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Abstract   In many signal processing applications, such as EEG analysis, the non-stationary signal is 

often required to be segmented into small epochs. This is accomplished by drawing the boundaries of 

signal at time instances where its statistical characteristics, such as amplitude and/or frequency, 

change. In the proposed method, the original signal is initially decomposed into signals with different 

frequency bands using wavelet transform. The fractal dimension of the decomposed signal is 

calculated in a sliding window and the results are used as a feature for adaptive segmentation. A 

criterion is introduced in this paper to choose a proper length for the sliding window. Performance of 

the proposed method is compared with that of three other existing segmentation methods using 

synthetic and real EEG data. Simulation results show the high efficiency of the proposed method in 

signal segmentation. 
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1. INTRODUCTION 

 

In many signal processing applications, such as 

EEG analysis [1-3], the signal of interest is initially 

segmented into small epochs to consider the signal 

as piece-wise stationary. This is performed as 

many of the existing signal processing techniques, 

such as the technique introduced in [1], are only 

applicable to stationary or piece-wise stationary 

signals. In this application, the automatic analysis 

system of EEG signals contains three basic steps: 

segmentation, splitting the EEG signal into piece-

wise stationary sections; feature extraction, 

deriving suitable features from the segmented 

sections; classification, grouping the segments 

based on driven features in the second step. 

Therefore, it is clear that segmentation step plays 

an essential role in EEG signal analysis. 
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In principle, two basic approaches exist for 

segmentation, namely constant segmentation and 

adaptive segmentation. In constant segmentation 

the signal is divided into small epochs with a fixed 

length. In general, this type of segmentation is the 

simplest one. However, the segmented signal may 

not have the condition needed for the analysis 

system (stationarity) [1,4,5]. 

     Considering the disadvantage of constant 

segmentation approach, it is necessary to utilize a 

segmentation approach that automatically detects 

the true segments boundaries. The automatic 

detection of the true boundaries is known as 

adaptive segmentation [1,4,5]. In this approach, 

segmentation is performed based on the change in 

statistical characteristics (such as amplitude and/or 

frequency variations) of the original signal. 

     There are a number of adaptive segmentation 

techniques in the literature. In Varri’s method [6], 

two successive windows are slided along the 

signal. For each window, the frequency and 

amplitude variations are used for adaptive 

segmentation. To enhance the accuracy of Varri’s 

method, Krajca [7] suggested applying a threshold 

on the G function. Therefore, the local maxima of 

G function above the threshold are considered as 

segment boundaries. 

     In another method, a nonlinear energy operator 

(NLEO) is used for adaptive segmentation in EEG 

signal [4]. The output of NLEO is proportional to 

multiplication of instantaneous amplitude and 

frequency of the input signal; therefore, the two 

criteria for adaptive segmentation, amplitude 

variation and frequency change, are considered in 

NLEO.  NLEO operator creates cross-terms for 

multi-component signals and therefore may have 

false segmentation results [5]. 

     To improve the performance of the method 

introduced in [4], wavelet transform can be used as 

a pre-processing step [5]. In this method, namely 

INLEO, the signal is initially decomposed into 

different frequency bands using the wavelet 

transform. Then, NLEO operator is applied on the 

decomposed signals to detect the segments 

boundaries. Since, frequency changes in the 

decomposed signals are less than the changes in 

the original signal; the cross-term problem is 

alleviated to some extent. In another method [3], it 

has been shown that fractal dimension (FD) is a 

powerful tool for transient detection in a signal and 

can be used to detect epileptic seizures [3]. 

     In the above mentioned methods, the window 

length is not chosen adaptively; therefore, they 

have less accuracy in segmentation. This paper 

proposes a new approach for adaptive 

segmentation. In this approach the signal is 

initially decomposed into different frequency 

bands using wavelet transform. Then, the 

decomposed signal is segmented by considering its 

fractal dimensions. When the statistical behavior of 

a signal changes it is reflected in the fractal 

dimension of the signal. In this paper, a criterion is 

also presented to choose the proper length of 

sliding window to increase the accuracy of the 

proposed method. It is shown in this paper that the 

proposed method is superior to the existing 

methods in adaptive segmentation. In addition, the 

performance assessment of the proposed method 

indicates that it takes a short time to analyze an 

epoch; therefore it can be used for on-line 

segmentation. 

     The structure of the paper is as follows: Section 

2 provides the background knowledge for the 

proposed method. The proposed adaptive 

segmentation method is explained in Sections 3. 

The performance assessment of the proposed 

method is performed in Section 4. Finally, 

conclusions are drawn in Section 5. 

 

 
 

2. BACKGROUNDS FOR THE PROPOSED 

METHOD 
 

2.1. Wavelet Transform   Wavelet is a small 

wave with finite energy, which has its energy 

concentrated in time or space to provide a tool for 

the analysis of transient, non-stationary or time-

varying phenomenon [8-10]. The compactness and 

finite energy properties of wavelet functions have 

differentiated wavelet decompositions from other 

analysis such as Fourier transform. Discrete 

wavelet transform (DWT) can decompose time 

domain signal to different frequency bands by 

different time and frequency resolutions. Discrete 

time signal x can be decomposed into two different 

frequency bands using DWT as follows [11,12]: 
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Where yh[.] and yl[.] are the outputs of the high-

pass and low-pass filters with gh[.] and gl[.] as 

impulse responses after sub-sampling by 2, 

respectively. The resulted component yl[.] can 

again be filtered for further decomposing the 

signal. The original signal can be reconstructed as 

follows: 
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It should be mentioned that there is no absolute 

way to select a certain wavelet function (i.e. gh[.] 

and gl[.] in Equations 1 and 2). Choosing a wavelet 

function depends on the application. Choosing a 

wavelet function conforming to the original signal 

is very useful in wavelet applications [13].  
 

2.2. Fractal Dimension   The fractal dimension 

is an important characteristic of fractals as it 

contains information about their geometric 

structure. Fractal dimension values indicate the 

complexity of a pattern, or the quantity of 

information embedded in a pattern [14]. 

     While Euclidean shapes have certain dimensions, 

for example, a cube has dimension 3, fractal 

process has no certain sizes. They are said to be 

self–similar and independent of scaling [14]. 

Fractal dimension analysis has been widely used in 

biomedical signal processing, such as EEG 

analysis [15,16]. It has been shown that FD is a 

promising method in transient detection [17,18]. In 

addition, in this approach there is no need to have a 

prior knowledge about the characteristics of the 

transient. FD calculation for transient detection is 

fast. It consists of estimating the dimension of a 

time-varying signal directly in the time domain, 

which reduces the computational load. 

     There are several different techniques in the 

literature for computing FD of a time series. An 

extensive research has been performed in [19,20] 

to compare between FDs in different application 

area. Higuchi algorithm [21] has a more precise 

estimation in computing FD of a signal, but it is 

sensitive to noise. Katz algorithm [22], compared 

to Higuchi has a lower accuracy. Katz's method 

creates the most consistent results concerning 

discrimination between states of brain function. In 

addition, this algorithm has a lower sensitivity to 

noise. Petrosian's method [23] is relatively linear 

and presents the least dynamic range for the 

estimated FD. This method, like Higuchi, is 

sensitive to noise. 

     Selection of FD algorithm depends on the 

application. Factors such as knowledge about 

possible FD range, noise level and window length 

should be considered to gain the best results. 

     In this paper, we have used Katz’s algorithm to 

calculate FD [19,20,22]. In this algorithm, FD of a 

time series is defined as follows: 
 

,
)d(

10
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)L(
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Where L is the length of the time series or sum of 

distances between successive points, d is diameter 

estimation of the distance between the first data 

point and the data with the highest distance. By 

normalizing the distance, using a as the average 

distance between the two successive data points, 

the following equation is obtained. 
 

)a/d(
10

log

)a/L(
10

log
FD =  (5) 

 

In the above equation, we consider n = L/a as the 

step size in the time series, therefore Equation 5 

can be written as below: 
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The above equation represents the Katz’s method 

to calculate FD of the time series [19,20,22]. 

 

 
 

3. PROPOSED ADAPTIVE SEGMENTATION 

METHOD 
 

The proposed adaptive segmentation method 

consists of three steps described below, 
 

1. In the proposed method, the wavelet transform is 

initially applied on the signal. In multi-component 

signals monitoring the structure variations through 

the sub-bands is facilitated as they have less 

frequency variations compared to the original 
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(a) 

 

 
 

(b) 
 

Figure 1. Representation of the G function applied on a 

signal, (a) it is more spike for the proper window length and 

(b) it is less spike for an improper window length. 

signal. It should be noted that the structure 

variations in the original signal appear in its sub-

bands [5,24]. 

2. In adaptive segmentation when the statistical 

characteristics of a signal encounter a considerable 

change, the signal should be splitted at border of 

the change. Since structure of signal is the main 

concern in segmentation, fractal dimension can be 

a suitable tool for monitoring structure variations 

along the signal. In this step, two successive 

windows are slided along the signal. For each 

window, FD is computed using the Katz algorithm 

[19,20,22]. Any changes on the signal characteristics 

are reflected on the fractal dimension of the signal. 

Therefore, for application of adaptive segmentation, 

we use FD variations to detect segments boundaries 

[3,24]. 

     The following function, namely G function, is 

used to detect segments boundaries: 
 

G = [G1,G2,…,GM-1], 

Gi = |FDi+1-FDi|     i = 1,…,M-1 (7) 
 

Where, M is the total number of analyzed windows. 

G function can be normalized by Gi/max(G) during 

the analysis process to have the values between 

0 to 1. 

3. Finally, to localize the segments boundaries in a 

signal, the corresponding G function is 

thresholded. The local maxima above the threshold 

value are considered as positions of segments 

boundaries. One may choose the average value of 

G as the threshold [24]. 

     Two parameters are needed to calculate the 

fractal dimension of a signal. These parameters 

are: window length, percentage overlapping of the 

successive windows. 

     The first important parameter used in adaptive 

segmentation algorithm is the window length. A 

large window length may results in missing 

segments boundaries. On the other hand, the 

window length should be short enough to 

recognize the smallest segments. Therefore, we 

present a method to find the best window length 

for the analyzing signal. 

     As mentioned before, the signal under analysis 

is assumed to have the same statistical characteristics 

through the whole segment. Therefore, the same 

fractal dimension should be obtained from the 

sliding windows along the segment. G function 

calculates the difference of the fractal dimension in 

successive windows of the signal; hence, it should 

have little values in a segment. Facing a new 

segment, due to the changes in statistical 

characteristics of the analyzing signal, the 

corresponding fractal dimension is changed. This 

change is reflected in G function; hence, the 

segment boundary is detected. 

     Considering this reasoning, a proper window 

length is the one which its G function is highly 

above zero where representing segments boundaries, 

and is almost zero elsewhere during the segments. 

In other words, G function computed using a proper 

window length has short duration spikes pointing 

to the segments boundaries (see Figure 1). 

Consequently, for an improper window length, G 

function has more energy compared to a proper 

window length. Thus, for an analyzing window 

with length l (this window length might be chosen 

based on the smallest expected segment length), 

the energy of the corresponding G function, Gl, is 
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calculated using the following equation: 
 

k

i
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Where k is the number of samples in G
l
. The k 

term in the denominator is written for energy 

normalization to have a fair comparison between 

the energy of G
l
 s associated with different 

window length. 

     Finally, the proper window length is the 

minimum point of the normalized energy curve 

associated with G function versus window length. 

     Overlapping successive windows is another 

parameter required in calculating FD of a signal. 

Window overlapping increases accuracy of the 

proposed method in detecting the segments 

boundaries with the cost of increasing computational 

load. To compromise between accuracy and 

computational load factors, we choose 50 % 

overlapping for successive windows. 

 

 

 

4. PERFORMANCE ASSESSMENT 
 

4.1. Synthetic Signal   In order to assess 

performance of the proposed method, it was 

applied on a synthetic multi-component signal 

shown in Figure 2a. The signal in this figure 

contains seven multi-component epochs with the 

duration between 6 s to 8 s described below: 
 

Block 1: ),t8cos(4)t4cos(5.1)tcos(5.0 π+π+π  
 

Block 2: ),t14cos(4)t2cos(5.1 π+π  
 

Block 3: ),t7cos(5.4)tcos( π+π   
 

Block 4: 

),t16cos(5.3)t6cos(8.0)t2cos(5.1)tcos(5.0 π+π+π+π  
 

Block 5: ),t16cos(5.2)t6cos(5.0 π+π  
 

Block 6: ),t8cos(7.1)t3cos(5.0 π+π  
 

Block 7: )t8cos(3)t5cos()t3cos(8.0 π+π+π  
 

In the proposed method, the decomposed signal 

from the approximate sub-band is used for 

segmentation. In this research, DWT is performed 

with Daubechies wavelet of order 8. The 

approximate sub-band for the signal in Figure 2a is 

shown in Figure 2b. Considering the point that the 

length of the smallest segment in Figure 2a is 6 s, 

windows up to 6 s are analyzed to determine the 

optimum window length following Equation 8. 

Figure 3 shows the normalized energy curve of G 

function versus window length. This figure 

indicates that the optimum window length for 

segmenting the signal in Figure 2a is 2 s. FD and G 

function of the decomposed signal are computed 

using the optimum window length, and the results 

are shown in Figures 2c,d respectively. After 

thresholding, the local maxima in G function (see 

Figure 2d) clearly represent boundaries for the all 

seven epochs.  

     To show the importance of window length in 

segmentation, we have applied the proposed 

method on the signal in Figure 2a using non-

optimal window lengths (window length of 1.2 s 

and 4.8 s) and the results are shown in Figure 4. As 

the figure shows, computing G function using the 

optimum window length provides more spiky G 

function, hence, improves accuracy of the 

proposed method in signal segmentation. 

     To evaluate the performance of the proposed 

method, the signal in Figure 2a is segmented using 

three existing methods, INLEO [5], Varri [7] and 

Kirlangic [3] methods. The results of segmentation 

with these methods are shown in Figure 5. As can 

be seen in Figure 5b3, some of segment boundaries 

cannot be clearly recognized using the INLEO 

method. To detect boundaries B5 and B6 in Figure 

5b3, a lower threshold value is needed, in which 

causes false boundaries detection (see F1 and F2 in 

Figure 5b3). 

     Varri’s and Kirlangic’s methods are also 

applied on the signal in Figure 2a and the results 

are shown in Figures 5c and 5d respectively. These 

figures indicate that these methods have more false 

boundary detection rate (marked with the arrows in 

the plots) compared to the proposed method. 

 

4.2. Real EEG   In this experiment, we have used 

40 epochs of EEG signals recorded from the scalp 

of 10 patients. Lengths of the epochs are 30 

seconds, and the signals were recorded with 256 

Hz sampling rate. Figure 6a shows one of these 

signals. We have decomposed the signal using a  
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Figure 2. Using the Proposed method for segmentation, (a) original signal, (b) approximate signal after applying 

two levels DWT, (c) fractal dimension computed using optimal window length (window length=2 s) 

and overlapping is 50 % and (d) G function, threshold value is 0.13. 
 

 

 

 
Window Length (S.) 

 

Figure 3. Normalized energy curve of G function versus window length. This figure indicates  

that the optimum window length for segmenting the signal in Figure 2a is 2 s. 
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Figure 4. Using the proposed method for segmenting the signal in Figure 2a with non-optimal window lengths: 

(a) original signal, (b) approximate signal after applying two levels DWT, 

(c) window length = 1.2 s and (d) window length = 4.8 s. 

five level DWT, and the approximate sub-band is 

shown in Figure 6b. The minimum segment 

duration was set to 3 second [4]. We have found 

2.8 second as the optimal window length using the 

normalized energy of G function. The segmentation 

result is shown in Figure 6d. As the figure shows, 

the proposed method could segment the EEG 

signal into six segments. As described before, the 

aim of segmentation is to have epochs with similar 

characteristics along each epoch. To test the 

performance of the proposed method in segmenting 

the EEG, the time-frequency distribution [25] of 

the signal was shown in Figure 7. This figure 

clearly indicates existence of the six epochs with 

the different time-frequency characteristics. For 

example, epoch1 has more frequency variation 

compared to epoch 2, and epoch 2 is concentrated 

on lower frequency region compared to epoch 3. 

     The signal in Figure 6a was segmented using 

INLEO [5], Varri [7] and Kirlangic [3] methods. 

The results of segmentation with these methods are 

shown in Fig 8. As can be seen, there are too much 

fluctuations in Figure 8b3. Therefore, by the 

existence of these fluctuations, it is difficult to 

determine the local maxima indicating segments 

boundaries. 

     Varri’s and Kirlangic’s methods are applied on 

the signal in Figure 6a and the results are shown in 

Figures 8c,d respectively. As can be seen in this 

figure, only one segment boundary (at about 23 s) 

is detected using Varri’s method. It should be 

mentioned that empirically parameter adjustment is 

the main problem in using Varri’s method. Figure 

8d indicates that some segment boundaries are 

missed by Kirlangic’s method. 

     The performance of the above mentioned 

segmentation algorithms can be evaluated using 

the true positive (TP), miss or false negative (FN) 
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Time (S.) 

 

Figure 5. Using the proposed method for segmentation. (a) original signal. (b) approximate signal after applying 

two levels DWT, (c) fractal dimension computed using optimal window length (window length=2 s) 

and overlapping is 50 % and (d) G function, threshold value is 0.13. 

and false alarm or false positive (FP) ratios as 

defined below [26]: 
 

,
N

t
N

TP =    ,
N

m
N

FN =    ,
N

f
N

FP =  (9) 

 

Where Nt , Nm , Nf  and N represent the number of 

true, missed, falsely detected and actual number of 

segment boundaries respectively. An efficient 

segmentation approach should have a high value 

for TP ratio and low values for FN and FP ratios. 

     The results of segmentation using the proposed 

method and the three other existing approaches on 

40 epochs of EEG signals are shown in Table 1. 

This table reveals that the proposed method has a 

better accuracy compared to other existing 

segmentation methods. For example, the FP ratio 

for the proposed method is 28 times lower than 

INLEO method, 8 times lower than Varri’s method 

and 7 times lower than Kirlangic’s method. The 

average run-time using a personal computer 

(Pentium (R) 4 CPU 2.8 GHz, 512 MB of RAM) for 

each algorithm is also presented in Table 1. As can 

be seen from the results, the proposed method takes 

a short time to analyze an epoch; therefore the 

proposed method can be used for on-line systems. 
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Figure 6. Using the proposed method for segmenting EEG signal, (a) original signal, (b) approximate signal after applying 

five levels DWT, (c) fractal dimension computed using optimal window length (window length= 2.8 second) 

and overlapping is 50 % and (d) G function, threshold value is 0.32. 

 

 

 

 

 
 

Figure 7. Time–frequency distribution for signal in Figure 6a the detected  

boundaries using the proposed method are depicted by dash lines. 
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Figure 8. Using the exiting approaches for segmenting the signal in Figure 6a, (a) original signal, (b) the INLEO approach  

{b1: approximate signal after applying five levels DWT, b2: INLEO output, b3: results of applying the sliding window}, 

(c) G function in varri’s method and (d) segmentation using kirlangic’s method. 

 

 

 
TABLE 1. Results of Segmentation using Proposed Method and Three other  

Existing Approaches with 40 Realizations for EEG Signals. 

 

Method TP Ratio FN Ratio FP Ratio Average Run-Time (s.) 

Proposed Method 88.57 % 11.43 % 8.57 % 1.3991 

INLEO 82.86 % 17.14 % 245.71 % 1.1121 

Kirlangic 60 % 40 % 60 % 0.1725 

Varri 42.86 % 57.14 % 71.43 % 0.1376 
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5. CONCLUSIONS 
 

In this paper, a new method for adaptive 

segmentation of non-stationary signals using fractal 

dimension and wavelet transform has been 

introduced. The fractal dimensions of the 

decomposed signal are computed in a sliding 

window. The obtained results contain spikes 

pointing the segments boundaries. A criterion was 

presented to choose the proper length of sliding 

window to increase the accuracy of the proposed 

method. The performance of the proposed method 

was compared with three other exiting methods 

and the results indicate superiority of the proposed 

method for segmenting non-stationary signals. 
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