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Abstract   Double-diffusive convection in a micropolar fluid layer heated and soluted from below in 
the presence of uniform rotation saturating a porous medium is theoretically investigated. An exact 
solution is obtained for a flat fluid layer contained between two free boundaries. To study the onset of 
convection, a linear stability analysis theory and normal mode analysis method have been used. For 
the case of stationary convection, the effect of various parameters like medium permeability, solute 
gradient, rotation and micropolar parameters (i.e. coupling, spin diffusion, micropolar heat conduction 
and micropolar solute parameters arising due to coupling between spin and solute fluxes) have been 
analyzed. The critical thermal Rayleigh numbers for various values of critical wave numbers (found 
by Newton Raphson method) for the onset of instability are determined numerically and depicted, 
graphically. The oscillatory modes were introduced due to the presence of the micropolar viscous 
effects, microinertia, rotation and stable solute gradient, which were non-existence in their absence. 
The principle of exchange of stabilities is found to hold true for the micropolar fluid saturating a 
porous medium heated from below in the absence of micropolar viscous effect, microinertia, rotation 
and stable solute gradient. An attempt was also made to obtain sufficient conditions for the non-
existence of overstability. 
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ت قرار ين تحت حرارت و حلاليي که از پايکروقطبيال ميه سيک لاي پخش دوگانه در ييانتقال حرارت جابجاده   يچك    

 تخت هي لايبراحل دقيق . ه استدش مطالعه ي نظرطورکند، به  ي متخلخل را اشباع ميطي مح،گرفته و با چرخش ثابت
ت نرمال يل وضعي و روش تحلي خطيداريل پاي تحلياز تئور. ن دو مرز آزاد، به دست آمده استيبشده  محدودال يس

رات ييط متخلخل، تغيت نفوذ محي مثل قابلي مختلفير پارامترهايتاث. استفاده شده استبراي مطالعه شروع جابجايي 
به که  يکروقطبيت مي و حلاليکروقطبي ميت حرارتي، هداspinنگ، نفوذ يکوپل (يکرو قطبيت، چرخش و عوامل ميحلال
 يليعدد را. ل شده استيتحل ،حالت جابجايي ساکن بر) ابندي يش ميت و چرخش افزاين شار حلالينگ بيل کوپليدل

 مشخص شده.  به دست آمده و در نمودارها نشان داده شده انديداري شروع ناپاي براي و عدد موج بحراني بحرانيحرارت
ان ي، چرخش و گرادينرسيکرواي، ميکروقطبيسکوز ميل حضور اثرات ويبه دلحلاليت پايدار مودهاي نوساني است که 

ال ي سيها برا يدارياصل تبادل پا. ن عوامل وجود نداشتندين مودها در حالت عدم حضور ايند که ايآ يبه وجود م
، چرخش ينرسيکرواي، ميکروقطبيسکوز مياب اثرات وي غر دريش از زيط متخلخل با گرماي اشباع شده در محيکروقطبيم

 .به وجود آيدنيز  يداريجاد فوق پاي عدم ايط مناسب برايشراتلاش شد . دار همچنان صادق استيت پايان حلاليو گراد
 
 

1. INTRODUCTION 
 
A general theory of micropolar fluids has been 

presented by Eringen [1,2]. According to Eringen 
[1], a subclass of microfluids Eringen [3] which 
exhibit the micro-rotational effects and micro-
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rotational inertia is the micropolar fluid. Certain 
anisotropic fluids, e.g., liquid crystals which are 
made up of dumb bell molecules are of this type. In 
fact, animal blood happens to fall into this category. 
Other polymeric fluids and fluids containing certain 
additives may be represented by the mathematical 
model underlying micropolar fluids. Compared to 
the classical Newtonian fluids, micropolar fluids are 
characterised by two supplementary variables, i.e., 
the spin, responsible for the micro-rotations and the 
micro-inertia tensor describing the distributions of 
atoms and molecules inside the fluid elements in 
addition to the velocity vector. Liquid crystals, 
colloidal fluids, polymeric suspension, animal 
blood, etc. are few examples of micropolar fluids 
Labon, et al [4]. Kazakia, et al [5] and Eringen [6] 
extended this theory of structure continue to account 
for the thermal effects.  
     Micropolar fluids abound in engineering science 
and some common examples are human blood, 
plasma, sediments in rivers, drug suspension in 
pharmacology, liquid crystals, etc. The past four 
decades have seen an incredible interest emerge in 
applications of these fluid theories to numerous 
problems in engineering sciences ranging from 
biofluid mechanics of blood vessels to sediment 
transport in rivers and lubrication technology. It 
has wide applications in the developments of 
micropolar biomechanical flows and as such is 
both an engineering science one. The more 
applications of micropolar fluid may include 
lubrication theory, boundary layer theory, short 
waves for heat conducting fluids, hydrodynamics 
of multicomponent media, magnetohydrodynamics 
and electrohydrodynamics, biological fluid 
modelling, etc. Hydrodynamics of micropolar 
fluids has significant applications to a variety 
of different fields of physics and engineering 
(magnetohydrodynamics, tribology, etc.). We are 
highlighted some key areas of applications in 
Figures 1 and 2. 
     Rosenberg [7] has developed the variational 
formulation of the boundary value problems of the 
micropolar continuum and hence applied to the 
modelling of the bone. Micropolar fluid theory has 
been applied successfully by many authors, 
Shukla, et al [8], Sinha, et al [9,10] and Sinha, et al 
[11,12] ,to study various problems in lubrication. 
     Prakash et al [13] applied micropolar fluid 
theory to study theoretically the effects of solid 

particles in the lubrication of journal and rolling 
contact bearings considering cavitation. Excellent 
work in micropolar simulations of human joint 
lubrication has been reported by Sinha, et al 
[11]. He also presented a micropolar hip joint 
lubrication model. Chandra, et al [14] presented an 
analysis for blood flow through a narrow artery 
with mild stenosis by considering Eringen’s simple 
micro fluid model for blood. Power [15] was led to 
use the theory of micropolar fluid for modelling 
the CSF (Cerebral Spinal Fluid) for low Reynolds 
number approximation solving linear Fredholm 
integral equations. A large number of references 
about modelling and applications aspect of 
micropolar fluids has been given in the book [16]. 
In the review paper [17], the most comprehensive 
discussion of applications of fluids with 
microstructure, micropolar fluids in particular are 
tabularized. Recently some work has been done on 
viscoelastic micropolar fluid by Eremeyev, et al 
[18-20]. The literature concerning applications of 
micropolar fluids in engineering sciences is vast 
and still quickly growing. 
     The theory of thermomicropolar convection began 
with Datta, et al [21] and interestingly continued by 
Ahmadi [22]. Labon, et al [4], Bhattacharya, et al 
[23], Payne, et al [24], Sharma, et al [25,26] and 
Rama Rao [27]. The above works give a good 
understanding of thermal convection in micropolar 
fluids. The Rayleigh-Benard instability in a 
horizontal thin layer of fluid heated from below is 
an important particular stability problem. A 
detailed account of Rayleigh-Benard instability in a 
horizontal thin layer of Newtonian fluid heated from 
below under varying assumptions of hydrodynamics 
and hydromagnetics has been given by Chandrasekhar 
[28]. Perez-Garcia, et al [29] have extended the 
effects of the microstructures in the Rayleigh-
Benard instability and have found that in the absence 
of coupling between thermal and micropolar effects, 
the Principle of Exchange of Stabilities (PES) 
holds good. Perez-Garcia, et al [30] have shown 
that when coupling between thermal and 
micropolar effect is present, the Principle of 
Exchange of Stabilities (PES) may not be fulfilled 
and hence oscillatory motions are present in 
micropolar fluids. The effect of rotation on thermal 
convection in micropolar fluids is important in 
certain chemical engineering and biochemical 
situations. Qin, et al [31] has considered a thermal 
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Figure 1. Micropolar fluid applied in engineering. 
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Figure 2. Micropolar hydrodynamics applied in bioengineering. 
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instability problem in a rotating micropolar fluid. 
They found that the rotation has a stabilizing 
effect. The effect of rotation on thermal convection 
in micropolar fluids has also been studied by 
Sharma, et al [32], whereas the numerical solution 
of thermal instability of a rotating micropolar fluid 
has been discussed by Sastry, et al [33] without 
taking into account the rotation effect in angular 
momentum equation. But we also remark that 
Bhattacharya, et al [34] and Qin, et al [31] have 
considered the effect of rotation in angular 
momentum equation. The medium has been 
considered to be non-porous in all the above 
studies. In recent years, there has been a lot of 
interest in study of the breakdown of the stability 
of a fluid layer subjected to a vertical temperature 
gradient in a porous medium and the possibility of 
convective flow. A porous medium is a solid with 
holes in it, and is characterized by the manner in 
which the holes are imbedded, how they are 
interconnected, and the description of their 
location, shape and interconnection. The flow in 
the porous medium is governed either by Darcy 
equation or by modified Darcy equation depending 
on the structure and the depth of the porous 
medium. A macroscopic equation describing 
incompressible flow of a fluid of viscosity, μ, 
through a macroscopically homogeneous and 
isotropic porous medium of permeability, k1, is the 
well-known Darcy’s equation, in which the usual 
viscous term in the equation of fluid motion is 
replaced by the resistance term -(μ/k1)q, where q is 
the Darcian (filter) velocity of the fluid. However, 
to be mathematically compatible and physically 
consistent with Navier-Stokes equations, Brinkman 
[35] heuristically proposed the introduction of 

theterm q2∇
ε
μ  (now known as the Brinkman 

term) in addition to the Darcian term -(μ/k1)q. But 
the main effect is through the Darcian term; the 
Brinkman term contributes a very little effect for 
flow through a porous medium. Therefore the 
generalized Darcy’s law is proposed heuristically 
to govern the flow of this micropolar fluid through 
a porous medium. 
     The study of flow of fluids through porous 
media is of considerable interest due to its natural 
occurrence and importance in many problems of 
engineering and technology such as porous 
bearings, porous layer insulation consisting of 

solid and pores, porous rollers, etc. In addition, 
these flows are applicable to bio-mathematics 
particularly in the study of blood flow in lungs, 
arteries, cartilage and so on. The study of a layer of 
a fluid heated from below in porous media is 
motivated both theoretically as also by its practical 
applications in engineering. Among the applications 
in engineering disciplines, one find the food process 
industry, chemical process industry, solidification 
and centrifugal casting of metals. The stability of 
flow of a fluid through a porous medium taking 
into account the Darcy resistance was considered 
by Lapwood [36] and Wooding [37]. Recent studies 
of stellar atmosphere have shown the existence and 
importance of porosity in astrophysical context 
McDonnel [38]. 
     The porous medium of very low permeability 
allows us to use the generalized Darcy’s model 
[39] including the inertial forces. This is because 
for a medium of very large stable particle 
suspension, the permeability tends to be very small 
justifying the use of the generalized Darcy’s model 
including the inertial forces. This is also because 
the viscous drag force is negligibly small in 
comparison with the Darcy’s resistance due to the 
presence of large particle suspension. The 
thermoconvective instability in a micropolar fluid 
saturating a porous medium has been studied by 
Sharma, et al [40] and the effect of rotation on 
thermal convection in micropolar fluids in porous 
medium has been considered by Sharma, et al [41]. 
More recently, Reena, et al [42,43] have studied 
some of the thermal convection problems in 
micropolar rotating fluid saturating a porous 
medium. Sunil, et al [44] have studied the effect of 
rotation on a layer of micropolar ferromagnetic 
fluid heated from below saturating a porous 
medium. All of them found that the rotation has a 
stabilizing effect. A comprehensive review of the 
literature concerning convection in porous medium 
is available in the book of Nield, et al [45]. 
     In the standard Benard problem, the instability is 
driven by a density difference due to variations in 
temperature between the upper and lower planes 
bounding the fluid. But if the fluid layer additionally 
has salt dissolved in it, then the buoyancy forces can 
arise not only from density differences due to 
variations in temperature but also from those due to 
variations in solute concentration, i.e., there are 
potentially two destabilizing sources for the density 
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differences, the temperature field and the salt field. 
The phenomenon of convection arises due to the 
two effects such as this, is called double-diffusive 
convection. Thus the heat and solute are two 
diffusing components in thermosolutal convection 
phenomena. Brakke [46] explained a double 
diffusive instability that occurs when a solution of 
a slowly diffusing protein is layered over a 
denser solution of more rapidly diffusing sucrose. 
Themosolutal convection problems arise in 
oceanography, limnology and engineering. Examples 
of particular interest are provided by ponds built to 
trap solar heat Tabor, et al [47] and some Antarctic 
lakes Shirtcliffe [48]. Particularly, the case involving 
a temperature field and sodium chloride referred 
to thermohaline convection. Veronis [49] has 
investigated the problem of thermohaline 
convection in a layer of fluid heated from below 
and subjected to a stable salinity gradient. For 
three or greater field case, it is referred to as multi-
component convection. There are many recent 
studies involving three or more fields, such as 
temperature and two salts such as NaCl, KCl. 
     Thus the study of thermosolutal convection in 
porous medium in a fluid is of great importance. 
The driving force for many studies in double-
diffusive or multi-component convection has 
largely physical applications. O’Sullivan, et al [50] 
have reviewed and studied numerical techniques 
and their applications in geothermal reservoir 
simulation. The Salton sea geothermal system in 
southern California is specifically interesting as it 
involves convection of hypersaline fluids. For 
example, Oldenburg, et al [51] have developed a 
model for convection in a Darcy’s porous medium, 
to model the Salton geothermal system, where the 
mechanism involves temperature, NaCl, CaCl2 and 
KCl. Other applications include the oceans, the 
Earth’s magma. Drainage in a mangrove system is 
yet another area enclosing double-diffusive flows. 
Solar ponds are a specifically promising means of 
harnessing energy from the sun by preventing 
convective overturning in a thermohaline system 
by salting from below. 
     The really interesting situation arises from both 
a geophysical and a mathematical point of view 
when the layer is simultaneously heated from 
below and salted from below. Double-diffusive 
convection in fluids in porous media is also of 
interest in geophysical systems, electrochemistry, 

metallurgy, chemical technology, geophysics and 
biomechanics, soil sciences, astrophysics, ground 
water hydrology. Sharma, et al [52] have studied 
the thermosolutal convection of micropolar fluids 
in hydromagnetics in porous medium. They found 
that Rayleigh number increases with magnetic field 
and solute parameter. The thermosolutal convection 
in a ferromagnetic fluid in porous and non-porous 
medium has been considered by Sunil, et al [53,54] 
and the double-diffusive convection in a micropolar 
ferromagnetic fluid has been studied by Sunil, et al 
[55,56]. They found the stabilizing effect of stable 
solute gradient. 
     In view of the above investigations and keeping 
in mind the usefulness of micropolar fluids in 
porous medium in various applications, the present 
problem deals with the thermosolutal convection of 
micropolar fluid saturating a porous medium in the 
presence of rotation. It is attempted to discuss the 
effect of rotation, solute gradient and how micropolar 
parameters affects the stability in micropolar fluid 
heated and soluted from below saturating a porous 
medium of very low permeability using generalized 
Darcy’s model including the inertial forces. In the 
present analysis, for mathematical simplicity, we 
have not considered the effect of rotation in angular 
momentum equation. This simplification simplifies 
the analysis without changing the final conclusion. 
This, in the present literature appears to be 
unobserved phenomena. The present study can 
serve as a theoretical support for an experimental 
investigation. 
 
 
 

2. MATHEMATICAL FORMULATION OF 
THE PROBLEM 

 
The stability of an infinite, horizontal layer of 
thickness d of an incompressible thin micropolar 
fluid heated and soluted from below saturating an 
isotropic and homogeneous porous medium of 
porosity ε and permeability k1 acted on by a 
uniform vertical rotation Ω(0,0,Ω) and gravity 
field g = (0,0,-g) is considered. The temperature T 
and solute concentration C at the bottom and top 
surfaces z = 0 and z = d are T0, T1 and C0, C1, 
respectively, and a steady adverse temperature 

gradient ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=β

dz
dT  and a stable solute concentration 
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gradient ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=β′

dz
dC  are maintained (see Figure 3). 

The critical temperature gradient depends upon the 
bulk properties and boundary conditions of the 
fluid. The temperature gradient thus maintained is 
qualified as adverse since the fluid at the bottom 
will be lighter than the fluid at the top because of 
the thermal expansion; and this is a top-heavy 
arrangement, which is potentially unstable. On the 
other hand, the heavier salt at the lower part of the 
layer has exactly the opposite effect and this acts to 
prevent motion through convection overturning. 
Thus these two physical effects are competing 
against each other. Here, both the boundaries are 
taken to be free and perfect conductors of heat. 
Here, the porosity is defined as the fraction of the 
total volume of the medium that is occupied by 
void space. Thus 1-ε is the fraction that is occupied 
by solid. For an isotropic medium, the surface 
porosity (i.e., the fraction of void area to total area 
of a typical cross section) will normally be equal to 
ε. Here, we adopt the Boussinesq approximation 
[28] which implies that the density can be treated 
as constant everywhere except when multiplied by 
gravity. When the fluid flows through a porous 
medium, the gross effect is represented by Darcy’s 
law. 
     The mathematical equations governing the 
motion of a micropolar fluid saturating a porous 
medium following Boussinesq’s approximation for 

the above model [15,28,41,52] are as follows: 
     The continuity equation for an incompressible 
fluid is 
 

0. =∇ q  (1) 
 
The momentum and internal angular momentum 
equations for the generalized Darcy model including 
the inertial forces are 
 

,
ε

ρ
k
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k
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∂
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Where jγβεpkμρρ ,,,,,,,,,0, ′′′′νq  and t are the 
fluid density, reference density, filter velocity, spin 
(microrotation), shear kinematic viscosity coefficient 
(constant), coupling viscosity coefficient or vortex 
viscosity, pressure, bulk spin viscosity coefficient, 
shear spin viscosity coefficient, micropolar 
coefficients of viscosity, microinertia constant and 
time, respectively. The effect of rotation contributes 
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Figure 3. Geometrical configuration. 
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two terms: (a) centrifugal force 2
0 2 rΩ×− grad/ρ  

and (b) Coriolis force )(2 0 Ωq×
ε
ρ . In Equation 2, 

2
02

1 rΩ×−= ρpp f  is the reduced pressure, 

whereas Pf stands for fluid pressure and r = (x,y,z). 
When the fluid flows through a porous 
medium, the gross effect is represented by 
Darcy’s law. As a result, the usual viscous terms is 

replaced by the resistance term q⎥
⎦

⎤
⎢
⎣

⎡ +
−

1k
kμ . When 

the permeability of porous material is low, then the 
inertial force becomes relatively insignificant as 
compared with the viscous drag when flow is 
considered. Internal energy balance equations and 
analogous solute equations are 
 

TTTK

TvC
t
T

sCsvC

∇×∇+∇
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∂
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q
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ρερερ
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ν

q
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ρερερ
 (5) 

 
and the density equation of state is given by 
 

⎥⎦
⎤

⎢⎣
⎡ −′+−−= )0()0(10 CCTT ααρρ , (6) 

 
Where 0,,,,,,,,,,, TCTKKCC sTTsv ααρδδ ′′  and C0 
are the specific heat at constant volume, heat 
capacity of solid (porous material matrix), thermal 
conductivity, solute conductivity, coefficients giving 
account of coupling between the spin flux with heat 
flux and spin flux with solute flux, density of solid 
matrix, thermal expansion coefficient, an analogous 
solvent coefficient of expansion, temperature, solute 
concentration, reference temperature and reference 
solute concentration at the lower boundary, 
respectively. 
 
 
 

3. BASIC STATE AND PERTURBATION 
EQUATIONS 

 
Now we are interested in studying the stability of 

the rest state by giving small perturbations on the 
rest (initial) state and examine the reactions of the 
perturbations on the system. The initial state is 
characterised by 
 
q = (0, 0, 0), ν = (0, 0, 0), p = p(z), T = T(z) 
 

Defined as 0TzT +−= β , where 
dZ
dT

−=β  is the 

uniform adverse temperature gradient, C = C(z) 

defined as 0CzC +′−= β , where 
zd

dC
−=′β  is the 

solute concentration gradient and   
 

[ ]zz βααβρρ ′′−+= 10 . 

 
Now, we shall analyze the stability of the basic 
(initial) state by introducing the perturbations, 

θρ ,,,),,,( pwvu ′′′ ωu  and γ in velocity q, spin ν, 
density ρ , pressure p, temperature T and solute 
concentration C, respectively. The change in 
density ρ′  caused mainly by the perturbation θ  
and γ in temperature and solute concentration, is 
given by 
 

)(0 γααθρρ ′−−=′  (7) 
 
Then the linearized perturbation equations of the 
micropolar fluid become 
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and 
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Where, the non-linear terms 
 

)(,)(.,).(,).(,).( ωωuuuu ×∇∇×∇∇∇′∇′′∇′ γθγθ  
 
and ωu ).( ∇′  in Equations 9-14 are neglected (using 
the first order approximations) as the perturbations 
applied on the system are assumed to be small, the 
second and higher order perturbations are negligibly 
small and only linear terms are retained. Also we 
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     Now, it is usual to write the balance equations 
in a dimensionless form, scaling as 
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and then removing the stars (*) for convenience, 
the non-dimensional form of Equations 8-14 become 
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Where, the new dimensionless coefficients are 
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and ˆze  is a unit vector along z-axis. (20) 
 
and the dimensionless Rayleigh number R, analogous 
solute number S, Prandtl number p1 and the 
analogous Schmidt number q1 are 
 

Tx
q

Tx
p

Tx

dg
S

Tx

dg
R

0
1,

0
1

,
4

0,
4

0

ρ
μ

ρ
μ

μ

ρβα

μ

αβρ

==

′′
==

 (21) 

 
Where, 
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are thermal diffusivity and solute diffusivity. Here 
we consider both the boundaries to be free and 
perfectly heat conducting. The case of two free 
boundaries is a little artificial but it enables us to 
find analytical solutions and to make some 
qualitative conclusions. The dimensionless boundary 
conditions are 
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4. MATHEMATICAL ANALYSIS AND 
DISPERSION RELATION 

 
Applying the curl operator twice to Equation 16 
and taking the z-component, we get 
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of vorticity. 
     Again applying curl operator once to Equations 
16 and 17 and taking z-component, we get 
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The linearized form of Equations 18 and 19 are 
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Now, the boundary conditions are 
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3 =Ω  at z = 0 and 1 are the boundary conditions 

for the spin. 
     In the Equation 25 for spin, the coefficient 0C′  
and K account for spin diffusion and coupling 
between vorticity and spin effects respectively. 
     Analyzing the disturbances into the normal 
modes, we assume that the solutions of Equations 
23-27 are given by 
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Where kx, ky are the wave numbers along with x 
and y directions respectively, 2/1)22( ykxka +=  is 

the resultant wave number and σ is the stability 
parameter which is, in general a complex constant. 
     Following the normal mode analysis, the 
linearized perturbation dimensionless equations 
become 
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Where, δδ ′,,, Kj  and 0C′  are the non-dimensional 

micropolar parameters and 
dz
dD ≡ . 

     The case of two free boundaries is of little 
physical interest, but it is mathematically important 
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because one can derive an exact solution, whose 
properties guide our analysis. Thus the exact 
solution of the system (30)-(34) subject to the 
boundary conditions 
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 (35) 
 

is written in the form 
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Where, A1, B1, C1 and D1 are constants and σ  is 
the growth rate which is, in general, a complex 
constant. 
     Substituting Equations 36 in Equations 30-34, 
we get following equations 
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For existence of non-trivial solutions of the above 
equations, the determinant of the coefficients of 
A1, B1, C1 and D1 in Equations 37-40 must vanish. 
This determinant on simplification yields 
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Where, 
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In the absence of solute parameter (S=0 i.e., )0'=δ , 
Equation 41 reduces to 
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A result derived by Sharma, et al [41]. 
     If the fluid is non-rotating (Ω=0), the Equation 
42 reduces to 
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A result derived by Sharma, et al [40]. 
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     Equation 41 is the required dispersion relation 
studying the effect of medium permeability, 
rotation and solute parameter of the system. 
     For simplification of further calculations, 
Equation 41 may also be written in the form: 
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6. THE CASE OF STATIONARY 
CONVECTION 

 
Let the marginal state be stationary, so that it is 
characterized by putting 0=iσ  [28]. Hence, for 
the stationary convection, putting 0=iσ  in 
Equation 44, Rayleigh number is given by 
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This leads to the marginal stability curve in 
stationary conditions. Equation 46 expresses the 
Rayleigh number R1 as a function of dimensionless 
wave number, medium permeability parameter Pl 
(Darcy number), solute gradient parameter S1, 
rotation parameter 'Ω , coupling parameter K 
(coupling between vorticity and spin effects), spin 
diffusion (couple stress) parameter N3, micropolar 
heat conduction parameter N5 (arises due to 
coupling between spin and heat fluxes) and 
micropolar solute parameter N6 (arises due to 
coupling between spin and solute fluxes). The 
parameters K and N3 measure the micropolar 
viscous effects and micropolar diffusion effects, 
respectively. The classical results in respect of 
Newtonian fluids can be obtained as the limiting 
case of present study. 
     Setting K = 0 and S1 = 0 and keeping N3 
arbitrary in Equation 46, we obtained 
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This is the expression for the Rayleigh number of 
rotating micropolar fluid in porous medium. 
     Setting ' 0Ω =  in Equation 47 yields 
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This is the classical Rayleigh-Benard result for the 
Newtonian fluid case in porous medium. 
     To investigate the effect of medium 
permeability, rotation, stable solute gradient, 
coupling parameter, spin diffusion parameter 
micropolar heat conduction parameter and 
micropolar solute parameter, we examine the 
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     From Equation 46, 
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Which is always negative if 
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This gives that the medium permeability has a 
destabilizing effect when condition (50) hold. In 
the absence of micropolar viscous effect (coupling 
parameter) and rotation, (49) yields the destabilizing 
effect of medium permeability on the system. 
Medium permeability may have a dual role in the 
presence of rotation. The medium permeability has 
a stabilizing effect if  
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Thus, for higher values of rotation parameter 'Ω , 
the stabilizing effect of medium permeability has 
been predicted. Thus, there is a competition between 
the destabilizing role of medium permeability and 
stabilizing role of micro polar viscous effect and 
rotation, but there is complete destabilization in the 
above inequalities given by (50). 
     Thus the destabilizing behaviour of medium 
permeability is significantly affected by micropolar 
parameters, i.e., K, N3, N5 and rotation parameter 

'Ω  but virtually unaffected by analogous solute 
gradient parameter S1. 
     Equation 46 also yields 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++

−+
=

Ω

ε

ε

KN
NbKKx

KbNlbP

d
dR

5
32)1(

2)23('4

"
1 , 

 
Where 
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This implies that rotation has stabilizing effect 
when condition (52) holds. In the absence of 
micropolar viscous effect (coupling parameter, K), 
the rotation always has a stabilizing effect on the 
system. 
     It can easily be found from Equation 46 that 
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Which is always positive if 
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This shows the stabilizing effect of stable solute 
gradient when condition (54) holds. In the absence 
of micro polar viscous effect, (53) yields the 
stabilizing effect of stable solute gradient. 
     Equation 46 also gives 
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Which is always positive if  
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and 
 

)6,2(max5 NN ε>  (56) 
 
This indicates that coupling parameter has a 
stabilizing effect when condition 56 hold. Equation 
55 also yields that )(/)( 1 dKdR  is always positive in 
the absence of rotation, micropolar solute parameter 
(coupling between spin and solute fluxes) and in a 
non-porous medium, thus indicating the stabilizing 
effect of coupling parameter. 
     Thus the medium permeability and porosity 
have a significant role in developing the 
condition for the stabilizing behaviour of 
coupling parameter. 
     It follows from Equation 46 that 
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Which is always negative if 
 

'
5 lPN >  

 
and 
 

65 NN >  
 
This implies that 
 

)6,'(max5 NlPN >  (58) 
 
This shows that spin diffusion has a destabilizing 
effect when condition (58) holds. 
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     Equation 46 also gives 
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Which is always positive if 
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This gives that the micropolar heat conduction has 
a stabilizing effect when condition (60) holds. 

Equation 59 also yields that 
5

1

dN
dR  is always 

positive in a non-porous medium, implying thereby 
the stabilizing effect of micropolar heat conduction 
parameter. 
     We can also find from Equation 36 that 
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Which is always negative if  
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Implying thereby the destabilizing effect of 
micropolar solute parameter under condition (61). 
     Now the critical thermal Rayleigh number for 
the onset of instability is determined numerically 
using Newton-Raphson method by the condition 

01 =
dx

dR
. As a function of x, R1 given by Equation 46 

attains its minimum when 
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With xc determined as a solution of Equation 62, 
Equation 46 will give the required critical thermal 
Rayleigh number (Rc) for various values of critical 
wave numbers xc. The critical thermal Rayleigh 
number (Rc), depends on medium permeability '

lP , 
stable solute gradient S1, rotation parameter 'Ω  and 
micropolar parameters K, N3, N5 and N6. The 
numerical values of critical thermal Rayleigh 
numbers (Rc) and critical wave numbers (xc) 
determined for various values of ',, 1

' ΩSPl  and 
micropolar parameters K, N3, N5 and N6 are given 
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in Tables 1-7 and values of Rc are illustrated in 
Figures 4-10. Here, in Figures 4-6, we have plotted 
the graphs for the critical thermal Rayleigh number 
Rc versus Pl

' [For various values of rotation 
parameter 'Ω ], rotation parameter 'Ω  [for various 
values of Pl

'] and stable solute parameter S1 [for 
various values of Pl

'], respectively, in the presence 
and absence of coupling parameter K. Figures 7-10 
exhibit the plots of critical thermal Rayleigh 
number Rc versus micropolar parameters K, N3, N5 
and N6 for several values of Pl

', respectively. 
     From Figure 4 and Table 1, one may find that as 
Pl

' increases, Rc decreases for lower values of 
rotation parameter 'Ω , whereas, for sufficiently 

higher values of rotation parameter 'Ω , Rc first 
decreases for lower values of Pl

' and then increases 
for higher values of Pl

' and hence showing the 
destabilizing effect of the medium permeability for 
lower values of rotation parameter, whereas 
destabilizing or a stabilizing effect for sufficiently 
higher values of the rotation parameter. This 
behaviour can also be observed in Figure 5. 
          Figures 5 and 6 indicates the stabilizing 
behaviour of rotation parameter and stable solute 
parameter S1, as the critical thermal Rayleigh 
number increases with the increase in rotation 
parameter and stable solute gradient parameter, 
respectively, which can also be observed from 

 
 
 

TABLE 1. Critical Thermal Rayleigh Numbers and Wave Numbers of the Unstable Modes at Marginal Instability  
for the Onset of Stationary Convection for Various Values of Medium Permeability Parameter ( '

lP ). 
 

0.2=K  0=K  

' 0Ω =  ' 10Ω =  ' 100Ω =  ' 0Ω =  ' 10Ω =  ' 100Ω =  
'

lP  

cx  cR  cx  cR  cx  cR  cx  cR  cx  cR  cx  cR  

0.001 0.9900621 5827.708 0.990612 5830.656 1.043613 6118.636 1 4500 1.0008 4503.198 1.077033 4814.066 

0.002 0.9891670 3187.761 0.9913644 3193.657 1.188983 3750.657 1 2500 1.003195 2506.394 1.280625 3100.624 

0.003 0.9882728 2307.778 0.9932098 2316.62 1.398307 3117.169 1 1833.333 1.007174 1842.916 1.56205 2688.033 

0.004 0.9873794 1867.787 0.996139 1879.568 1.647342 2901.118 1 1500 1.012719 1512.76 1.886797 2583.398 

0.005 0.9864871 1603.791 1.000139 1618.507 1.920707 2843.802 1 1300 1.019804 1315.922 2.236068 2594.427 

0.006 0.9855956 1427.794 1.005195 1445.434 2.209405 2861.828 1 1166.667 1.028397 1185.732 2.6 2660 

0.007 0.9847051 1302.081 1.011288 1322.635 2.508163 2920.885 1 1071.429 1.038461 1093.617 2.973214 2755.204 

 
 
 

TABLE 2. Critical Thermal Rayleigh Numbers and Wave Numbers of the Unstable Modes at Marginal Instability  
for the Onset of Stationary Convection for Various Values of Rotation Parameter ( 'Ω ). 

 

0.2=K  0=K  
' 0.003lP =  ' 0.005lP =  ' 0.007lP =  ' 0.003lP =  ' 0.005lP =  ' 0.007lP =  'Ω  

cx  cR  cx  cR  cx  cR  cx  cR  cx  cR  cx  cR  

0 0.9882728 2307.779 0.9864871 1603.791 0.9847051 1302.081 1 1833.333 1 1300 1 1071.429 

10 0.9932098 2316.62 1.000139 1618.507 1.011288 1322.635 1.007174 1842.916 1.019804 1315.922 1.038461 1093.617 

30 1.031858 2386.588 1.103319 1732.981 1.203112 1479.023 1.062826 1918.418 1.16619 1438.476 1.305986 1259.653 

50 1.105114 2522.916 1.285145 1948.741 1.51593 1764.521 1.16619 2064.127 1.414214 1665.685 1.720465 1557.276 

70 1.2067 2720.004 1.517689 2250.795 1.890802 2156.527 1.305986 2272.524 1.720465 1980.186 2.200364 1963.19 

90 1.33015 2972.082 1.781232 2628.592 2.297597 2643.558 1.47187 2536.713 2.059126 2371.651 2.711163 2467.532 

100 1.398307 3117.169 1.920707 2843.802 2.508163 2920.885 1.56205 2688.034 2.236068 2594.427 2.973214 2755.204 

150 1.78294 4014.848 2.662125 4165.405 3.598634 4632.786 2.059126 3619.417 3.162278 3964.911 4.317407 4539.259 
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Tables 2 and 3. This shows that the stable solute 
parameter and rotation postpones the onset of 
convection. This leads to laterally onset of 
convection instability. Also, it is obvious from 
Figures 4 and 6 that only for small values of K, the 
onset of convection is delayed. This shows that 
higher values of Rc are needed for the onset of 
convection in the presence of K, hence justifying 
the stabilizing effect of the coupling parameter, 
which can also be observed from Figure 7 and 
Table 4. 
     Figures 7-10 represent the graphs of critical 
thermal Rayleigh number Rc versus micropolar 
parameters K, N3, N5 and N6, respectively for 
various values of Pl

'. Figures 7 and 9 clearly show 

that critical thermal Rayleigh number Rc increases 
with increasing K and N5, respectively, which can 
also be observed from Tables 4 and 6. This leads to 
laterally onset of convection instability, implying 
thereby that the coupling parameter K and the 
micropolar heat conduction parameter N5 has a 
stabilizing effect in the presence of salinity, 
whereas Figures 8 and 10 indicates that the Rc 
decreases with increasing N3 and N6 respectively. 
     This leads to an early onset of convection 
implying thereby the destabiizing behaviour of 
micropolar spin diffusion (couple stress) parameter 
N3 and micropolar solute parameter N6 on the 
system. It can also observe from Tables 5 and 7, 
respectively. 

TABLE 3. Critical Thermal Rayleigh Numbers And Wave Numbers of the Unstable Modes at Marginal Instability  
for the Onset of Stationary Convection for Various Values of Stable Solute Gradient Parameter ( 1S ). 

 

0.2=K  0=K  
' 0.001=lP  ' 0.002=lP  ' 0.003=lP  ' 0.001=lP  ' 0.002=lP  ' 0.003=lP  1S  

cx  cR  cx  cR  cx  cR  cx  cR  cx  cR  cx  cR  

0 0.9915109 5282.677 0.9931615 2645.675 0.9959048 1768.633 1.0008 4003.199 1.003195 2006.394 1.007174 1342.916 

5 0.990612 5830.656 0.9913644 3193.657 0.9932098 2316.62 1.0008 4503.198 1.003195 2506.394 1.007174 1842.916 

10 0.9897141 6378.632 0.9895712 3741.634 0.9905236 2864.6 1.0008 5003.199 1.003195 3006.394 1.007174 2342.916 

15 0.9888172 6926.605 0.987782 4289.607 0.9878462 3412.574 1.0008 5503.199 1.003195 3506.395 1.007174 2842.916 

20 0.9879214 7474.578 0.9859968 4837.575 0.9851778 3960.541 1.0008 6003.198 1.003195 4006.394 1.007174 3342.917 

25 0.9870265 8022.547 0.9842154 5385.54 0.9825181 4508.503 1.0008 6503.198 1.003195 4506.395 1.007174 3842.916 

30 0.9861325 8570.514 0.9824381 5933.499 0.9798673 5056.457 1.0008 7003.199 1.003195 5006.294 1.007174 4342.916 

 
 
 

TABLE 4. Critical Thermal Rayleigh Numbers and Wave Numbers of the Unstable Modes at Marginal Instability  
for the Onset of Stationary Convection for Various Values of Coupling Parameter ( K ). 

 
' 0.001=lP  ' 0.002=lP  ' 0.003=lP  

K  
cx  cR  cx  cR  cx  cR  

0.2 0.990612 5830.656 0.9913644 3193.657 0.9932098 2316.62 

0.3 0.9793898 6553.819 0.9790286 3566.964 0.9795904 2573.252 

0.4 0.9651006 7315.967 0.9635771 3959.679 0.9628419 2842.776 

0.5 0.9484264 8116.342 0.9457657 4371.376 0.9437879 3124.877 

0.6 0.9299848 8953.981 0.9262649 4801.522 0.9231465 3419.148 

0.7 0.9103344 9827.724 0.9056688 5249.49 0.9015423 3725.15 

0.8 0.8899646 10736.26 0.884854 5714.579 0.8794998 4042.379 
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7. PRINCIPLE OF EXCHANGE OF 
STABILITIES 

 
Here, we investigate the possibility of oscillatory 
modes, if any, on stability problem due to the 
presence of medium permeability, rotation, 

micropolar parameters and solute gradient. 
Equating the imaginary parts of Equation 44, we 
obtain 
 

01
2

3
4

5 =⎥⎦
⎤

⎢⎣
⎡ +− PiPiPi σσσ  

TABLE 5. Critical Thermal Rayleigh Numbers and Wave Numbers of the Unstable Modes at Marginal Instability  
for the Onset of Stationary Convection for Various Values of Spin Diffusion Parameter ( 3N ). 

 

' 0.001=lP  ' 0.003lP =  ' 0.005lP =  
3N  

cx  cR  cx  cR  cx  cR  

2 0.990612 5830.656 0.9932098 2316.62 1.000139 1618.507 

4 0.9979394 5566.715 1.001887 2212.318 1.010199 1545.894 

6 0.9993731 5478.702 1.003586 2177.541 1.012169 1521.688 

8 0.9998848 5434.694 1.004193 2160.153 1.012872 1509.586 

10 1.000124 5408.288 1.004476 2149.72 1.013201 1502.326 

 
 
 

TABLE 6. Critical Thermal Rayleigh Numbers and Wave Numbers of the Unstable Modes at Marginal Instability  
for the Onset of Stationary Convection for Various Values of Micropolar Heat Conduction Parameter ( 5N ). 

 
' 0.001=lP  ' 0.002=lP  ' 0.003=lP  ' 0.004=lP  ' 0.005=lP  

5N  

cx  cR  cx  cR  cx  cR  cx  cR  cx  cR  

0.08 0.9991119 5378.941 1.000676 2946.224 1.003334 2137.117 1.007089 1733.909 1.011925 1493.053 

0.1 0.9987353 5398.863 1.000259 2957.136 1.002885 2145.034 1.006603 1740.332 1.011402 1498.586 

0.5 0.990612 5830.658 0.9913644 3193.657 0.9932098 2316.62 0.996139 1879.568 1.000139 1618.507 

1.0 0.9785781 6477.947 0.9782027 3548.205 0.9789097 2573.821 0.9806898 2088.274 0.9835296 1798.259 

1.5 0.9637956 7286.212 0.9620614 3990.891 0.9614009 2894.94 0.9618039 2348.832 0.9632565 2022.662 

2.0 0.945225 8323.645 0.9418267 4559.017 0.9395006 3307.005 0.9382324 2608.153 0.938007 2310.571 

 
 
 

TABLE 7. Critical Thermal Rayleigh Numbers and Wave Numbers of the Unstable Modes at Marginal Instability  
for the Onset of Stationary Convection for Various Values of Micropolar Solute Parameter ( 6N ). 

 

' 0.001=lP  ' 0.003=lP  ' 0.005=lP  ' 0.007=lP  
6N  

cx  cR  cx  cR  cx  cR  cx  cR  

0.02 0.990612 5830.656 0.9932098 2316.62 1.000139 1618.507 1.011288 1322.635 

0.05 0.9906682 5827.657 0.9933779 2313.62 1.000419 1615.507 1.011679 1319.633 

0.10 0.9907618 5822.659 0.9936583 2308.622 1.000886 1610.507 1.012333 1314.63 

0.15 0.9908553 5817.663 0.9939388 2303.624 1.001353 1605.506 1.012986 1309.627 

0.20 0.990949 5812.664 0.9942193 2298.625 1.001821 1600.506 1.013641 1304.623 
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i.e., 
 

001201

0100
1

11

)1)11(1(22'4

1
32

0
2

10)11(2
0

2
102

3

11
1

11
1

11

)2
0

22'4(111
2

2
1

3

1
012

)11(22
102

11
2

24
2

111
2

=⎥
⎦

⎤

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ +

−⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ +

+++−Ω

++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+
⎪⎭

⎪
⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++−Ω+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎢
⎢
⎢

⎣

⎡

⎪⎩

⎪
⎨
⎧

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

LbILLbxR

LbILLbx
q

pS

LqpEbIb

IbLbKLLqpEbL

bKLLb

IEq
xR

IEp
q

pS
x

bLIqpE
Ib

L
LI

qpEbbKLL

bqpE
ii

IqpE
bi

ε

ε

ε

ε

εε

εε

ε
ε

εεε

ε
σσ

ε
σ

 

(63) 

 
It is evident from Equation 63 that iσ  may be 
either zero or non-zero, implies that the modes 
may be either non-oscillatory or oscillatory. 
 
7.1. Limiting Case   In the absence of rotation 

)0'( =Ω  and solute gradient )0,0( 11 == qS , the 
vanishing of determinant of the coefficients of A1, 
B1, C1 and D1 in Equations 37-40 gives (after 
simplification) 
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Equating the imaginary parts of Equation 64, we 
obtain 
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It is evident from Equation 65 that iσ  may be 
either zero or non-zero, meaning that the modes 
may be either non-oscillatory or oscillatory. In the 
absence of micropolar viscous effect (K=0) and 
microinertia (I1=0), we obtain the result as 
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Here, the quantity inside the bracket is positive 
definite. Hence 
 

0=iσ  (67) 
 
This shows that the oscillatory modes are not 
possible and the principle of exchange of stabilities 
(PES) is satisfied for micropolar fluid heated from 
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below, in the absence of micropolar viscous effect, 
microinertia, solute gradient and rotation. 
     Thus, we conclude that the oscillatory modes 
are introduced due to the presence of the 
micropolar viscous effect, microinertia, rotation 
and solute gradient, which were non-existence in 
their absence. 
 
 
 

8. THE CASE OF OVERSTABILITY 
 
In the present section, we have to find the 
possibility that the observed instability may really 
be overstability. Since σ  is, in general, a complex 
constant, so we put ir iσσσ += , where rσ  and iσ  
are real. The marginal state is reached when 0=rσ  
If 0=rσ  implies 0=iσ , one says that principle of 
exchange of stabiities (PES) is valid otherwise we 
have overstability and then iiσσ = , at marginal 
stability. Hence it is sufficient to find conditions 
for which (44) will admit of solutions with iσ  real. 
     Equating real and imaginary parts of Equation 
44 and eliminating R1 between them, yields 
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and the coefficients A1, A0, being quite lengthy and 
not needed in the discussion of over stability, have 
not been written here. 
     Since σi is real for over stability, the three 
values of C1 (=σi

2) are positive. The sum of roots 
of Equation 68 is –A2/A3 must be positive, and if 
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this is to be negative, then A3 > 0 and A2 > 0. Since 
A3 > 0 (from Equation 69), A2 > 0 gives the sufficient 
conditions for non-existence of overstability. 
     It is clear from Equation 70 that A2 is positive if 
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Overstability can not occur and the principle of the 
exchange of stabilities is valid. Hence, the 
conditions mentioned above are the sufficient 
conditions for the non-existence of over stability, 
the violation of which does not necessarily imply 
the occurrence of over stability, whereas in the 
absence of rotation and micro polar parameters in 
non-porous medium, the above conditions, as 
expected, reduces to '

TT KK < , i.e., the thermal 
conductivity is less than the solute conductivity.  
 
 
 

9.  DISCUSSION OF RESULTS AND 
CONCLUSIONS 

 
In this paper, the double diffusive convection in a 
micro polar fluid layer heated and soluted from 
below, saturating a porous medium in the presence 
of uniform rotation has been investigated. The 
effect of various parameters, like medium 
permeability, rotation, solute gradient, coupling 
parameter, spin diffusion parameter, micro polar 
heat conduction parameter and micro polar solute 
parameters on the onset of convection has been 
investigated. The principal conclusions from the 
analysis of this paper are as follows: 
 
(i) The results show that for the case of 
stationary convection, the medium permeability 
has destabilizing/stabilizing effect under certain 
condition(s). But in the absence of micro polar 
viscous effect (coupling parameter) and rotation, 
medium permeability always has destabilizing 
effect. The rotation, solute gradient, micro polar 
heat conduction and coupling parameter has a 
stabilizing effect under certain condition(s), 
whereas the spin diffusion parameter and micro 
polar solute parameter has a destabilizing effect 
under certain condition(s). In the absence of micro 
polar viscous effect, the rotation and stable solute 
gradient always has the stabilizing effect on the 
system, whereas in the absence of rotation, micro 
polar solute parameter (coupling between spin and 
solute fluxes) and in a non-porous medium, 
coupling parameter has a stabilizing effect on the 
system. Here, we also observe that in a non-porous 
medium, the micro polar heat conduction always 
has a stabilizing effect. 
 

(ii) The critical thermal Rayleigh numbers and 
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critical wave numbers for the onset of instability 
are also determined numerically (using Newton-
Raphson method) and the sensitiveness of the 
critical Rayleigh number Rc to the changes in the 
medium permeability parameter Pl

', rotation 
parameter 'Ω , stable solute gradient parameter S1, 
micro polar fluid parameters K, N3, N5 and N6 is 
depicted graphically in Figures 4-10. The effects of 
governing parameters on the stability of the system 
are discussed below: 
 
● Figures 4 and 5 demonstrate the influence of 

medium permeability parameter (Darcy 
number), Pl

', and rotation parameter 'Ω  in 
the presence and absence of the coupling 
parameter K. This can also be observed from 
Tables 1 and 2. Figure 4 illustrates that as Pl

' 
increases, Rc decreases for small values of 

'Ω  whereas for the higher values of 'Ω , Rc 
decreases for lower values of Pl

' and then 
increases for higher values of Pl

', i.e., Pl
' has 

dual role. This behaviour can also be 
observed form Figure 5. The physical 
explanations behind it are: “it is well 
known that the rotation introduces the 
vorticity into the fluid in the case of 
Newtonian fluid [28]. Then the fluid moves 
in the horizontal planes with higher 
velocities. Due to this motion, the velocity 
of the fluid perpendicular to the planes 
reduces, and hence delays the onset of 
convection. When the fluid layer is assumed 
to be flowing through an isotropic and 
homogeneous porous medium, free from 
rotation or small rate of rotation, then the 
medium permeability has destabilizing 
effect. As medium permeability increases, 
the void space increases, and a result of this, 
the flow quantities perpendicular to the 
planes will clearly be increased. Thus, 
increase in heat transfer is responsible for 
early onset of convection. Thus increasing 
Pl

' leads to decrease in Rc implying the 
destabilizing effect of Pl

' in the absence of 
rotation or for small value of rotation. In 
case of high rotation, the motion of the 
fluid prevails essentially in the horizontal 
planes. This motion is increased as medium 
permeability increases. Thus the component 
of the velocity perpendicular to the horizontal 

plane reduces, leading to the delay in the 
onset of convection. Hence, medium 
permeability has stabilizing effect in case of 
high rotation [44]. 

 
(a) 

 

 
(b) 

 
Figure 4. Marginal instability curve for variation of critical 
thermal Rayleigh numbers (Rc) versus medium permeability
parameter ( '

lP ) for 1 1 1 30.5, 1, 0.01, 5 , 2,p q S Nε = = = = =

5 60.5, 0.02N N= =  and (a) K  = 0.2, (b) K  = 0. 
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● Figure 6 represents the plot of critical Rayleigh 
number Rc, versus stable solute gradient S1 
for various values of Pl

', in the presence and 
absence of coupling parameter K. This 
figure indicates the stable solute gradient has 

a stabilizing effect as the critical Rayleigh 
number Rc increases with the increase in S1. 
This shows that the stable solute gradient 
postpones the onset of convection. This can 
also be observed from the Table 3. 

 
(a) 

 

 
(b) 

 
Figure 5. Marginal instability curve for variation of critical 
thermal Rayleigh numbers (Rc) versus rotation parameter 
(Ω΄) for 1 1 1 30.5, 1, 0.01, 5 , 2,p q S Nε = = = = =  5 0.5,N =

6 0.02N =  and (a) 0.2K = , (b) 0K = . 

 
(a) 

 

 
(b) 

 
Figure 6. Marginal instability curve for variation of critical 
thermal Rayleigh numbers (Rc) versus stable solute gradient 
parameter (S1), for 1 1 30.5, 1, 0.01, ' 10, 2,p q Nε = = = Ω = =

5 0.5,N = 6 0.02N =  and (a) 0.2K = , (b) 0K = . 
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● Figure 7 and Table 4 clearly show Rc 
increases with increasing K, illustrates that 
the coupling parameter has a stabilizing 
effect. As K increases, concentration of 
micro elements also increases, and as a 
result of this, a greater part of the energy of 
the system is consumed by these elements 
in developing gyrational (twist) velocities 
in the fluid, and onset of convection is 
delayed. 

● Figure 8 represents the plot of critical 
thermal Rayleigh number Rc versus N3 for 
various values of Pl

'. This graph exhibits a 
destabilizing trend. In other words, N3 
destabilizes the flow in the presence of 
salinity. The physical reason behind it is 
that as N3 increases, the couple stress of the 
fluid increases, which causes the micro 
rotation to decrease, rendering the system 
prone to instability. Nevertheless, the above 
phenomenon is true in porous or non-
porous medium. This leads to the 
conclusion that the spin diffusion (couple 
stress) parameter leads to an early onset of 
convection in a micro polar fluid in the 
presence of salinity. This can also be 
observed in Table 5. 

● Figure 9 represents the plot of critical 
thermal Rayleigh number Rc versus N5 for 
various values of Pl

'. Figure 9 and Table 6 
illustrates that as N5 increases, Rc increases, 
implying thereby that micropolar heat 
conduction parameter has a stabilizing 
effect in the presence of salinity. When N5 
increases, the heat induced into the fluid 
due to microelements is also increased, thus 
inducing the heat transfer from the bottom 
to the top. The decrease in heat transfer is 
responsible for delaying the onset of 
convection. Thus, increasing N5 leads to 
increase in Rc. In other words, N5 stabilizes 
the flow. 

● In Figure 10 and Table 7, we have also 
investigated the effect of micropolar solute 
parameter (N6) (arises due to the coupling 
between spin and solute fluxes). Figure 10 
and Table 7 illustrate that as N6 increase, Rc 
decreases. In other words, N6 destabilizes 
the flow. This leads to the conclusion that 
micropolar solute parameter leads to an 

early onset of convection in a micropolar 
fluid. Thus the system is destabilized by 
micropolar solute parameter N6. 

 
Figure 7. Marginal instability curve for variation of critical 
thermal Rayleigh numbers (Rc) versus coupling parameter (K) for

1 1 1 3 5 60.5, 1, 0.01, 5, ' 10, 2, 0.5, 0.02p q S N N Nε = = = = Ω = = = = .

 
 
 

 
Figure 8. Marginal instability curve for variation of critical thermal 
Rayleigh numbers (Rc) versus micropolar spin diffusion parameter
(N3) for 1 1 10.5, 1, 0.01, 0.2, ' 10, 5,p q K Sε = = = = Ω = =

5 60.5, 0.02N N= = . 
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(iii) The principle of exchange of stabilities is 
found to hold true for the micropolar fluid heated 
and soluted from below in the absence of micropolar 

viscous effect (coupling between vorticity and spin 
effect), micropolar inertia, solute gradient and 
rotation. Thus, oscillatory modes are introduced 
due to the presence of the micropolar viscous effect, 
microinertia, solute gradient and rotation, which 
were non-existence in their absence. 
 
(iv) If 
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Over stability can not occur and the principle of the 
exchange of stabilities is valid. Hence, the above 
conditions are the sufficient conditions for the non-
existence of over stability, the violation of which 
does not necessarily imply the occurrence of over 
stability. In the absence of rotation and micropolar 
parameters in non-porous medium,the above 
conditions, as expected, reduces to '

TT KK < , i.e., 
the thermal conductivity is less than the solute 
conductivity, which is in good agreement with the 
results obtained earlier  by Sunil, et al [56]. 
     Finally, from the above analysis, we conclude 
that the micro polar parameters, rotation and solute 
gradient have a profound effect on the onset of 
convection in porous medium. It is hoped that the 
present work will be helpful for understanding 
more complex problems involving the various 
physical effects investigated in the present problem. 
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Figure 9. Marginal instability curve for variation of critical 
thermal Rayleigh numbers (Rc) versus micropolar heat conduction
(N5) for 1 1 10.5, 0.2, ' 10, 1, 0.01, 5,K p q Sε = = Ω = = = =

3 2,N =  6 0.02N = . 

 
 
 

 
Figure 10. Marginal instability curve for variation of critical
thermal Rayleigh numbers (Rc) versus micropolar solute parameter 
(N6) for 1 1 1 30.5, 0.2, ' 10, 1, 0.01, 5 , 2,K p q S Nε = = Ω = = = = =

5 0.5N = . 
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