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Abstract   This paper deals with the theoretical investigation of the thermal instability of a thin layer of 
electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical 
magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained 
between two free boundaries using a linear stability analysis theory, and normal mode analysis method. 
The principle of Exchange of Stabilities (PES) is found to hold true for the micropolar fluid saturating a 
porous medium, heated from below in the absence of magnetic field, rotation and coupling between 
thermal and micropolar effects. It is also found that PES is valid in the presence of rotation and magnetic 
field under certain conditions. The oscillatory modes are introduced due to the presence of magnetic 
field and rotation, which were non-existence in their absence. The presence of coupling between thermal 
and micropolar effects may also introduce oscillatory modes. For the case of stationary convection, the 
effect of various parameters like medium permeability, rotation, magnetic field (in the presence and 
absence of micropolar heat conduction parameter), coupling parameter, micropolar coefficient and 
micropolar heat conduction parameter has been analyzed and results are depicted graphically. The 
sufficient conditions for the non-existence of overstability are also obtained. In this paper, an attempt is 
also made to apply the variational principle for the present problem and found that the said principle can 
be established for the present problem in the absence of coupling between spin and heat flux. 

 
Keywords   Thermal Convection, Medium Permeability, Rayleigh Numbers, Porous Medium, 
Micropolar Fluids, Hydromagnetics, Rotation Effect 

 
يال دوار ميكروپولار رسانا، در يك محيط متخلخل  تئوري ناپايداري دما در يك لايه نازك س در اين مقاله،چكيده       

رابطه پراكندگي براي يك لايه  .ه بررسي گرديدواقع در ميدان مغناطيسي يكسان عمودي كه از پايين حرارت داده شد
  اصل تبادل.سيال مسطح، بين دو مرز آزاد، با استفاده از تئوري ثابت آناليز خطي و روش آناليز مد نرمال بدست آمد

. باشد  در شرايط خاص معتبر مي ، در شرايط خاص، با وجود دوار بودن سيال و ميدان مغناطيسي،)PES(يداري پا
عوامل فوق چنين حالتي با چرخش سيال در ميدان مغناطيسي دوران، كه در عدم حضور  حالت نوساني اعمال شده و

در  .ير مود نوساني نيز موثر بوده استدر حضور دو عامل ميكروپولار و حرارت عوامل ديگري نظ .وجود نداشت
 ميدان مغناطيسي مورد بررسي درميزان چرخش سيال  محيط، حضور جابجايي پايدار پارامترهاي مختلفي نظير نفوذ

د تجزيه تحليل قرار ضريب ميكروپولار بر پارامتر حرارت هدايتي مور وضمنا پارامترهاي كاپلينگ و .قرار گرفت
عدم حضور در شرايط كاملا پايدار نيز بدست آمده  در شرايط لازم و . نمودار بيان گرديدن بصورت آنتايج گرفت و

در اين مقاله كاربرد تغيرات اصولي براي حضور هرگونه مساله اي را مورد بررسي قرار داده و بر اساس اصول  .است
 .ت يافتطرح شده روابطي را مي توان در عدم حضور كاپلينگ ميان اسپين و شار حرارتي دس

 

 
1. INTRODUCTION 

 
A general theory of micropolar fluids has been 

presented by Eringen [1-3]. These fluids have such 
internal structures in which coupling between the 
spin of each particle and the macroscopic velocity 
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field is taken into account. Compared to the 
classical Newtonian fluids, micropolar fluids are 
characterised by two supplementary variables, i.e., 
the spin, responsible for the micro-rotations and 
the micro-inertia tensor describing the distributions 
of atoms and molecules inside the fluid elements in 
addition to the velocity vector. Liquid crystals, 
colloidal fluids, polymeric suspension, animal 
blood, etc. are few examples of micropolar fluids. 
Kazakia, et al [4] and Eringen [5] extended this 
theory of structure continue to account for the 
thermal effects. 
     Micropolar fluids instability has become an 
important field of research now a days. The theory 
of thermomicropolar convection began with Datta, 
et al [6] and interestingly continued by Ahmadi 
[7]. Labon, et al [8], Bhattacharya, et al [9], Payne, 
et al [10] and Sharma, et al [11]. The above works 
give a good understanding of thermal convection 
in micropolar fluids. The numerical solution of 
thermal instability of a rotating micropolar fluid 
has been discussed by Sastry, et al [12]. A detailed 
account of thermal convection in a horizontal thin 
layer of Newtonian fluid heated from below, under 
varying assumptions of hydromagnetics, has been 
given by Chandrasekhar [13]. 
     The effect of rotation on thermal convection in 
micropolar fluids is important in certain chemical 
engineering and biochemical situations. Qin, et al 
[14] have considered a thermal instability 
problem in a rotating micropolar fluid. They 
found that depending upon the values of various 
micropolar parameters and low values of Taylor 
number, the rotation has a stabilizing effect. The 
effect of rotation on thermal convection in 
micropolar fluids has also been studied by 
Sharma, et al [15], whereas the effect of rotation 
on thermal convection in micropolar fluids in 
porous medium has been considered by Sharma, 
et al [16]. The effects of magnetic field on the 
micropolar fluids heated from below have been 
studied by Sharma, et al [17], they also have 
studied the effects of magnetic field on the 
micropolar fluids heated from below in porous 
medium [18]. They found that in the presence of 
various coupling parameters, magnetic field has a 
stabilizing effect whereas the permeability has 
destabilizing effect on stationary convection. The 
thermosolutal convection of micropolar fluids in 
hydromagnetics in porous medium has been 

studied by Sharma, et al [19]. 
     The physical properties of comets, meteorites 
and interplanetary dust strongly suggest the 
importance of porosity in astrophysical context 
(McDonnel [20]). Keeping in mind the 
importance and applications in geophysics, 
astrophysics and biomechanics, the effect of 
uniform magnetic field on the thermal convection 
in micropolar rotating fluid in porous medium in 
the presence and absence of micropolar heat 
conduction parameter has been considered in the 
present paper. It is hoped that the present study 
can serve as a theoretical support to an 
experimental investigation. 
 
 
 

2. MATHEMATICAL FORMULATION OF 
THE PROBLEM 

 
Here, we consider an infinite, horizontal layer of 
thickness d  of an incompressible, electrically 
conducting thin micropolar rotating fluid heated 
from below saturating a porous medium (See 
Figure 1). 
     The temperature T  at the bottom and top 
surfaces 0z =  and z d=  are 0T  and 1T  
respectively and a uniform temperature gradient 

dT
dz

⎛ ⎞
β =⎜ ⎟
⎝ ⎠

 is maintained. Both the boundaries are 

taken to be free and perfect conductors of heat. 
The gravity field (0, 0, )g= −g  and uniform 
vertical magnetic field intensity (0, 0, )H=H  
pervade the system. The whole system is assumed 
to be acted on by a uniform rotation (0, 0, )ΩΩ  
along the vertical axis, which is taken as z -axis. 
This fluid layer is assumed to be flowing through 
an isotropic and homogeneous porous medium of 
porosity ε  and the medium permeability 1k . Also 
assumed that the external couples and heat 
sources are not present. The mathematical 
formulation of the motion of micropolar rotating 
fluids saturating a porous medium for the above 
model are as follows [11,16,18]: 
     The continuity equation for an incompressible 
fluid is 
 

. 0∇ =q  (1) 
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Figure 1. Geometrical configuration. 

The momentum and internal angular momentum 
equations for the Darcy model are 
 

( )0

1

1 1ˆ( . ) zp ge k
t k

ρ ∂⎡ ⎤+ ∇ = −∇ − ρ − μ + +⎢ ⎥ε ∂ ε⎣ ⎦
q q q q

02 1( ) ( )
4

k
ρ

∇× + × + ∇× ×
ε π

ν q Ω H H , (2) 

 
0

1 ( . )j
t

∂⎡ ⎤ρ + ∇ =⎢ ⎥∂ ε⎣ ⎦
ν q v  

2( ' ') ( . ) ' 2k kε + β ∇ ∇ + γ ∇ + ∇× −
ε

ν ν q ν  (3) 

 
The temperature equation is 
 
[ ]0 v 0 v(1 ) ( . )s s

TC C C T
t

∂
ρ ε + ρ − ε + ρ ∇ =

∂
q  

2 '( ).Tk T T∇ + δ ∇× ∇ν  (4) 
 
The density equation of state is given by 
 

[ ]0 01 ( )T Tρ = ρ − α −  (5) 
 
Where 0 ˆ, , , , , , , , , , ,α ρ ρ ρ μ ηq ν s zt T p e  and j  denote 
respectively, filter velocity, spin (micro rotation), 
time, temperature, coefficient of thermal expansion, 
fluid density, reference density, density of solid 
matrix, pressure, coefficient of viscosity, unit 

vector in z-direction, electrical resistivity and 
microinertia constant. The parameters ', ', 'ε β γ  and 
k  stand for the micropolar coefficients of 
viscosity, , ,s TC C kυ  and 'δ  are specific heat at 
constant volume, heat capacity of solid matrix, 
thermal conductivity and coefficient giving account 
of coupling between the spin flux and heat flux 
respectively and ( , , )=r x y z . The effect of rotation 
contributes two terms: 

     (a) centrifugal force 0 2| |
2

grad
ρ

− ×Ω r  and 

     (b) Coriolis force 02
( )

ρ
×

ε
q Ω . 

     In Equation 2, 2
0

1 | |
2fp p= − ρ ×Ω r  is the 

reduced pressure, whereas fp  stands for fluid 
pressure [21]. When the fluid flows through a 
porous medium the gross effect is represented by 
Darcy’s law. As a result, the usual viscous term is 

replaced by the resistance term 
1

k
k

⎡ ⎤μ +
− ⎢ ⎥
⎣ ⎦

q , where 

,μ  k , 1k  and q  denote respectively the viscosity 
coefficient, micropolar heat conduction coefficient, 
medium permeability and the filter velocity. 
     The Maxwell’s equation yields 
 

2( )
t

∂
ε = ∇ × × + εη∇
∂
H q H H  (6) 
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and 
 

. 0∇ =H  (7) 
 
Let us now consider the stability of the system in 
the usual way by giving small perturbations on the 
initial (rest) state and seeing the reaction of the 
perturbations on the system. The initial state is 

0, 0, ( ), ( )= = = ρ = ρq ν p p z z  defined as ρ =  
[ ]0 1 zρ + αβ , and ( )T T z=  defined as 0T z T= − β + , 

where dT
dz

β = −  is the uniform adverse temperature 

gradient. 
 
 
 

3. PERTURBATION EQUATIONS 
 
Let ( , , ), , , ,x y zu u u pδ δρ θu ω  and ( , , )x y zh h hh  
denote respectively the perturbations in velocity q , 
spin ν , pressure p , density ρ , temperature T  and 
magnetic field H . 
     The change in density δρ , caused mainly by the 
perturbation θ  in temperature is given by  
 

0δρ = − ρ αθ  (8) 
 
Then the Equations 1 to 7 yield the linearized 
perturbation equations 
 

. 0∇ =u , (9) 
 

( )0
0

1

1 ˆzp k g e k
t k

ρ ∂
= − ∇δ − μ + + αρ θ + ∇× +

ε ∂
u u ω  

02 1( ) ( )
4

ρ
× + ∇× ×

ε π
u Ω h H , (10) 

 
2

0 ( ' ') ( . ) ' 2kj k
t

∂
ρ = ε + β ∇ ∇ + γ ∇ + ∇× −

∂ ε
ω ω ω u ω , (11) 

 
[ ]0 (1 )s sC C

tν

∂θ
ρ ε + ρ − ε =

∂
 

2
0'( )T z zk C uν∇ θ − δ ∇× β + ρ βω , (12) 

 
2( )

t
∂

ε = ∇ × × + εη∇
∂
h u H h , (13) 

and 
 

. 0∇ =h  (14) 
 
Where, the non-linear terms ( . ) , ( . ) ,∇ ∇ θu u u  

.( )∇θ ∇×ω  and ( . )∇u ω  in Equations 9-14 are 
neglected (using the first order approximations) as 
the perturbations applied on the system are 
assumed to be small, the second and higher order 
perturbations are negligibly small and only linear 
terms are retained. 
     Now, it is usual to write the balance equations 
in a dimensionless form, scaling as 
 

2
0( , , ) ( *, *, *) , *, *,
d

x y z x y z d t t d
ρ

= = θ = β θ
μ

 

2 2 2
0

*, *, *, *T T Tx x x
p p

d d d d
μ μ

= = = =
ρ

u u ω ω Ω Ω , 

2
*.Tx

d
μ⎛ ⎞= ⎜ ⎟

⎝ ⎠
h h  

 
and then removing the stars (*) for convenience, 
the non-dimensional form of Equations 9-14 
become 
 

. 0∇ =u  (15) 
 
1 1 ˆ(1 ) z

l

p K R e
t P

∂
= − ∇δ − + + θ +

ε ∂
u u  

2 1( ) ( )
4

K∇× + × + ∇× ×
ε π

ω u Ω h H , (16) 

 

1 0
1( . ) ( ) 2∂ ⎛ ⎞= ∇ ∇ − ∇× ∇× + ∇× −⎜ ⎟∂ ε⎝ ⎠

ω ω ω ωj C C K u
t

,(17) 

 
2

1 ( )∂θ
= ∇ θ + − δ ∇×

∂
ωz zEp u

t
, (18) 

 
2

2

( )
t p

∂ ε
ε = ∇ × × + ∇
∂
h u H h , (19) 

 
and 
 

. 0∇ =h  (20) 
 
Where the following new non-dimensional 
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parameters are introduced 
 

1
02 2 2 2

0

' ', , , , ,l
kj kj P K C

d C d d dν

δ γ
= δ = = = =

μρ μ
 

1 2
0

' ' ' , (1 )s sC
C E

Cd ν

ρε +β + γ
= = ε + − ε

ρμ
 

 
4

0 0

1
0

2
0

and is the dimensionless 

Rayleigh number,

 is the dimensionless Prandtl number,

is the dimensionless magnetic Prandtl 

number.

T

T

g d
R

x

p
x

p

⎫αβρ
= ⎪μ ⎪

⎪
⎪

μ ⎪= ⎬ρ ⎪
⎪μ

= ⎪
ρ η ⎪

⎪⎭

 (21) 

 

and we have put 
0

T
T

k
x

Cν

=
ρ

for thermal diffusivity. 

     Here, we consider the boundary conditions for 
both free boundaries and perfectly heat conducting. 
On a free surface, shear stress is zero and the 
velocity normal to the surface is zero. For micro-
rotation boundary conditions, we assume the 
micro-rotation to be zero on the surface. Thus, the 
dimensionless boundary conditions are 
 

2

20, 0, 0, 0z
z

u
u

z
∂

= = = θ =
∂

ω  at 0z =  and 1z = . (22) 

 
 
 

4. DISPERSION RELATION 
 
Applying the curl operator twice to Equation 16 
and taking the z-component, we get 
 

2 2
2 2

2 2

1 1 (1 )z z
l

u R K u
t Px y

⎛ ⎞∂ ∂ ∂
∇ = + θ − + ∇⎜ ⎟ε ∂ ∂ ∂⎝ ⎠

 

2 2' 2 ( )
4

z
z z

HK h
z z

∂ζ ∂
+ ∇ Ω − Ω + ∇

ε ∂ π ∂
 (23) 

 
Where, 
 

2 2 2
2

2 2 2
', ( )

∂ω⎛ ⎞∂ω∂ ∂ ∂
∇ = + + Ω = ∇× = −⎜ ⎟∂ ∂∂ ∂ ∂ ⎝ ⎠

ω y x
z z x yx y z

 

and 

( )
∂⎛ ⎞∂

ζ = ∇× = −⎜ ⎟∂ ∂⎝ ⎠
u y x

z z

u u
x y

 is the z-component of 

vorticity. 
     Applying the curl operator once to Equations 
16, 17 and 19 and taking z-component, we get 
 
1 1 2(1 )

4
z z z

z
l

u HK
t P z z

∂ζ ∂ ∂ξ
= − + ζ + Ω +

ε ∂ ε ∂ π ∂
 (24) 

 

2 2
0

'
' '1 2z
z z zj C K u

t
∂Ω ⎡ ⎤= ∇ Ω − ∇ + Ω⎢ ⎥∂ ε⎣ ⎦

 (25) 

 
2

2

∂ξ ∂ζ ε
ε = + ∇ ξ
∂ ∂

z z
zH

t z p
 (26) 

 

Where, ( ) y x
z z

h h
x y

∂⎛ ⎞∂
ξ = ∇ × = −⎜ ⎟∂ ∂⎝ ⎠

h  is the z-

component of current density. 
 

     The linearized form of Equation 18 is 
 

2
1

'
z zEp u

t
∂θ

= ∇ θ + − δ Ω
∂

 (27) 

 
and the z-component of Equation 19 is 
 

2

2

z z
z

h u
H h

t z p
∂ ∂ ε

ε = + ∇
∂ ∂

 (28) 

 
If the medium adjoining the fluid is electrically 
non-conducting, then the boundary conditions are 
 

2

0, 0, 0, 0, 0,z z z
z z

u h
u

z z z
∂ ∂ζ ∂

= = = ξ = =
∂ ∂ ∂

 

' 0 and 0zΩ = θ = at 0z =  and 1z = . (29) 
 
In Equation 25 for spin, the coefficients 0C  and K  
account for spin diffusion and coupling between 
vorticity and spin effects respectively. 
     Analyzing the disturbances into normal modes, 
we assume that the perturbation quantities are of 
the form 
 

', , , , ,z z z z zu h⎡ ⎤ζ Ω ξ θ =⎣ ⎦  

[ ]( ), ( ), ( ), ( ), ( ), ( ) exp( )x yU z Z z G z X z z B z ik x ik y tΘ + + σ , 
(30) 
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Where, σ  is the stability parameter which is, in 
general, a complex constant and 2 2

x yk k k= +  is 
the wave number. 
     Following the normal mode analysis, the 
linearized perturbation dimensionless equations are 
 

2 2 21( ) (1 )
l

D k K U Rk
P

⎡ ⎤σ
− + + = − Θ +⎢ ⎥ε⎣ ⎦

 

2 2 2 22( ) ( )
4
HK D k G Dz D k DB− − Ω + −

ε π
, (31) 

 
1 1 2(1 )

4l

HK Z DU DX
P

⎡ ⎤
σ + + = Ω +⎢ ⎥ε ε π⎣ ⎦

, (32) 

 
2 2 1 2 22 ( ) ( )l A D k G A D k U−⎡ ⎤σ + − − = − ε −⎣ ⎦ , (33) 

 
2 2

1 ( )Ep D k U G⎡ ⎤σ − − Θ = − δ⎣ ⎦  (34) 
 

2 2 1

2

1 ( )D k X H DZ
p

−⎡ ⎤
σ − − = ε⎢ ⎥
⎣ ⎦

, (35) 

 
and 
 

2 2 1

2

1 ( )D k B H DU
p

−⎡ ⎤
σ − − = ε⎢ ⎥
⎣ ⎦

 (36) 

 
Where, 
 

0

,A Kl j A
K C

= =   

 
and 
 

dD
dz

≡ . 

 
Here, the micropolar coefficient A  is the ratio 
between the micropolar viscous effects and 
micropolar diffusion ones. 
     Now, for finding the dispersion relation, 
diminishing , ,Z BΘ  and G  from Equations 31-36, 
we obtain 
 

2 2 1 1( ) (1 )
l

D k K
P

−⎡ ⎤
− σε + +⎢ ⎥

⎣ ⎦
 

2 2 2 2
1 ( ) 2 ( )Ep D k l A D k⎡ ⎤ ⎡ ⎤σ − − σ + − −⎣ ⎦ ⎣ ⎦  

2 2

2

1 ( )D k
p

⎡ ⎤
× σ − −⎢ ⎥
⎣ ⎦

 

2 1
1 2 2 2

2

1 1(1 ) ( )
4l

HK D k D U
P p

−
−⎧ ⎫⎡ ⎤ ⎡ ⎤ ε⎪ ⎪σε + + σ − − −⎨ ⎬⎢ ⎥ ⎢ ⎥ π⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

 

2Rk= −  
2 1

1 2 2 2

2

1 1(1 ) ( )
4l

HK D k D
P p

−
−⎧ ⎫⎡ ⎤ ⎡ ⎤ ε⎪ ⎪σε + + σ − − −⎨ ⎬⎢ ⎥ ⎢ ⎥ π⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

 

2 2 1 2 22 ( ) ( )l A D k A D k−⎡ ⎤× σ + − − + δε −⎣ ⎦  

2 2

2

1 ( )D k U
p

⎡ ⎤
σ − −⎢ ⎥
⎣ ⎦

 

1 2 2 2 2 2
1( ) ( )kA D k Ep D k− ⎡ ⎤− ε − σ − −⎣ ⎦  

2 2

2

1 ( )D k
p

⎡ ⎤
σ − −⎢ ⎥
⎣ ⎦

 

2 1
1 2 2 2

2

1 1(1 ) ( )
4l

HK D k D U
P p

−
−⎧ ⎫⎡ ⎤ ⎡ ⎤ ε⎪ ⎪× σε + + σ − − −⎨ ⎬⎢ ⎥ ⎢ ⎥ π⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

2 2 2 2 2 2
14 ( ) 2 ( )Ep D k l A D k− ⎡ ⎤ ⎡ ⎤− Ω ε σ − − σ + − −⎣ ⎦ ⎣ ⎦  

2
2 2 2

2

1 ( )D k D U
p

⎡ ⎤
σ − −⎢ ⎥
⎣ ⎦

 

2 1
2 2 2 2 2 2

1( ) ( ) 2 ( )
4

H D k Ep D k l A D k
−ε ⎡ ⎤ ⎡ ⎤+ − σ − − σ + − −⎣ ⎦ ⎣ ⎦π

1 2 2

2

1 1(1 ) ( )
l

K D k
P p

−⎧⎡ ⎤ ⎡ ⎤⎪× σε + + σ − −⎨⎢ ⎥ ⎢ ⎥
⎪ ⎣ ⎦⎣ ⎦⎩

 

2 1
2 2

4
H D D U

− ⎫ε
− ⎬

π ⎭
 (37) 

 
The boundary conditions (29) transform to  
 

2 0, 0, 0, 0, 0, 0U D U DZ X G DB= = = Θ = = = =

(38) 
 
at 0z =  and 1z =  
 
Using (38), Equations 31-36 give 
 

2 2 3 2 30, 0, 0, 0, 0D D G D Z D X D BΘ = = = = = (39) 
 
at 0z =  and 1z = . 
 
Differentiating (31) twice with respect to z and 
using (39), it can be shown that 4 0D U = , i.e., all 
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even order derivative of U vanish on the 
boundaries. 
     Now, solutions of Equations 31-36 must be 
sought which satisfy the boundary conditions (38) 
and (39). 
     The proper solutions for U  belonging to the 
lowest mode, satisfying boundary conditions (38) 
and (39) is given by 
 

0 sinU U z= π   (40) 
 
Where 0U  is a constant. 
     Substituting (40) in (37), we get 
 

2 1
2 1

2

1 (1 )
4l

b HRk K
P p

−
−⎧ ⎫⎡ ⎤ ⎡ ⎤ πε⎪ ⎪σε + + σ + +⎨ ⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭
 

1

2

2 bl A b Ab
p

− ⎡ ⎤
⎡ ⎤σ + + −δε × σ +⎢ ⎥⎣ ⎦

⎣ ⎦
 

[ ] [ ]1
1

1 (1 ) 2
l

b K Ep b l A b
P

−⎡ ⎤
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2 1
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1 (1 )
4l

b HK
P p

−
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 (41) 

 
Where, 
 

2 2b k= π + . 
 
Equation 41 is the required dispersion 
relation studying the effect of medium 
permeability, rotation and magnetic field of 
the system. 
     In the absence of rotation ( 0)Ω = , Equation 41 
reduces to 

2 1

2

2bRk l A b Ab
p

−⎡ ⎤
⎡ ⎤σ + σ + + −δε =⎢ ⎥ ⎣ ⎦

⎣ ⎦
 

[ ]1
2

b Ep b
p

⎡ ⎤
σ + σ +⎢ ⎥
⎣ ⎦

 

[ ] 1 1 212 (1 )
l

l A b b K b KA b
P

− −⎡ ⎤
× σ + + ε σ + + − ε⎢ ⎥

⎣ ⎦
 

[ ]1
2

bEp b
p

⎡ ⎤
× σ + σ +⎢ ⎥

⎣ ⎦
 

2 1
2

1( ) ( 2 )
4

H b Ep b l A b
−πε

+ + σ σ+ +  (42) 

 
A result derived by [18]. 
     In the absence of magnetic field ( 0)H = , 
Equation 41 reduces to 
 

[ ] [ ]
2

1
1

1 (1 ) 2
l

b K Ep b l A b
P

σε σ σ−⎡ ⎤
+ + + + + =⎢ ⎥

⎣ ⎦
 

2 1 11 (1 ) [ 2 ]
l

Rk K l A b Ab
P

σε σ δε− −⎡ ⎤
+ + + + −⎢ ⎥

⎣ ⎦
 

[ ]1 2 1
1

1 (1 )
l

KA b Ep b K
P

ε σ σε− −⎡ ⎤
+ + + +⎢ ⎥

⎣ ⎦
 

[ ] [ ]2 2 2
14 2Ep b l A bπ ε σ σ−− Ω + + +  

 
A result derived by [Sharma, et al [16], Equation 
31]. 
     In the absence of both magnetic field and 
rotation, Equation 41 reduces to 
 

[ ] [ ]1
1

1 (1 ) 2
l

b b K Ep b l A b
P

ε σ σ−⎡ ⎤
+ + + + + =⎢ ⎥

⎣ ⎦
 

2 1[ 2 ]Rk l A b Abσ δε −+ + − [ ]1 2
1KA b Ep bε σ−+ +  

 
a result derived by [Sharma, et al [11], Equation 
28]. 
 
 
 

5. STABILITY OF THE SYSTEM AND 
OSCILLATORY MODES 

 
Here, we examine the possibility of the oscillatory 
modes, if any, on stability problem due to the 
presence of rotation, magnetic field, medium 
permeability and micropolar parameters. 
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     Multiplying Equation 31 by *U , the complex 
conjugate of U  and integrating w.r.t. z  between 
the limits 0z =  to 1z =  and making use of 
Equations 32 to 36 with the help of boundary 
conditions (38) and (39), we get 
 

1
1 (1 )

l

K I
P

⎡ ⎤σ
+ + −⎢ ⎥ε⎣ ⎦

 

( ){ }12
1 2 3 0

* *Rk Ep I I G dzσ + + δ Θ∫  

1
4 5 6

2

* 1 1(1 )
4l

K I I I
P p

−⎡ ⎤ ⎛ ⎞ε
+ ε σ + + + σ +⎜ ⎟⎢ ⎥ π ⎝ ⎠⎣ ⎦

 

{ }7 8 9 10
2

* * 1( 2 ) 0
4

⎛ ⎞ε ε
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K l A I I I I
A p

(43) 

 
Where, 
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3 40 0

1 2
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1 2 2 2
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1 2 2 2
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1 2 2 2
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2 2 2 2 4 2
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| | | | , | | ,

( | | | | ) , | | ,

| | ,

| | | | ,

| | ,

| | | | ,

| | | |
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I DU k U dz I dz

I D k dz I Z dz

I X dz

I DX k X dz

I G dz

I DG k G dz

I DB k B dz

I D B k DB k B

= + = Θ

= Θ + Θ =

=
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∫ ∫

∫ ∫

∫

∫

∫

∫

∫

1

0
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⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎤ ⎪⎣ ⎦
⎪⎭

∫

 (44) 

 
The integrals 1I  to 10I  are all positive definite. 
Putting r iiσ = σ + σ  and equating the real and 
imaginary parts of Equation 43, we obtain 
 

2
1 4 5 9 1 2 7

1 ( ) ( )
4 r

KI I I I Rk Ep I l I
A

ε ε⎡ ⎤+ + + − − σ⎢ ⎥ε π⎣ ⎦
 

 

2
1 4 3

(1 ) ( )
l

K I I Rk I
P

⎡ +
= − + − +⎢

⎣
 

 

6 10 7 8
2

1 ( ) (2 )
4

KI I AI I
p A

⎤ε ε
+ − + ⎥π ⎦

 (45) 

and 
 

2
1 4 1 2

1 ( )I I Rk Ep I⎡ − + +⎢ε⎣
 

5 9 7( ) 0
4 i

K lI I I
A

ε ε ⎤− + σ =⎥π ⎦
 (46) 

 
Where, for the sake of convenience, we have taken 

0δ = , i.e., absence of coupling between spin and 
heat flux.  
     It is evident from Equation 45 that rσ  is 
positive or negative. The system is, therefore, 
stable or unstable. It is clear from Equation 46 that 

iσ  may be zero or non-zero, meaning that modes 
may be non-oscillatory or oscillatory. In the 
absence of rotation and magnetic field, Equation 
46 reduces to 
 

2
1 1 2 7

1 0i
K lI Rk Ep I I
A
ε⎡ ⎤+ + σ =⎢ ⎥ε⎣ ⎦

 (47) 

 
and the terms in the bracket are positive definite. 
Thus 0iσ =  which means that oscillatory modes 
are not allowed and the principle of exchange of 
stabilities (PES) is satisfied for micropolar rotating 
fluids heated from below saturating a porous 
medium in the absence of rotation, magnetic field 
and coupling between spin and heat flux ( 0δ = ). 
Thus, oscillatory modes are introduced due to the 
presence of rotation and magnetic field which were 
non-existence in their absence. The presence of 
coupling between spin and heat flux may also 
introduce oscillatory modes. 
 
5.1. Effect of Magnetic Field   In the absence 
of rotation ( 0Ω = ) Equation 46 become 
 

2
1 9 1 2 5 7

1 0
4 4 i

K lI I Rk Ep I I I
A

ε ε ε⎡ ⎤− + + + σ =⎢ ⎥ε π π⎣ ⎦
 (48) 

 
Equation 48 must be satisfied at the marginal state 
since 0rσ = . Now, for the principle of exchange of 
stabilities (PES) to be valid at the marginal state, 
we must have 0iσ = , which implies that the terms 
in the bracket of Equation 48 must be positive 
definite. To prove this, Equation 36 and 0iσ =  
yield 
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2 2 1

2

1 ( )D k B H DU
p

−− − = ε  (49) 

 
Multiplying both sides of Equation 49 by *B  the 
complex conjugate of B , integrating the resulting 
equation over the vertical range of z and separating 
the real parts of both the sides of equations 
obtained, yield 
 

1 12 2

0 0
2

* *1 ( ) Re HB D k B dz B DU dz
p

− − =
ε∫ ∫  

 
or 
 

1

9 0
2
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=
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Now, 
 

1 1
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1 2
9 0
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Equations 50 and 51 give 
 

1 2
9 9 0

2

1 | |HI I DU dz
p

≤
ε ∫  

 
Which implies 
 

2 1 2
9 22 0

2

1 | |HI p DU dz
p

≤
ε ∫  (52) 

 
Also, 
 

1 12 2 2 2
1 0 0

| | | | | |⎡ ⎤= + ≥⎣ ⎦∫ ∫I DU k U dz DU dz  (53) 

 
Making use of Equations 52 and 53 in Equation 48, 

we get 
 

2
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But if 
2 2

2 1
4

H p
<

π
, then terms in the bracket of 

Equation 48 are positive definite, which implies 
that 0iσ =  and hence the necessary conditions for 
the validity of the principle of exchange of 
stabilities (PES) in thermal instability of 
micropolar fluids in porous medium in the 
presence of magnetic field is 
 

2
2 1

4
H p⎛ ⎞

<⎜ ⎟
π⎝ ⎠

 

 
or 
 

2

0

1
4

H⎛ ⎞μ
<⎜ ⎟⎜ ⎟ρ η π⎝ ⎠

, 

 
Where 
 

2
0

p μ
=
ρ η

 

 
or 
 

02
H

ρ η
< π

μ
 

 
Thus, in the absence of coupling between spin and 
heat flux (i.e., 0δ = ), rotation ( 0)Ω =  and in the 
presence of magnetic field ( 0H ≠ ), the necessary 
conditions for existing PES, i.e., non-oscillatory 
modes, i.e., non-existence of overstability at the 
marginal state is 
 

02
H

ρ η⎛ ⎞
< π⎜ ⎟μ⎝ ⎠

 (54) 

 
5.2. Combined Effect of Rotation and 
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Magnetic Field   We may write Equation 46 as 
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Equation 32 and 0iσ =  yields 
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 (56) 

 
Multiplying both sides of Equation 56 by *Z  the 
complex conjugate of Z , integrating the resulting 
equation over the vertical range of z and separating 
the real parts of both the sides of equation so 
obtained, we get 
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Equations 52 and 57 together gives 
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Also, 
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Equations 58 and 59 together gives 
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Thus the terms within the bracket of Equation 55 
are positive definite if 
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< π −⎨ ⎬μ ε +⎩ ⎭

 (61) 

 
Where, 
 

1
2l

k
P

d
=  

 
Which implies that 0iσ = and hence Equation 61 is 
the necessary condition for the validity of the 
principle of exchange of stabilities (PES) in 
thermal instability of micropolar fluids in porous 
medium in the presence of magnetic field and 
rotation both. 
 
5.3. Effect of Rotation   Similarly, under the 
effect of only rotation ( 0, 0HΩ ≠ = ) the condition 
(61) reduces to 
 

2

1

(1 )
2

d K
k

ε +
Ω <  (62) 

 
for the validity of PES. 
 
 
 

6. THE CASE OF OVERSTABILITY 
 
The present section is devoted to find the 
possibility that the observed instability may really 
be overstability. Let us put r iiσ = σ + σ , where 
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,r iσ σ  are real, it being remembered that σ  is in 
general, a complex constant. The marginal state is 
reached when 0rσ =  implies 0iσ = , one says that 
principle of exchange of stability (PES) is valid 
otherwise we have overstability and then iiσ = σ  at 
marginal stability. Thus putting iiσ = σ  in 
Equation 41, equating real and imaginary parts of 
Equation 41 and eliminating R  between them, we 
obtain 
 

4 3 2
4 1 3 1 2 1 1 1 0 0f C f C f C f C f+ + + + =  (63) 

 
Where, 
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 (65) 

The other coefficients being quite lengthy and not 
needed in the discussion of overstability, has not 
been written here. 
     Since iσ  is real for overstability, the true values 
of 2

1 ( )iC = σ  are positive. The sum of roots of 
Equation 63 is 3 4/f f−  and if this is to be negative, 
then 3 0f >  (because 4 0)f > . 
     It is clear from (65) that 3f  is always positive if 
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1 1l l
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and 
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Which implies that 
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 (66) 

 
Thus for the above conditions, overstability can not 
occur and the principle of exchange of stabilities is 
valid. Hence the above conditions are the sufficient 
conditions for the non-existence of overstability, 
the violation of which does not necessarily imply 
the occurrence of overstability. 
 
6.1. Particular Cases 
 
1. In the absence of magnetic field condition 
(66) reduces to 
 

10 , 2KEp
A
ε

< δ < <  and (1 )
2 l

K b
P

+ ε
Ω <

π
 (67) 

 
2. In the absence of coupling between spin and 
heat flux ( 0)δ = , magnetic field ( 0=H ), rotation 
( 0)=Ω  and for very-very large medium 
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permeability ( lP →∞ ), it is clear from (65) that 3f  
is always positive if 1 2KEp <  (Sharma, et al [11]) 
is automatically satisfied. Then the only possible 
solution of Equation 63 are those with 0iσ =  and 
so overstable solutions will not exist. Thus 
presence of magnetic field, rotation, permeability 
and coupling between spin and heat flux may bring 
overstability in the system 
3. Effect of magnetic field and rotation together 
 
(a) In the absence of coupling between spin and 
heat flux ( 0δ = ) and medium permeability very-
very large ( )lP →∞ : The sufficient conditions for 
the non-existence of overstability become 
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(b) In the presence of coupling between spin and 
heat flux ( 0δ ≠ ) and medium permeability very-
very large ( lP →∞ ), the sufficient conditions for 
non-existence of overstability become 
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7. STATIONARY CONVECTION 
 
When the instability sets in as stationary 
convection and coupling between spin and heat 
flux is present ( 0)δ ≠ , the marginal state will be 
characterized by 0iσ = . Hence putting 0σ =  in 
Equation 41, then the Rayleigh number is given by 
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 (69) 

 
In the absence of rotation ( 0)Ω = , Equation 69 
becomes 
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Which is in good agreement with the result obtained 
by [R. C. Sharma, et al [18], Equation 44]. 
     In the absence of magnetic field ( 0)H = , 
Equation 69 becomes 
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A result derived by [Sharma, et al [16], Equation 37]. 
     In the absence of both magnetic field ( 0)H =  
and rotation ( 0)Ω = , Equation 69 becomes 
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a result derived by Sharma, et al [11] (Equation 
39). 
     Before we investigate the effects of various 
parameters and a discussion of the results depicted 
by figures, we first make assumptions that the 
micropolar parameters ,K A  and δ  are non-negative 
[1,21]. 
     To investigate the effect of medium permeability 
( )lP , rotation ( )Ω , magnetic field (H), coupling 
parameter ( )K , micropolar coefficient 0( / )A K C=  
and micropolar heat conduction parameter ( )δ , we 

examine the behaviour of , , , ,
l

dR dR dR dR dR
dP d dH dK dAΩ

 

and dR
dδ

 analytically. Equation 69 gives 
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Which is always negative if 
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or 
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2

8 bH
p
Ω

>  (70) 

 
This shows that the medium permeability has a 
destabilizing effect when condition (70) holds. In 
the absence of micropolar heat conduction 
parameter ( 0δ = ) and rotation ( 0Ω = ), the medium 
permeability always has a destabilizing effect on the 
system for stationary convection in porous medium. 

From condition (70), it is clear that this phenomenon 
also exists in the absence of magnetic field. 
     Equation 69 also gives 
 
dR
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Which is always positive if 
 

A
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This shows that the rotation has a stabilizing effect 
when condition (71) holds. In the absence of 
micropolar heat conduction parameter ( δ ), the 
rotation always has a stabilizing effect on the system. 
It is clear from (71) that stabilizing effect of rotation 
remains unaffected in the presence of magnetic field. 
     Equation 69 also yields 
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Which is always positive if 
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>  and 
A
ε
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This shows that the magnetic field has a stabilizing 
effect when conditions (72) hold. In the absence of 
micropolar heat conduction parameter and rotation, 
the magnetic field always has a stabilizing effect, 
on the system. 
     It can easily be derived from Equation 69 that 
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2 1

1
{2 (1 )}
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ε
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This shows that coupling parameter has a 
stabilizing effect when conditions (73) hold. In the 
absence of rotation and in a non porous medium, 

(73) yields that dR
dK

 is always positive, thereby the 

stabilizing effect of coupling parameter. It is clear 
from (73) that stabilizing behaviour of K  is 
independent of presence of magnetic field. 
It follows from Equation 69 that 
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Which is always positive if 
 

lPδ >  (74) 

This shows that the micropolar coefficient A  has a 
stabilizing effect when condition (74) holds. Thus 
the stabilizing behaviour of micropolar coefficient 
is virtually unaffected by magnetization parameter 
( )H  but is significantly affected by micropolar 
heat conduction parameter ( )δ . The stabilizing 
effect of micropolar coefficient ( )A  also implies 
the destabilizing effect of spin diffusion (couple 
stress, 0 /C K A= ) parameter which has been found 
earlier by many authors for micropolar 
ferromagnetic fluids [21-23]. 
     Equation 69 also yields 
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Which is always positive if 
 
1

l

A
P

>
ε

 (75) 

 
This shows that the micropolar heat conduction 
parameter ( )δ  has a stabilizing effect when 
condition (75) holds. Here we also observe that in 

a non-porous medium, dR
dδ

 is always positive, 

implying thereby the stabilizing effect of 
micropolar heat conduction parameter. Thus, we 
have seen that the stabilizing behaviour of 
micropolar heat conduction is virtually unaffected 
by effect of magnetic field. 
In article 9, the dispersion relation (69) is also 
analyzed numerically. Marginal instability curves 
have been plotted for stationary condition by 
giving some numerical values to the dimensionless 
parameters to depict the stability characteristics in 
the presence and absence of micropolar heat 
coupling parameter ( )δ . 
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8. VARIATIONAL PRINCIPLE 
 
A Variational Principle can be established for the 
present problem following Chandrasekhar [13]. 
Let one of the characteristic values be iσ  and let 
the corresponding solutions be denoted by a 
subscript ‘ i ’, then from Equations 15-20 after 
using (30), we have 
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i i
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 (77) 

 

Where L  is the form of ( )F z  in pδ  and D
z
∂

≡
∂

. 

     Let jσ  be a characteristic value different from 

iσ , and let subscript ‘ j ’ distinguishes the 
corresponding solutions. We multiply Equations 76 
and 77 respectively by jDU  and jU  and integrate 
them with respect to z  from 0z =  to 1z =  using 
the boundary conditions 
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Further, using Equations 32-36, putting i j=  and 
suppressing the subscript, yields 
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Now we will show below that Equation 79 
provides a basis for the variational formulation of 
the problem. 
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(80) 
 
With the help of (80), Equation 79 can be written as 
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1 3 6 8 11 13 2[ ]J J J J J J J−σ − − + + + − +  
4 5 7 9 10 12 14 0J J J J J J J+ + − + − − =  (81) 

 
Let us now consider the variations δσ  in σ caused 
by the first order small variations 

, , ,U G Xδ δΘ δ δ and Bδ in U, , , ,G Z XΘ  and B 
respectively. Further, we assume that 

, , ,U G Zδ δΘ δ δ  and Bδ  satisfy the boundary 
conditions (78). The changes in , , , ,U G Z XΘ  and 
B lead to the corresponding changes in '

iJ s , 
denotes by '

iJ sδ . We can analyse these changes 
with the help of Equation 81 which gives, 
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We, now use the expressions for '

iJ s  given by 
(80) to evaluate '

iJ sδ . Integrating Equation 80 by 
parts a suitable number of times and using (78), 
we find 
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 (83) 

 
Combining Equations 82 and 83 and using 
Equations 32 to 36 in it and rearranging the terms, 
we get 
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Further, taking first order perturbations in Equation 
34, integrating and simplifying, we get  
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using Equation 85, Equation 84 reduces to  
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1

0
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2
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in the absence of coupling between spin and heat 
flux ( 0δ = ), we get 
 

0δ σ =  
 
Because the quantity within [  ] on the L.H.S. of 
Equation 86 can not vanish. Therefore Equation 79 
provides a basis for variational formulation of the 
problem under investigation. 
 
 
 

9. NUMERICAL COMPUTATION 
 
Here in this section, we have plotted the variation 
of thermal Rayleigh number R with lP , Ω , H  and 
micropolar parameters ,K A  and δ  in Figures 2-7. 
     Figures 2-4 represent the plots of thermal 
Rayleigh number R  versus lP  for various values 
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of Ω , R  versus Ω  for various values of wave 
number k  and R versus H  for various values of 
k , respectively, in the presence and absence of 

micropolar heat conduction parameter δ . 
     Figure 2 depicts that as Pl increases, R 
decreases for small values of Ω, whereas for the 
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                                                   (a)                                                                                (b) 
 

Figure 2. Marginal instability curve for variation of rayleigh number R  versus lP  for 0.5, 1,kε = =  

A = 0.5, 2 4p = , 1 2, 1, 5 ,= = =p E H G  (i)  0.05δ = , (ii) 0δ = . 
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Figure 3. Marginal instability curve for variation of Rayleigh number R  versus Ω  for 0.5, 1,Kε = = , 

A = 0.5, 0.03lP = , 2 4p = , 1 2, 1, 5p E H G= = = , (i) 0.05δ = , (ii) 0δ = . 
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higher values of Ω, R decreases for lower value of 
Pl and then increases for higher values of lP , in the 
presence and absence of δ , depicting the 
destabilizing effect of the medium permeability for 
lower values of the rotation parameter Ω , whereas 
for sufficiently higher values of rotation parameter, 

the medium permeability may have a destabilizing 
or a stabilizing effect, which are in good agreement 
with the result obtained earlier [21,24-27]. 
     Figure 3 and 4 represent the plot of thermal 
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Figure 4. Marginal instability curve for variation of Rayleigh 
number R  versus H  for 0.5, 1,Kε = =  A = 0.5, 10Ω =

riv min-1, 2 4p = , 1 2, 1,p E= =  0.03lP = , (i) 0.05δ = , 

(ii) 0δ = . 
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Figure 5. Marginal instability curve for variation of Rayleigh 
number R  versus K  for 0.5, 5 ,H Gε = =  A = 0.5, 

10Ω =  riv min-1, 2 4p = , 1 2, 1, 0.03lp E P= = = and 

δ  = 0.05. 
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Figure 6. Marginal instability curve for variation of Rayleigh 
number R  versus A  for 0.5, 1, 5 ,K H Gε = = =  10Ω =
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Rayleigh number R  versus Ω  and R  versus 
magnetic field H  respectively, for various values 
of the wave number k , in the presence and 
absence of micropolar heat conduction parameter 
δ . These figures indicate that the Rayleigh 
number R  increases with the increase in rotation 
parameter (Ω ) and magnetic field ( H ), 
respectively, in the presence and absence of δ , 
indicating that the onset of instability is delayed by 
the presence of the rotation and magnetic field, 
depicting the stabilizing effect of rotation and 
magnetic field on the stationary convection, which 
are in good agreement with the results obtained 
earlier [15-19]. The Figures 2-4 also indicate that 
higher values of R  are needed for the onset of 
convection in the presence of δ , hence justifying 
the stabilizing behaviour of micropolar heat 
conduction parameter δ . This can also be 
observed in Figure 7. It is also noted from Figures 
2-4 that the Rayleigh number in the absence of 
micropolar heat conduction parameters is less than 
the Rayleigh number for stationary convection 
(i.e., in the presence of micropolar heat conduction 
parameter) for a fixed wave number. 
     Figures 5-7 represent the plots of thermal 
Rayleigh R  versus coupling parameter K , 

micropolar coefficient ( A ) and micropolar heat 
conduction parameter δ  for various values of k . 
These figures indicate the value of R  increases with 
the increase in the value of K , A  and δ , 
respectively, depicting the stabilizing effect of 
coupling parameter, micropolar coefficient and 
micropolar heat conduction parameter, respectively. 
The stabilizing behaviour of micropolar coefficient 
A  also implies the destabilizing effect of spin 
diffusion (couple stress, 0 /C K A= ) parameter. 
The stabilizing behaviour of coupling parameter 
( K ), micropolar heat conduction parameter (δ ) 
and destabilizing behaviour of spin diffusion 
parameter 0( )C  has been depicted earlier by many 
authors [21-23]. 
 
 
 

10. DISCUSSION OF RESULTS 
 
In order to investigate our results, we must review 
the results and its physical applications. 
     It is well known that the rotation introduces 
vorticity into the fluid in case of Newtonian fluid 
[13]. Then the fluid moves in the horizontal 
planes with higher velocities. On account of this 
motion, the velocity of the fluid perpendicular to 
the planes reduces, and hence delay the onset of 
convection implying stabilization behaviour of 
rotation as in Figure 3. When the fluid layer is 
assumed to be flowing through an isotropic and 
homogeneous porous medium, free from rotation 
or small rate of rotation, then the medium 
permeability has a destabilizing effect. As 
medium permeability increases, the void space 
increases and as a result of this, the flow 
quantities perpendicular to the planes will clearly 
be increased. Thus, increase in heat transfer is 
responsible for early onset of convection, thus 
increasing lP  lead to decrease in R  implying the 
destabilizing effect of lP  in the absence of 
rotation or for small value of rotation (Figure 2). 
In case of high rotation, the motion of the fluid 
prevails essentially in the horizontal planes. This 
motion increased as medium permeability 
increases. Thus the component of the velocity 
perpendicular to the horizontal planes reduces, 
leading to delay in the onset of convection. 
Hence, the destabilization effect of medium 
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permeability changes to stabilizing effect in case 
of high rotation, implying the destabilizing or 
stabilizing effect of medium permeability in case 
of high rotation (Figure 2). 
     When the magnetic field permeating the 
medium is considerably large, it induces viscosity 
into the field, and the magnetic lines are distorted 
by the convection, these magnetic lines hinder the 
growth of disturbances, leading to the delay in the 
onset of instability. However, the viscosity 
produced by the magnetic field lessens the rotation 
of the fluid particles; thus controlling the 
stabilizing effect of K  [28]. Similar phenomenon 
has been noticed, when the system is subjected to 
both rotation and magnetic field [13]. 
     When the fluid is heated from below ( 0)R > , 
the onset of instability is delayed as K, A or δ  
increases or it is hastened as spin diffusion 

0C (= /K A ) increases. The mechanism underlying 
this physical phenomenon can be understood by 
having a probe into the nature of micropolar 
fluids. 
     The increase in K  indicates the increasing 
concentration of microelements and as a result of 
this, a greater part of the energy of the system is 
consumed by these elements in developing 
gyration velocities in the fluid, leading to delay on 
the onset of convection, implying thereby the 
stabilizing effect of K  (Figure 5). 
     As value of micropolar coefficient A  increases, 
the spin diffusion, i.e., couple stress ( 0C ) decreases 
which causes the microrotation to increase and 
hence makes the system more stable, depicting the 
stabilizing effect of A  (Figure 6) or destabilizing 
effect of spin diffusion parameter ( 0C ). Also when 
δ  increases, the heat induced into the fluid due to 
micro elements is also increased, thus reducing the 
heat transfer from the bottom to the top. The 
decrease in the heat transfer is responsible for 
delaying the onset of instability. Thus increasing 
δ  leads to increase in R . In other words, δ  
stabilizes the flow (Figure 7). 
     Nevertheless, the above phenomenon is true 
whether the magnetic field is present or not. Thus 
the discussion concludes that the stabilizing effect 
of microrotation is controlled by the presence of 
magnetic field, which is in good agreement with 
the results obtained by K. V. Rama Rao [28] in a 
non-porous medium. 

11. CONCLUSIONS 
 
In this paper, thermal convection in a thin 
electrically conducting micropolar rotating fluid 
layer, heated from below in the presence of 
uniform vertical magnetic field, in a saturated 
isotropic and homogeneous porous medium has 
been investigated. The behaviour of various 
parameters such as medium permeability, rotation, 
magnetic field, coupling parameter, all micropolar 
parameters (spin diffusion parameter and 
micropolar heat conduction parameter) on the 
onset of convection has been analysed analytically 
and numerically and the results have been depicted 
graphically in the Figures 2-7. The results show 
that for the case of stationary convection, the 
medium permeability has destabilizing/stabilizing 
effect under certain condition(s), whereas rotation, 
magnetic field and micropolar parameters 
( , ,K A and δ ) have a stabilizing effect under 
certain condition(s). In the absence of micropolar 
heat conduction parameter, rotation and magnetic 
field always has a stabilizing effect on the system, 
whereas in the absence of micropolar heat 
conduction parameter and rotation, medium 
permeability always has destabilizing effect. 
     The principle of exchange of stabilities (PES) is 
found to hold true for the present problem in the 
absence of magnetic field, rotation and micropolar 
heat conduction parameter, whereas in the 
presence of rotation and magnetic field, PES is 
valid under certain conditions. The oscillatory 
modes are introduced due to the presence of 
magnetic field and rotation, which were non-
existence in their absence. The presence of 
micropolar heat conduction parameter may also 
introduce the oscillatory modes. 
     In addition, conditions KEp1 < 2, 

2 1

1 10 min , ,
7

l
A A p Ep

⎧ ⎫⎛ ⎞ε ε⎪ ⎪< δ < −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 and 4 Ω2π < 

(π2+k2) H2 < 8Ω2π, are the sufficient conditions for 
the non-existence of overstability, violation of 
which does not necessarily imply the occurrence of 
overstability. For the medium permeability, very 
very large (P1→∞) and in the absence of 
micropolar heat conduction parameter (δ ), 
rotation and magnetic field, the expected condition 
reduce to KEp1 < 2, which is in good agreement 
with the results obtained earlier [Sharma, et al 
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[11]]. Thus, presence of coupling between spin and 
heat flux, magnetic field, rotation and medium 
permeability may bring overstability in the system. 
     An attempt is also made to apply the variational 
principle for the present problem and found that a 
variational principle can be established for the 
present problem in the absence of coupling 
between spin and heat flux. 
     Thus, from the above analysis, we conclude that 
the micropolar parameters, rotation, magnetic field 
and permeability have a deep effect on the onset of 
convection in porous medium. It is hoped that 
present work will be helpful for understanding 
more complex problems involving the various 
physical effects investigated in the present 
problem. 
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