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Abstract   In this paper we suggest a method to calculate the first integrals of a special system of the 
first order of differential equations. Then we use the method for finding the solutions of some 
differential equations such as, the differential equation of RLC circuit. 
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1. INTRODUCTION 
 
Let us consider a system of ordinary differential 
equations: 
 

⎪
⎪
⎩

⎪⎪
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⎧

++=

++=

3By2Bx1B
dt
dy

3Ay2Ax1A
dt
dx

 

 
First of all we will show that this system always 
have first integrals, next by a method which will be 
explained, we obtain the first integrals, in the 
sequel. The system which we are exposed to, is a 
special case and not a general one, because the 
important point is as we will see, it needs tedious 
computations to approach to the first integrals of 
this simple and special system, and it needs 
mathematical software for our purpos. 
 
 
 

2. EXISTENCE OF A FIRST INTEGRAL 
 
Before starting the main part, it is necessary to 

change the form of the system to make the 
calculation more direct, on the condition that the 
solutions will not vary. 
 
2.1. Frobenius Theorem   The Frobenius 
theorem is one of the most important theorems in 
theory of differential equations which, its result 
guarantees that the system would have the first 
integrals, before we needs a lot of details. 
     First of all to make the calculations easier we 
translate the two independent variables of equations 

by 
1A
3A

x −  in the first one and 
2B
3B

y −  in the second 

one. Thus we have the new following ODEs system 
which has the same solutions as the first system: 
 

.
y2Bx1B

dt
dy

y2Ax1A
dt
dx
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+=

+=
 (1) 

 
The solutions of this system is a 3-dimensional 
submanifold of 5-dimensional jet space, which is 
denoted by 
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⎛= Rt,y,x:

dt
dy,

dt
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2.1.1. Definition   Suppose M is an n-dimensional 
manifold and Mp∈ . A choice of k-dimensional 
linear subspace MpTpD ⊂  is called a k-dimensional 

tangent distribution or a k-dimensional distribution. 
Dp is called smooth if TMpDMPD ⊂∈= U  is a 

smooth subbundle of TM. 
 
2.1.2. Lemma   Let M be a smooth n-manifold, 
and let TMD ⊂  be a k-dimensional distribution. 
Then D is smooth if and only if each point Mp ∈  
has a neighborhood U on which there are smooth 
1-forms kn,,1 −ωω K  such that for each Uq ∈ ,  
 

.
q

knKer
q

1KerqD −ωω= ILI  

 
For details of proof see [3]. 
     More precisely, if we denote the annihilator of 
D by 0:)M(1{)D(Ann =ωΩ∈ω=  on D}, then for 

any iω  defined in lemma 2.1.2 we have 
).D(Anni ∈ω  

     If D is a distribution generates by }kV,,1V{ K , 

then D could be discussed by kn,,1 −ωω K too. We 
will show such a distribution as 

)kn,,1(F)kV,,1V(FD −ωω== KK . 

 
2.1.3. Definition   Suppose )kV,,1V(FD K=  is a k-

dimensional distribution. The distribution )1(D  
which is generated by the vector fields }kV,,1V{ K  
and by all possible sorts of commutators ]jV,iV[  (i < 

j; i, j = 1,...,k), is called the first derivative of D, i.e., 
 

]).kV,1k[V,],kV,1[V,],2V,1[V,kV,,1F(V

(1)D

−

=
KKK

 

 
2.1.4. Lemma   Let D = F(V1,…,Vk) is a 
distribution such that D = F(ω1,…,ωn-k). Then D(1) 
= D if and only if for i = 1,...,n-k 

.0kn1id =−ω∧∧ω∧ω K  (2) 
 
See [1] for a proof. 
 
2.1.5. Definition   A smooth distribution D on a 
smooth manifold M is called Completely 
Integrable Distribution or a CID distribution if all 
points of M contain in an integral manifold of D. 
(A submanifold MN ⊂  is called an integral 
manifold of D if DNpT ⊂ ). 

     Now we are ready to have the Frobenius 
theorem. 
 
2.1.6. Theorem (Frobenius theorem)   Let D be a 
smooth distribution on a smooth manifold M. D is 
CID if and only if D)1(D = . 
     See [3,4] for two different kinds of proofs. 
     Now by using the Frobenius theorem it will be 
shown that any first order ODE has a first integral. 
This is the result of the Frobenius theorem and its 
following corollary, before we have a necessary 
definition. 
 
2.1.7. Definition   Let D be a smooth distribution 
on smooth manifold M, a smooth function 

)M(C∞∈φ  is called a first integral for D if 

)D(Annd ∈φ . Here )M(C∞  means the set of all 
smooth real valued functions on manifold M. 
     Another definition for a CID distribution D , is 
that D is CID if and only if there exist n-k first 
functional independent integrals kn,,1 −φφ K  such 
that )knd,,1d(FD −φφ= K . 
     So if a distribution is CID it means that it has 
first integral(s). 
 
2.1.8. Corollary   Suppose D is a smooth 
distribution such that )(FD ω= . Then D is CID if 
and only if 
 

0d =ω∧ω . (3) 
 
Now consider a first order ODE 
 

)y,x(f
dx
dyy ==′ , (4) 

 
It is clear that the Equation 4 is obtained by taking 
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the 1-form dx)y,x(fdy −=ω , to zero, so ω satisfies 
the Equation 3, thus the distribution corresponds to 
the Equation 4 has a first integral. 
 
 
 

3. SYMMETRIES OF DISTRIBUTIONS 
 
Symmetry of a distribution is the transformation of 
the manifold M that maps distribution into itself. 
     In other words, a diffeomorphism F: M→ M is 
a symmetry of a distribution D if 
 

)p(FD)pD(F =∗ , (5) 

 
for all Mp ∈ . Here ∗F  is the push forward map of 
F. 
     Assume that D = F(ω1,…,ωn-k), then the 
Equation 5 means that the differential 1-forms 

)kn(F,),1(F −ω∗ω∗ K  determine the same 
distribution D and therefore can be expressed in 
terms of basic forms ω1,…,ωn-k. That is 
 

0.knω1ω)kn(ωF

,0knω1ω)1(ωF

=−∧∧∧−∗

=−∧∧∧∗

K

M

K

 

 
Where ∗F  is the pull back map of F. 
 
3.1. Infinitesimal Symmetry   Suppose V is an 
smooth vector field on manifold M, and tθ  be its 
flow, then we know MM:t →θ  induces a 
diffeomorphism on M. 
 
3.1.1. Definition   tθ  which has defined above is 
called an infinitesimal symmetry or a symmetry of 
a distribution D if tθ  along the vector field V 
consist of symmetries of D, i.e, 

))p(t(D)pD(*)t( θ=θ , for all points Mp ∈  and t. 

     Denote Sym (D) the set of all infinitesimal 
symmetries of distribution D. 
 
3.1.2. Theorem   Let D be a distribution and )D(Γ  
denotes the set of all vector fields on D, and then 
the following statements are equivalent. 

 V ∈  Sym(D). 
 

 ∀  W ⇒Γ∈ )D(  [V,W] )D(Γ∈ . 
 

 )D(Ann)(VL)D(Ann ∈ω⇒∈ω∀ . 
 
In this theorem )(VL ω , denotes the Lie derivative 
of ω respect to V. For the proof of the theorem see 
[3], and for more details of Lie derivative see [4]. 
 
3.1.3. Corollary   Sym (D) has a real Lie algebra 
structure with respect to the commutator of the 
vector fields. 
 
3.2. Distribution with a Commutative 
Symmetry Algebra   Let ∑ be a commutative 
symmetry Lie algebra which its dimension is equal 
to the dimension of D = F(ω1,…,ωn) is equal to k. 
Let V1,…Vk be a basis of ∑ and let D is a CID 
distribution. 
     Then form the matrix 
 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ωω

ωω
=

)kV(k)1V(k

)kV(1)1V(1

Z
L

MMM

L

. (6) 

 

Because of independence of siω , then Z-1 exists. 
     Now we are going to construct a new basis 

kω,...,1ω  for Ann (D). 
     These basis are constructed by the following 
relation: 
 

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ω

ω

k

1

M 1Z− .
k

1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ω

ω
M  (7) 

 

Then it is possible to see that iω  s are closed, so 
the functions ∫

α
ω=φ i)p(i  are called the first 

integrals of D. Here α is a path from the fix point 
0p  to a point Mp ∈ . 

     For example when D = F(ω) be a CID 
distribution and V be a symmetry of D, then the 1-

form ω
ω

=ω
)V(

1 , is closed and the function 
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∫
αω

ω
=φ

)V(
, is the first integral of D. 

     For another example, consider an ODE in the 
form of Equation 4. We know that the 
corresponding 1-form is ω = dy – f(x,y)dx, suppose 

that 
y

)y,x(b
x

)y,x(aV
∂
∂

+
∂
∂

=  is a symmetry of a 

distribution, that is the symmetry of the equation. 
(For scrutinizing the symmetries of ODEs see 
[5,6]). Then, Z = b(x,y)-f(x,y)a(x,y) and the 

differential 1-form 
)y,x(a)y,x(f)y,x(b

dx)y,x(fdy
−
−

=ω , is 

closed, and the function ∫
α

ω=φ  is a first integral 

of the equation. The function Z-1 is called an 
integrating factor for the equation. 
     One can use a differential equation to describe 
the behavior of fluids channeled by a funnel and 
use the first integral method for its solution. 
Consider a conical funnel of angle θ at its apex 
with the hole of radius r0. According to the 
generally accepted law of hydraulics, the velocity 
of outflow of a fluid from a hole under hydrostatic 
pressure is given by the formula gh2v η=  cm/s 
with an empirical coefficient η (for water η = 3/5). 
Here “h” is the heat of the fluid over the hole and g 
≈ 981 cm/s is the gravitational constant. To 
describe the outflow from the funnel, it suffices to 
determine the height h = h(t) of the fluid in the 
funnel. To determine the unknown function h(t), 
let us write down the balance of the fluid. The 
volume of the fluid that flows from the hole in dt 
seconds is equal to vghdt2

0rvdt2r  dv π≡ 0π=  cm2. 
On the other hand, the decrease of the fluid 
volume, due to the negative increment (-dh) of the 
height of the fluid in the funnel, is given by dv = -
πr2(t)dh, where r(t) is the radius of the funnel at the 
height h = h(t) an hence r(t) = h tan(θ/2). It follows 
that the balance equation is 
 

.02ghdt2
0rdh2h)2/(2tan =πη+θπ  

 
Thus, we arrive at the differential equation 
 

0,
θ/2)(2tan

2
02grη

dt
dh3/2h =+  

 

Where it is in the form of Equation 4, consequently 
it has a first integral. Because "t" does not exist in 

the equation explicitly, the vector field 
t

V
∂
∂

= , is 

its symmetry and ∫
α

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ
+=φ dh

2/3hdt , is the first 

integral of the differential equation of outflow 

from a funnel, where )2/(2tan/2
0gr2 θη=λ  is a 

constant. It is possible to see that  
 

φ = 2/5h
5
2t
λ

+ , 

 
by taking φ  to zero we obtain 
 

5/2
t

2
5h ⎟

⎠
⎞

⎜
⎝
⎛ λ−= , 

 
Which is the solution of the differential equation of 
outflow from a funnel. 
 
3.3. First Integral of the System (1)   Now we are 
ready to obtain first integrals of the system (1). 
This system corresponds to the following 
differential 1-forms: 
 

,dt)y2Ax1A(dx1 +−=ω  

 
.dt)y2Bx1B(dy2 +−=ω  (8) 

 
The corresponding distribution is ),(FD 21 ωω= . 
     Now if ∈V Γ (D) has the form 

t
)t,y,x(c

y
)t,y,x(b

x
)t,y,x(aV

∂
∂

+
∂
∂

+
∂
∂

= , then we 

should have 0)V(2)V(1 =ω=ω , 
 
Consequently 
 

)t,y,x(c)y2Ax1A()t,y,x(a += , 
 

)t,y,x(c)y2Bx1B()t,y,x(b += , 
 
by substituting a(x,y,t) and b(x,y,t) in V we have 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

++
∂
∂

+==
ty

)y2Bx1B(
x

)y2Ax1A(VFD . 

 
Let 
 

t
)t,y,x(c~

y
)t,y,x(b

~
x

)t,y,x(a~W
∂
∂

+
∂
∂

+
∂
∂

= , be a 

symmetry of the distribution, i.e., )D(SymW ∈ , the 
second part of theorem 3.1.3 implies that 
 
[V,W] ∈  Γ (D). (9) 
 
Now we consider those symmetries of D which 
contain translations, scales and rotations. 
     Now substituting 
 

4at3ay2ax1a)t,y,x(a~ +++= , 
 

4bt3by2bx1b)t,y,x(b
~

+++= , 
 

4ct3cy2cx1c)t,y,x(c~ +++= , 
 
in the relation (9), implies that 
 

=−+−+−+ 3a2a)y2Bx1B(1a)y2Ax1A(2Ab
~

1Aa~  
)y2Ax1A)(t,y,x( +λ , 

 
=−+−+−+ 3b2b)y2Bx1B(1b)y2Ax1A(2Bb

~
1Ba~  

)y2Bx1B)(t,y,x( +λ , 
 

)t,y,x(3c2c)y2Bx1B(1c)y2Ax1A( λ−=++++ . 
 
Here )t,y,x(λ  is an arbitrary function of x, y and t. 
     One of the solutions of the above equations 
system respect to ia s, ib s and ic s is 
 

)2B1b1B2b1A1b(
1B

1
1a −+=  

 

1B
2A1b

2a = , 

 
and 
 

03c2c1c4b3b4a3a ======= . 

Consequently we obtain one of the special form of 
W. That is 
 

.
y

)y2bx1b(

x
y

1B
2A1b

x2B1b1B2b1A1b
1B

1W

∂
∂

+

+
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ −+=

 

 
Let us suppose that 11b =  and 02b =  thus, 

[ ]
y

x
x

y2Ax)2B1A(
1B

1
1W

∂
∂

+
∂
∂

+−= , 

 
and 
 
If 01b =  and 12b =  we have, 

 

y
y

x
x2W

∂
∂

+
∂
∂

= , 

 
it is possible to see that these two vector fields 
make a set of two independent symmetries for 
system (1). Next we construct matrix Z, 
 

[ ]
.

yx

xy2Ax)2B1A(
1B

1
Z

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ +−
=  

 
By using relation (7) we calculate the new basis 

1ω  and 2ω , as 
 

[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ω
ω

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−

−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ω
ω

2
1

y2Ax)2B1A(
1B

1x

xy

K
1B

2
1

, 

 
Where 
 
K is ( ) 2x1B2y2Axy2B1A −+− , 
 
So we have 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+−+−

=ω

dtxy)1A2B(2y2A2x1Bxdyydx
K
1B

1

, 
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[
⎩
⎨
⎧ ++⎥⎦

⎤
⎢⎣
⎡ +−+−

=ω

B1B1B1A2(dyy2Ax)2B1A(xdx1B
K
1

2
 

 

.dt2y2B2Axy)1B2A2
2B2B1A(2x)1B2A

⎭
⎬
⎫

⎥⎦
⎤−−+++

 
( 1ω  and 2ω  are closed. ), which make a new basis 
for the annihilator of the distribution corresponds 
to the system (1), so we can find the first integrals 
of the system (1) with the following integrations: 
 

∫
α

ω=φ 1)t,y,x( , 

 

∫
α

ω=η 2)t,y,x( . 

 
Because of the two 1-forms are closed, these 
integrations are independent with respect to path α. 
     Consequently if 
 

2B1A21B2A42
2B2

1AE −++= , 
 

Ex

x)1A2B(y2A2
F

−+
= , 

 

Ey

y)1A2B(x1B2
G

−+
= , 

 
We have 
 

+
⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−
−+

=

y
1

x12B
1A2B

G)arctan(
E
12B

arctan(F)
E

12xB

t)y,φ(x,

 

 

−
⎢
⎢

⎣

⎡ −+
−+

Ex14B

)y2)2B1(A2(E
arctan

E
12B

1)2Ln(G
x14B

E  

 

.t)xy1A2(B2y2A2x1B
E

)1A2(B
⎥⎦
⎤

⎢⎣
⎡ −+−+

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤−
 

 
The function η  has a very complicated form and it 

does not need to be calculated here. By integrating 
the restriction of 1-form 1ω  on the set H = 

}0)t,y,x(:)t,y,x{( =φ , we will obtain the general 
solution of the system (1). 
 
 
 

4. PRACTICAL APPLICATIONS 
 
Now let us have a practical example. An RLC 
circuit (also known as a resonant circuit or a tuned 
circuit) is an electrical circuit consisting of a 
resistor (R), an inductor (L), and a capacitor (C), 
connected in series or in parallel. Every RLC 
circuit consists of two components: a power source 
and resonator. They are two types of power source-
Thevenin and Norton. Likewise, there are two 
types of resonator-series LC and parallel LC. As a 
result there are four configuration of RLC circuit: 
 
• Series LC with Thevenin power of source 
• Series LC with Norton power source 
• Parallel LC with Thevenin power of source 
• Parallel LC with Norton power of source. 
 
There are two fundamental parameters that 
describe the behavior of RLC circuit: the resonant 
frequency and the damping factor. In addition 
other parameters derived from these first are 
discussed below. 
     The undamped resonance or natural of an RLC 
circuit (in radiance per second) is given by 

LC
1

0 =ω  and 
L
R

=ωΔ . 

       Consider a Series RLC with Thevenin power 
source. In this circuit, the there components are all 
in series with the voltage source. Let’s have some 
notations for this circuit: 
 
V – The voltage of the power source, 
i – The current in the circuit, 
R – The resistance of the resistor, 
L – The inductance of the inductor, 
C – The capacitance of the capacitor, 
q – The charge across the capacitor. 
 
Given the parameter V, R, L, and C, the solution 
for the current q using Kirchhoff's voltage law 
(KVL) gives VCVLVRV =++ . 
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For a time-changing voltage v (t), this becomes 
 

∫
∞−

=++
t

)t(Vds)s(i
C
1

dt
diL)t(Ri . 

 
Using the relation between charge and current: 

     
dt
dq)t(i = , the above expression can be 

expressed in terms of charge across the capacitor: 
 

).t(V)t(q
C
1

dt
dqR2dt

q2dL =++  

 
Dividing by L gives the following second order 
differential equation: 
 

).t(V
L
1)t(q

LC
1

dt
dq

L
R

2dt

q2d
=++  

 
For our purpose it is necessary to assume that the 
voltage of the circuit is constant, thus we have  
 

V
L
1)t(q

LC
1

dt
dq

L
R

2dt

q2d
=++ . (10) 

 
By substituting q(t) = y(t) in the Equation (10) we 
obtain the following system of ODEs: 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−−−=

)t(x
dt

)t(dy

V
L
1)t(y

LC
1)t(x

L
R

dt
)t(dx

 

 
Similarly by a suitable translation which we have 
done for obtaining the system (1), we can 

eliminate the term V
L
1

−  in the first equation, so 

we have: 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−−=

)t(x
dt

)t(dy

)t(y
LC
1)t(x

L
R

dt
)t(dx

 (11) 

 
This system has the following solutions 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

=

2L

t4LC2RR
exp1C4LC2RR

2L
1

x(t)

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

L2

tLC42RR
exp2CLC42RR , 

 

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−=
L2

tLC42RR
exp1C)t(y

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
L2

tLC42RR
exp2C . 

 
As for the system (1) we can construct the first 
integrals of the system (11), the solutions could 
have obtained from the first integrals. 
     Let us have another applied example; Heating a 
Single-Story House. A single-story house is being 
heated with a forced-air central heating system. 
Imagine for simplicity that the house is composed 
of two main compartments: the lower living area 
and the upper attic area. Only the living area is 
heated directly by the furnace, which generates 
75000 Btu/hr. Heat transfer takes place between 
the living and attic areas of the house as indicated 
by such as vertical arrows. There is also heat loss 
through the walls of the house to the out side, as 
well as through the roof over the attic. We assume 
that, initially the temperature inside the house and 
the attic is the same as that of the outside: a cold 
35˚F. At time t = 0 the furnace is turned on and 
begins to heat the house. We are interested in 
knowing when the temperature in the living area 
reaches a comfortable 68˚F, assuming the outside 
temperature remains at a constant 35˚F. Let us 
construct a model of the heat-transfer behavior. 
     We define x(t) and y(t) as the temperatures of the 
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living and attic areas, respectively, at time t. The 
change in temperature in the living area depends on 
the addition of heat from the furnace and the loss of 
heat to the outside and to the attic. The rate at which 
the furnace affects the temperature is the number of 
Btu per hour times the heat capacity of the living 
area. The heat capacity itself is a function of such 
variables as the size of the living area and the 
thermal characteristics of the objects inside the 
living area. Let us assume that the heat capacity of 
the living area is 0.2˚F per thousand Btu. Then the 
furnace can provide 75(0.2) = 15˚F each hour to the 
living area. 
    According to Newton's law of cooling (see [1]), 
the rate of temperature change of a region is 
proportional to the difference between the 
temperature of the region and the temperature of an 
adjacent region. For the living area the heat loss 
through the outside walls account for a change of 
k1(35-x), and the heat loss to the attic is k2(y-x). 
The proportionality constants 1k  and 2k  are 
assumed to be positive and depend on the 
insulation and materials of the walls and ceiling. 
Thus for the living area the rate of change in 
temperature is given by dx/dt = 15 + k1(35-x) + 
k2(y-x). In a similar way we can derive the rate of 
change in the temperature for the attic area. 
Together these two rates from the system 
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)y35(3k)yx(2k
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Where the constant k3 is the system depends on the 
roofing materials.  
     In specific situation the proportionality 
constant k1, k2 and k3 are often specified as the 
reciprocals of the time constant for the heat 
transfer to take place between the two adjacent 
regions involved. For instance, if the time 
constant for the heat transfer between the living 
area and outside in 4 hr, then k1 = 1/4. The time 
constant 1/k1 between the living area and the 
outside, for example represents the time it takes 
for the temperature difference 35-x(t) to change 

form 35-x(0) to [ ].)0(x35368.0
e

)0(x35
−≈

− . 

     A typical value for the time constant of building 
1s 2-4 hr, but it can be shorter if there are open 

windows or doors and longer if the building is well 
insulated. 
    Now return to first integral again. First we 
should change the system in the form of system (1) 
by a suitable change of variable. If we construct 
the first integral of the system (12), )t,y,x(φ , and 
take it to zero we have 
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Where 1C  and 2C are arbitrary constants, x(t) can 
be obtained from on of the equation of system (12). 
 
 
 

5. FIRST INTEGRALS OF A SYSTEM OF 
N-ODES 

 
In this part we have a general and more 
comprehensive system of ODEs in the form of 
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A general solution of this system has the form 
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Where i = 1,...,n-1, whence, upon solving with 
respect to the constants of integration Ci, 
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for i = 1,...,n-1. The relation (14) provides the 
general integral for the system (13). The left hand 
side of each relation (14) reduces to a constant 
when y1,…,yn-1 are replaced by the coordinates 
y1(x),…,yn-1(x) of any solutions of the system (13). 
For this reason every single relation in (14) is 
known as a first integral of the system (13). 
According to the systems (11) and (12) and in the 
general form system (1), it is enough to find one of 
the two first integrals for finding one of the 
solutions, another one is obtaining from the 
equations of the system. 
 
 
 

6. ACKNOWLEDGMENT 
 
When we do not have any model for finding 
solution(s) of an ODE, first integral(s) of that ODE 
can give(s) us the solution(s). But some times, 
system such as ODEs similar to system (1), first 
integrals have such complicated forms, which is 
not appropriate to find the solutions from first 
integrals. It is necessary to say that the model of 
first integrals is related to the form of symmetries 

of ODE. May be in some special cases such as, 
differential equation of outflow from a funnel, the 
first integral has more simple form. 
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