat conduction problem with 
boundary conditions imposed as (see Figure 21) 
 
qx = 0                         at          x = 0 
qx = 0                         at          x = a 
θ = 0                          at          y = 0 
θf = 21 and h = 8        at         y = b (41) 
 
The exact solutions for this problem are 
 
θ (x,y) = y2 (42) 

qx (x,y) = 0 (43) 
 
qy (x,y) = 2λy (44) 
 
The node distribution with 100 nodes is presented 
in Figure 22 for the case of a = b = 1. 
     The temperature distribution is presented in 
Figure 23. The heat flux distributions are presented 
in Figures 24 and 25. The values of r and r0 applied 
in this example are the same as the values of r and 
r0 at point C which is shown in Figure 26. As 
shown in these figures, the results agree with the 
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Figure 20. MO Pareto result for example 3. 
 
 
 

TABLE 3. Comparison Among Points A, B and C for Figure 20. 
 

Point r r0 Runtime (s) Error 

A 0.5000000  0.0509803 1.0460000  0.0502548 

B 0.5250960  0.0058823 1.1400000  0.0489875 

C 0.5284871  0.1088235 1.2030000  0.0478040 
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exact solution. The convergence of this approach is 
demonstrated in these figures. 
     Each point in Figure 26 is representative of a vector 
of selective parameters which when we choose them 
for MLPG analysis, the analysis tends to objective 
functions corresponding to that point of chart. 
     Values of r and r0 parameters for points A, B 

and C, as shown in Figure 26, are given in Table 4. 
In this table the r and r0 parameters are normalized 
and dimensionless. Results of error and runtime 
associated with each point are given as well. 
     As shown in Table 4 when the support domain 
(r) increases and the sub domain (r0) decreases then 
the runtime increases and the error decreases. 

x

qx=0

y

(a,b)

ψ=160
λ=80

.

θ=0

qx=0

θf=21
h=8

 
Figure 21. Geometry and boundary conditions used for
example 4. 
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Figure 22. Regular node distribution for example 4. 
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Figure 23. Comparison of temperature distribution along 
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Figure 24. Comparison of heat flux distribution along 
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Figure 25. Comparison of heat flux distribution along 
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Figure 26. MO Pareto result for example 4. 
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6. CONCLUSION 
 
The meshless local Petrov-Galerkin (MLPG) 
method that uses a Heaviside test function is 
presented and used to analyze heat conduction 
problems. By using a Heaviside test function, the 
domain integral in the weak form is simplified. This 
substantially reduces the computation effort to 
construct the stiffness matrix and hence is 
computationally efficient compared to the 
conventional MLPG method. The penalty approach 
is used to impose the essential boundary conditions 
and the moving least squares approximation is used 
for interpolation schemes. A genetic algorithm is 
carried out to determine the optimal values for 

definition radiuses of the moving least squares 
approximation and the Heaviside step function. The 
present results show that the MLPG algorithm with 
a Heaviside test function is a high convergence, 
good accurate and efficient method. 
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