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Abstract   In this paper, a new smoothed particle hydrodynamics (SPH) algorithm for simulation of 
elastic-plastic deformation of solids was proposed. The key point was that materials under high-
velocity impact (HVI) behave like fluids. This led to propose a method which was similar to the so-
called SPH-projection method, in which the momentum equations are solved as the governing 
equations. The method consisted of three steps. In the first step, a temporary velocity field was 
provided according to the relevant body forces. This velocity field was renewed in the second step to 
include the viscosity effect. Unlike the standard SPH method for elastic-plastic simulations, a Poisson 
equation was employed in the third step as an alternative for the equation of state in order to evaluate 
pressure by projecting the provisional velocity. This Poisson equation considered a trade-off between 
density and pressure which was utilized in the third step to impose the incompressibility effect. To 
illustrate the accuracy of this method a HVI problem was simulated. Results showed a good 
agreement with other previous works. 

 
Keywords   Smoothed Particle Hydrodynamic (SPH), High Velocity Impact (HVI), Projection 
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ر يي تغيه سازي شبي برا(SPH)ک ذرات متصل يناميدرودي بر اساس هيديتم جدين مقاله الگوريدر اچكيده       

ن است که مواد در ضربه سرعت بالا ي ايدينکته کل. ک جامدات ارائه شده استيپلاست-کي الاستيشکل ها
(HVI)منجر شده است که به روش يدگاه به ارائه روشين ديا.  دهنديالات از خود نشان مي مانند سي رفتار 
روش ارائه شده از سه .  شوندي شباهت دارد و در آن معادلات ممنتوم به عنوان معادلات حاکم حل ميريتصو

.  شوديجاد مي مربوط اي بدنيروهاي با توجه به نيدان سرعت موقتيدر گام نخست، م. ل شده استيگام تشک
 ي براSPHبرخلاف روش استاندارد .  شوديد ميثر لزجت تجددان سرعت در گام دوم با در نظر گرفتن اين ميا

 معادله حالت ي براينيگزيک معادله پواسون در گام سوم به عنوان جايک، از يپلاست-کي الاستي هايه سازيشب
 ين چگالي را بين معادله پواسون موازنه ايا.  شودي، استفاده مير کردن سرعت موقتي محاسبه فشار، با تصويبرا

 ي نشان دادن درستيبرا.  شودي استفاده ميري عمل تراکم ناپذي کند که از آن در گام سوم برايجاد مي او فشار
 . دهدي گذشته نشان مي را با کارهايج توافق خوبينتا.  شده استيه سازي شبHVIک مسئله ين روش يا

 
 

1. INTRODUCTION 
 
Lagrangian Finite Element (LFE) method and 
Eulerian approach have been the most dominant 
methods for solving problems which have dealt 
with the simulation of solid deformation since the 
1980s. Both methods were used in a wide range of 

applications nevertheless, neither LFE nor Eulerian 
methods were solely efficient in problems in which 
large material deformation is of great importance. 
     Being fast and providing superb definition of 
material interfaces are counted as the most 
distinctive features of LFE method. However, such 
methods in which mesh distorts the materials are 
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generally limited to problems where the amounts 
of deformation are small, because they suffer from 
mesh distortion problem which is created as a 
result of grid entanglement. Although Eulerian 
method, in which the grid remains fixed in space, 
is free from the mesh distortion problem, but it 
needs to use sophisticated techniques to track the 
material interface which produces a complex 
challenge. Thus, developing efficient methods 
which are able to avoid these deficiencies have been 
at the center of attention. On the one hand, this has 
led to a group of combined Eulerian and Lagrangian 
methods such as Arbitrary Lagrangian Eulerian 
(ALE) approach, and, on the other hand, has 
developed a new class of methods which are called 
meshless or particle methods. Smoothed Particle 
Hydrodynamics (SPH) is one of these meshless 
methods and first adapted to model the dynamic 
response of solids in 1991 by Libersky, et al [1]. 
     Basically, SPH is a grid-free computational 
technique for equations of fluid dynamics in 
Lagrangian framework which initially was 
proposed by Lucy [2] and separately by Gingold, 
et al [3] in 1977. Although the basic application of 
this method was first in astrophysics, nowadays 
this method is used in variety of applications 
including incompressible fluid flow, multiphase 
flow, heat and mass transfer, elasticity and 
fracture, etc. A very good review of this method 
and its application is presented by Monaghan [4]. 
     In spite of rather extraordinary results, first 
applications of SPH were somehow crude, since 
there were some instabilities and deficiencies in 
the obtained results [5]. Problems such as tensile 
instability, zero energy mode and boundary 
condition treatment were of these problems for 
which remedies have been proposed [6-15]. 
Progressive improvements of this method have led 
it into a wide range of applications which introduces 
SPH as a versatile computational method. This 
mainly comes from its simplicity and the ability to 
extend it to new complex physics [16]. 
     In the field of impact engineering, distinctive 
futures are demonstrated in association with SPH. 
Surface tracking is treated according to the 
Lagrangian nature, while the inherent mesh-free 
character makes it suitable for simulations including 
large strain. In this way, SPH is used widely in HVI 
and penetration simulations [17]. A constitutive 
model as well as a proper equation of state (usually 

Mie-Gruneisen equation of state) is utilized in SPH 
for such simulations. Meanwhile, artificial viscosity 
is usually used to control both the numerical 
instability and shock wave capturing [17].  
     It is well established that solids under extreme 
conditions (e.g. HVI) behave like fluids [18]. The 
current work comprises a similar idea. The main 
objective is to study the possibility of extending a 
semi SPH-projection method to HVI problems. 
The proposed algorithm is similar to the three step 
explicit SPH algorithm proposed by Hosseini et al. 
[19] for simulation of incompressible fluid flows. 
This method is very similar to pressure-correction 
projection method which is widely used for 
numerical simulation of incompressible fluids to 
enforce the incompressibility constraint. Projection 
method was previously introduced in SPH 
framework by Cummins, et al [20] as SPH-
projection method and implemented for a vortex 
spin-down and Rayleigh-Taylor instability. Lo and  
Shao developed the SPH-projection method for 
Newtonian and non-Newtonian flows with free 
surfaces as well as simulation of solitary waves 
[21,22]. These SPH-projection methods are well-
known for modeling the strictly incompressible 
flows. Recently, Hosseini, et al [23] have 
investigated the feasibility of expanding this 
algorithm to fluid-structure simulations. In this 
way, they assumed elastic bodies as a “Pseudo-
Fluid” with a very large viscosity. Results showed 
a better agreement with experimental data in 
comparison with the simulation provided by the 
standard SPH. This algorithm is also extended in 
this paper to model HVI problems. It is necessary 
to notice that the proposed method is based on 
simple assumptions; hence, a better algorithm with 
advantages over other past methods is not the 
objective; but the emphasis is on opening a 
different insight toward HVI problems. An outline 
of the rest of the paper is followed. Governing 
equations are provided in Section 2. Section 3 is 
devoted to present a brief review of the SPH, 
while the details of the proposed algorithm are 
presented in Section 4. A HVI problem is defined 
in Section 5 and the simulation results are 
compared with results of other SPH methods [17] 
as well as a Lagrangian finite-volume Godunov 
scheme [25] in Section 6. Furthermore, some 
advantages and draw-backs are discussed in the 
aforementioned section. 
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2. GOVERNING EQUATIONS 
 
The governing equations for an elastic body are as 
follow: 
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ij1ig
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Where t  is the time and ρ  is the density. 
Superscripts i  and j  (and k ) are free indices. 
Moreover, iu , jx , and ig  are velocity vector, 
position vector, and body force per unit mass, 
respectively  and ijσ  is the stress tensor which can 
be written as: 
 

ijSijPij +δ−=σ  (3) 
 
Where ijS  is the deviatoric stress tensor. By 
assuming linear elastic theory and considering 
Hooke’s law, the deviatoric stress can be presented 
as follows [13]: 
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Where μ  is the shear modulus. The strain rate 
tensor ijε& , and rotation tensor ijω  are defined as 
follow: 
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Combining the Equations 1 and 3 yields: 
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To model the plastic behavior of materials an 
additional yield criterion and a flow rule is 
required. The yield criterion determines the stress 

state when the plastic flow occurs (yielding), while 
the flow rule specifies the increment of the plastic 
strain once the material has yielded. With most 
materials, there is a gradual transition from elastic 
to plastic behavior; therefore, defining the point 
at which plastic deformation begins is also 
difficult during experiments. For the present 
work, the von Mises yield criterion has been 
employed. For two dimensions, the criterion is 
defined as [25]:  
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0Y
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2yS
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Where 0Y  is the yield stress. For the sake of 
simplicity, and in order to permit a comparison 
with the simulations performed by others [17,25], 
an elastic-perfectly plastic flow rule has been 
selected. Thus, if inequality (8) is not satisfied, 
then material undergoes the plastic flow, and 
therefore, each stress component should be 
rescaled to lie on the yield surface. According to 
the literature [25] the radial return method is used. 
Based on this method, each stress component is 
radially rescaled to lie on the yield surface by 
being multiplied by the rescaling factor as follows: 
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3. METHODOLOGY 
 
3.1. Basic Concepts   SPH is a mesh-free 
method based on the interpolation theory in which 
matter is divided into a set of interpolation points, 
so-called particles. These particles carry the 
material properties such as density, velocity, 
pressure, stress and etc. Integral interpolation 
among these particles using a kernel function 
approximates the field variables. 
     Supposing A as a field variable of the spatial 
coordinates, the exact integral representation of A 
is as follows: 
 

( ) ( ) ( ) rdrrδ
Ω

rArA ′′−′= ∫  (10) 

 

Where ( )rrδ ′−  is the Dirac delta function and Ω is 
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the computational domain. This can be represented 
by integral interpolation of quantity A as: 
 

( ) ( ) ( ) rdh,rrW
Ω

rArA ′′−∫ ′=  (11) 

 

Where the angle bracket 〈 〉 denotes kernel 
approximation, h  is the smoothing length proper 
to kernel function  and W represents the effective 
width of the kernel. The kernel has the following 
properties [4]: 
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Several kernel functions have been proposed for 
the SPH method. The most frequently used kernel 
is the cubic spline kernel, which is written as 
follows [4]:  
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Where 
 

h
r 

s = , ν is number of dimensions and κ is 

normalization constant with the values: 
 

ππ
1,

7
10,

3
2  for one, two and three dimensions, 

respectively. This kernel has compact support 
which is equal to h2 ; it means that interactions 
vanish for h2r > . The dominant error term in the 
integral interpolant is )h(O 2  [16]. 
     If )r(A ′  is known only at a discrete set of N  
points N21 r,...,r,r  then the interpolation of quantity 
A can be approximated by a summation interpolant 
as follows [4]:  
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Where the summation index b denotes a particle 
label and particle b carries a mass bm  at position 

br , a density bρ  and a velocity bv . The value of A  
at thb −  particle is shown by bA . For the cubic 
spline kernel, the summation is over the particles 
that lie within a circle of radius 2h centered at r . 
     Derivative of A with respect to x  is given by 
the following equation [16]: 
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Where Φ  is any differentiable function and 

( )h,WWab ba rr ′−= . 
 
3.2. Gradient and Divergence   The gradient 
and divergence operators need to be formulated in 
this SPH algorithm. In the current work, the 
following commonly used forms are employed for 
gradient of a scalar A and divergence of a vector u  
[19,26]: 
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Where a∇  represents the gradient with respect to 
coordinates of particle a . 
 
3.3. Laplacian Formulation   A simple way to 
formulate the Laplacian operator is to envisage it 
as dot product of the divergence and gradient 
operators. This approach proved to be problematic 
as the resulting second derivative of the kernel is 
very sensitive to particle disorder and can easily 
lead to pressure instability and decoupling in the 
computation due to the co-location of the velocity 
and pressure. In this paper, the following 
alternative approach is adopted [19,20]: 
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Where baabbaab rrr,AAA −=−=  and η  is a small 
number introduced to avoid singularity during 
computations and is set to h1.0 . 
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3.4. Variable Smoothing Length   Using a 
variable smoothing length is essential for problems 
that material undergoes an expansion or compression. 
In HVI problems, local compression in impact 
zone and expansions such as debris cloud, 
make the application of variable smoothing 
length inescapable. If such problems are treated 
with a constant smoothing length approach, as an 
example for an expansion condition, after certain 
analysis time, very few neighbor particles will be 
found for a particle that at the beginning of the 
analysis was well covered and vice versa [27]. 
Various methods have been proposed to adjust the 
smoothing length in order to enhance the accuracy 
and flexibility of the SPH method. These methods 
are usually based on the variation of density. In 
this work, the method suggested by Monaghan [16] 
is employed. In this way variable smoothing length 
is satisfied according to the following equation: 
 

dt
lnd1

dt
hlnd ρ

ν
−=  (19) 

 
Where ν  is the number of dimensions. 
 
 
 

4. SOLUTION ALGORITHM 
 
Projection methods are fractional step methods in 
which incompressibility is satisfied considering the 
prediction-correction steps [28]. In this paper the 
authors follow an explicit algorithm which is 
combined of three steps [19]. The first two steps 
play the role of prediction part of the pressure 
projection method and the third one is a correction. 
These three steps are according to the three parts in 
the right hand side of the momentum Equation 7 
and combination of third part with continuity 
Equation 2. 
 
4.1. First Step   In the first step of this algorithm, 
the momentum equation is solved in the presence 
of the body forces neglecting all other forces. The 
computed intermediate velocity is used in the 
second step to calculate the divergence of the 
deviatoric stress tensor as: 
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4.2. Second Step   In this step, the divergence of 
the deviatoric stress tensor is calculated (instead of 
the calculation of divergence of shear stress tensor 
in a fluid dynamic algorithm) based on the 
intermediate velocity field computed in the first 
step. In this way, the deviatoric stress tensor is 
calculated according to the constitutive Equation 4. 
The divergence of the deviatoric stress tensor is a 
vector iT  which is given by the following 
equation:  
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The vector iT  is used to update the temporary 
velocity filed as follows: 
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This temporary velocity field is employed to move 
particle into a new temporary position as the 
following equation: 
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4.3. Third Step   There was no constraint to 
impose the incompressibility effect in both 
previous steps, thus particle movement changed 
the density of the particles. These density 
variations can be calculated with the help of the 
continuity equation. Monaghan [16] discussed 
different kinds of continuity equations in SPH 
framework. Using Equation 15, two useful forms 
of continuity equations are defined. Choosing 

1=Φ  gives: 
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while choosing ρ=Φ  yields: 
 

abWa
b

i
bui

aubm
adt

d
∇∑ ⋅⎟

⎠
⎞⎜

⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ ρ  (26) 



 

364 - Vol. 22, No. 4, November 2009 IJE Transactions A: Basics 

It is demonstrated that when the system involves 
two or more materials with the density ratio ≥ 2 in 
contact, Equation 25 is more accurate in comparison 
with Equation 26 [16]. This is a common condition 
in HVI problems; thus, in our simulations Equation 
25 is the base of density computations. 
     Considering the continuity Equation 25, a 
temporary density is achieved. When two particles 
approach each other, their relative velocity and the 
gradient of kernel function have same signs, 
therefore ( )aDt~dρ  will be positive and a

~ρ  will 
increase. Consequently, this will produce a 
repulsive force between the approaching particles, 
and vice versa. This interaction based on the relative 
velocity of the particles and the resulting coupling 
between the pressure and density will enforce 
incompressibility in the solution procedure. 
     The velocity field iû  which is needed to restore 
the density of particles to their original value is 
calculated. To do this, in the third step of the 
algorithm, the momentum equation with the 
pressure gradient term as a source term is combined 
with the continuity Equation 2 as follows: 
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To obtain the following Poisson equation for 
pressure Equation 29 is developed as follows: 
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Equation 29 can be discretized according to 
Equation 18 to obtain the pressure of each particle 
as the following equation:  
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using this value for the pressure of each particle 

one can calculate iû  according to Equation 28 and 
16 as follows: 
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Finally, overall velocity of each particle at the end 
of time step will be obtained as: 
 

iûiu
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and the final positions of particles are calculated 
using a central difference scheme in time based on 
the following equation: 
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5. TEST CASE 
 
The impact problem studied by Howell, et al [25] 
using a Lagrangian finite-volume Godunov scheme 
is considered as a benchmark. This problem was 
also studied by Mehra, et al [17] with different 
artificial viscosities defined for SPH simulations as 
well as a contact SPH method. The problem 
involves a 2D HVI of a cylindrical projectile with 
a plate. The projectile is made of aluminum (Al) or 
steel with a 10 mm diameter which moves with an 
initial speed of 3.1 km/s toward target, while the 
target is made of Al with 2 mm thickness. Material 
properties are tabulated in Table 1. In our 
simulations we assumed there are no external body 
forces. Inter-particle distance (Δx) is set to be 0.1 

mm and simulations are started with 5.1
x

h
=

Δ
, and 

Δt = 0.1 × 10-9s. The projectile includes 8012 
particles while 10000 particles are within the 
target. A schematic view of the initial location of 
the particles is shown in Figure 1a. 
 
 
 

6. RESULTS AND DISCUSSIONS 
 
Figures 2 and 3 depict the impact of the Al 
projectile with an Al target (Al-Al) as well as steel 
projectile with the Al target (steel-Al), respectively. 
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Also, the obtained results are tabulated in Tables 2 
and 3 and compared with the results which were 
reported by Howell and Ball  based on Lagrangian 
finite-volume Godunov scheme [25], as well as 
different SPH schemes [17] where dcra is the crater 
diameter, Lexten is the longitudinal extension of the 
projectile, and Lproj is the longitudinal progress of 
the projectile through the target (Figure 1b). All the 
above values are reported in 8 μs after impact. CON 
is based on the Riemann approach which is exempt 
of artificial viscosity [29,30]. SAV1 and SAV2 are 
purely based on the standard SPH method, but differ 
in constant values of artificial viscosity. BAL and 
MON are also based on the standard SPH but their 
artificial viscosity is modified by Balsara [31], and 
Morris, et al [32], respectively. Lengths are resolved 
in SPH ≥ 2h, and are quoted here to 0.1 cm. Mehra, 
et al [17] reported a tendency to form clamp for all 
standard SPH simulations of similar HVI problems 
(AL-AL and steel-AL) as a result of tensile 
instability, while such phenomenon was not 
reported for CON. Thus, they concluded that CON 
is the best SPH method in their HVI simulations 
which had shown the closest agreement with the 
results of HB. It is clear from Figures 2 and 3 that 
the pressure-projection method shows no tendency 
to clamp formation. This confirms the SPH-
projection method by simulating the impact of an 
elastic ring with a rigid wall. It will be more 
interesting if we notice that unlike the standard SPH 
method, no remedy is introduced to eliminate the 
tensile instability. Furthermore, comparing the 
geometrical results of SPH-projection and CON, 
closest agreement is provided by SPH-projection 
method with the results reported by HB (the main 
reference). These superb results are obtained 
according to the pressure that is computed using the 
pressure Poisson Equation 30, however, the 
generated pressure at the center of the projectile, 1 
μs after impact (also reported in [17]) was almost 
half of the pressure reported by Howell, et al [25] 
(18.6 GPa for Al-Al and 27.9 GPa for steel-Al). 
This reality comes from the fact that the proposed 
algorithm is slightly dissipative. Therefore, it seems 
necessary to make a compromise between the 
dissipation terms and evaluation of the pressure to 
achieve a higher accuracy. One of the best choices 
is to extend a more accurate projection method into 
SPH framework. It is important to consider some 
other main differences between the proposed SPH-

TABLE 1. Properties of Al and steel used for HVI 
simulations. 
 

Property Aluminum Steel 
)mkg( 3ρ  2785 7900 

)PaG(μ  27.60 85.30 

)PaG(Y0  0.300 0.979 
 
 
 

 
 

(a) 
 

 
 

(b) 
 
Figure 1. (a) Initial particle placement for HVI simulations 
and (b) Geometrical parameters dcra, Lexten, and Lproj. 
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projection algorithm and the standard SPH 
algorithms with concentrating on not using the 
artificial viscosity. As the first difference, energy 
equation is simply neglected in our simulations. 
     It is noticeable that the other SPH methods 
often use common equations of state such as Mie-
Gruneisen equation of state, which highly depends 
on the energy equation. Moreover, equations of 
state are based on statistical mechanics and are 
only valid over a limited range of its material 

dependent parameters. Therefore, several equations 
of state need to be available to) use in any 
numerical algorithm. Consequently, the pressure 
Poisson equation is employed instead of any 
equations of state in the present proposed algorithm 
so that the computed pressure values are completely 
sensitive to any density variations. 
     The results provided in this section are not just 
a comparison between different numerical methods 
and schemes, but also include the experimental 
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(d) 
 

Figure 2. Impact of an Al projectile with an Al target at 3.1 km/s. (upper half: SPH-projection, lower half: 
lagrangian finite-volume Godunov scheme [25]), (a) s2μ ,(b) s4μ , (c) s6μ  and (d) s8μ . 
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Figure 3. Impact of a steel projectile with an Al target at 3.1 km/s. (upper half: SPH-projection, lower half: 
lagrangian finite-volume Godunov scheme [25]), (a) s2μ ,(b) s4μ , (c) s6μ  and (d) s8μ . 
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results. Firstly, close agreement of the obtained 
results with published simulation results gives a 
sense of confidence in our results. Besides, the 
comparisons bear interesting information regarding 
the proposed algorithm and the previously 
proposed methods. 
 
 
 

7. CONCLUSION 
 
This paper proposes an alternative SPH algorithm 
for simulating HVI problems. The algorithm is 
composed of three steps which plays the role of a 
pressure-correction method. In the first two steps, a 
provisional velocity is provided which is projected 
in the third step to impose the compressibility 

constraint. In this way, the artificial viscosity is 
neglected and the Poisson equation is employed 
without any usage of equations of state. Tensile 
instability is treated naturally while dissipation 
terms decrease the evaluated pressure. Comparing 
the computed geometrical results of the presented 
method with other SPH methods shows adequate 
agreements [17,25]. 
 
 
 

8. NOMENCLATURE 
 
A A Typical Field Variable 
g Gravity Force Per Unit Mass 
h Smoothing Length 
m Mass 
P Pressure 
r Position Tensor 
S Deviatoric Stress Tensor 
s Normalized Position Variable 
T Divergence of Deviatoric Stress Tensor 
t Time 
u Velocity Vector 
W Kernel Function 
Y0 Yield Stress 
σ Stress Tensor  
ρ Density 
δ Dirac Delta Function 
μ Shear Modulus 
ε Strain Rate Tensor 
ω Rotation Tensor 
Ω Computational Domain 
ν Number of Dimensions 
κ Normalization Constant 
Φ A Differentiable Function 
η A Small Number to Avoid Singularity 
 
Subscripts 
 
a Target Particle Index 
b Neighborhood Particle Index 
t Time Index 
Δt Time Step 
 
Superscripts 
 
i Normal in x-Direction 
j Normal in y-Direction 
~,≈ Temporal Variables 
^ Field Variables 

TABLE 2. Comparison of the geometrical results of the 
impact of an Al projectile with an Al target at 3.1 km/s. 
 

Simulation Method dcra 
(cm) 

Lexten 
(cm) 

Lproj 
(cm) 

SPH-Projection 1.9  0.7  1.9  
SAV1* 2.0 0.7 1.8 
SAV2* 1.9 0.7 1.8 
BAL* 2.0 0.7 1.8 
MON* 2.0 0.8 2.0 
CON* 2.1 0.7 1.9 
HB** 1.9 0.7 2.0 

 
* Results are quoted from [17] 
** Results are quoted from [25] 
 
 
 
TABLE 3. Comparison of the geometrical results of the 
impact of a steel projectile with an Al target at 3.1 km/s. 
 

Simulation method dcra (cm) Lproj (cm) 
SPH-Projection 1.5 2.2  

SAV1* 1.9 2.1 
SAV2* 1.9 2.1 
BAL* 1.8 2.2 
MON* 1.8 2.2 
CON* 1.7 2.2 
HB** 1.6 2.3 

 
* Results are quoted from [17] 
** Results are quoted from [25] 
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