THERMAL CONVECTION OF ROTATING MICROPOLAR
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Abstract This paper deals with the theoretical investigation of the thermal instability of a thin layer of
electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical
magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained
between two free boundaries using a linear stability analysis theory, and normal mode analysis method.
The principle of Exchange of Stabilities (PES) is found to hold true for the micropolar fluid saturating a
porous medium, heated from below in the absence of magnetic field, rotation and coupling between
thermal and micropolar effects. It is also found that PES is valid in the presence of rotation and magnetic
field under certain conditions. The oscillatory modes are introduced due to the presence of magnetic
field and rotation, which were non-existence in their absence. The presence of coupling between thermal
and micropolar effects may also introduce oscillatory modes. For the case of stationary convection, the
effect of various parameters like medium permeability, rotation, magnetic field (in the presence and
absence of micropolar heat conduction parameter), coupling parameter, micropolar coefficient and
micropolar heat conduction parameter has been analyzed and results are depicted graphically. The
sufficient conditions for the non-existence of overstability are also obtained. In this paper, an attempt is
also made to apply the variational principle for the present problem and found that the said principle can
be established for the present problem in the absence of coupling between spin and heat flux.

Keywords  Thermal Convection, Medium Permeability, Rayleigh Numbers, Porous Medium,
Micropolar Fluids, Hydromagnetics, Rotation Effect
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1. INTRODUCTION presented by Eringen [1-3]. These fluids have such
internal structures in which coupling between the
A general theory of micropolar fluids has been spin of each particle and the macroscopic velocity
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field is taken into account. Compared to the
classical Newtonian fluids, micropolar fluids are
characterised by two supplementary variables, i.e.,
the spin, responsible for the micro-rotations and
the micro-inertia tensor describing the distributions
of atoms and molecules inside the fluid elements in
addition to the velocity vector. Liquid crystals,
colloidal fluids, polymeric suspension, animal
blood, etc. are few examples of micropolar fluids.
Kazakia, et al [4] and Eringen [5] extended this
theory of structure continue to account for the
thermal effects.

Micropolar fluids instability has become an
important field of research now a days. The theory
of thermomicropolar convection began with Datta,
et al [6] and interestingly continued by Ahmadi
[7]. Labon, et al [8], Bhattacharya, et al [9], Payne,
et al [10] and Sharma, et al [11]. The above works
give a good understanding of thermal convection
in micropolar fluids. The numerical solution of
thermal instability of a rotating micropolar fluid
has been discussed by Sastry, et al [12]. A detailed
account of thermal convection in a horizontal thin
layer of Newtonian fluid heated from below, under
varying assumptions of hydromagnetics, has been
given by Chandrasekhar [13].

The effect of rotation on thermal convection in
micropolar fluids is important in certain chemical
engineering and biochemical situations. Qin, et al
[14] have considered a thermal instability
problem in a rotating micropolar fluid. They
found that depending upon the values of various
micropolar parameters and low values of Taylor
number, the rotation has a stabilizing effect. The
effect of rotation on thermal convection in
micropolar fluids has also been studied by
Sharma, et al [15], whereas the effect of rotation
on thermal convection in micropolar fluids in
porous medium has been considered by Sharma,
et al [16]. The effects of magnetic field on the
micropolar fluids heated from below have been
studied by Sharma, et al [17], they also have
studied the effects of magnetic field on the
micropolar fluids heated from below in porous
medium [18]. They found that in the presence of
various coupling parameters, magnetic field has a
stabilizing effect whereas the permeability has
destabilizing effect on stationary convection. The
thermosolutal convection of micropolar fluids in
hydromagnetics in porous medium has been
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studied by Sharma, et al [19].

The physical properties of comets, meteorites
and interplanetary dust strongly suggest the
importance of porosity in astrophysical context
(McDonnel [20]). Keeping in mind the
importance and applications in geophysics,
astrophysics and biomechanics, the effect of
uniform magnetic field on the thermal convection
in micropolar rotating fluid in porous medium in
the presence and absence of micropolar heat
conduction parameter has been considered in the
present paper. It is hoped that the present study
can serve as a theoretical support to an
experimental investigation.

2. MATHEMATICAL FORMULATION OF
THE PROBLEM

Here, we consider an infinite, horizontal layer of
thickness d of an incompressible, electrically
conducting thin micropolar rotating fluid heated
from below saturating a porous medium (See
Figure 1).

The temperature T at the bottom and top
surfaces z=0 and z=d are T, and T,

respectively and a uniform temperature gradient

dT
o[-|%
taken to be free and perfect conductors of heat.
The gravity field g=(0,0,—g) and uniform

j is maintained. Both the boundaries are

vertical magnetic field intensity H=(0,0,H)

pervade the system. The whole system is assumed
to be acted on by a uniform rotation Q (0,0, Q)

along the vertical axis, which is taken as z -axis.
This fluid layer is assumed to be flowing through
an isotropic and homogeneous porous medium of
porosity ¢ and the medium permeability k . Also

assumed that the external couples and heat
sources are not present. The mathematical
formulation of the motion of micropolar rotating
fluids saturating a porous medium for the above
model are as follows [11,16,18]:

The continuity equation for an incompressible
fluid is

Vq=0 (1
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Figure 1. Geometrical configuration.

The momentum and internal angular momentum
equations for the Darcy model are

po[0q 1 } A
2242 (qV)q| = -Vp-pgé, —— (n+k)q+
- [at ~(aV)q P-pge. (n+k)q

kV><v+2ﬂ(q><Q)+i(V><H)xH, 2)
€ 4n

Jov 1
pOJ[E-‘rE(q’V)V:‘:

(e'+B" V(V.v)+y'V2v+EV><q—2kv 3)
€

The temperature equation is

oT
[p,C,& +p,C,(1—- 8)]5 +p,C.qV)T =
k V2T +8(Vxv).VT “4)
The density equation of state is given by
P =P [1_0°(T _To)] (5)
Where q,v,t,T,a,p,p,, P> P>, €,,m and j denote
respectively, filter velocity, spin (micro rotation),
time, temperature, coefficient of thermal expansion,

fluid density, reference density, density of solid
matrix, pressure, coefficient of viscosity, unit
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vector in z-direction, electrical resistivity and
microinertia constant. The parameters €', B',vy' and
k stand for the micropolar coefficients of
viscosity, C,C,,k, and &' are specific heat at

constant volume, heat capacity of solid matrix,
thermal conductivity and coefficient giving account
of coupling between the spin flux and heat flux
respectively and r =(X, y, z) . The effect of rotation

contributes two terms:

(a) centrifugal force —p7° grad |Qxr|*> and
_ 2p,
(b) Coriolis force —> (q x Q).
g

In Equation 2, p=p, —%po |Qxr| is the

reduced pressure, whereas p, stands for fluid

pressure [21]. When the fluid flows through a
porous medium the gross effect is represented by
Darcy’s law. As a result, the usual viscous term is

replaced by the resistance term {uk_ﬂ} q, where

1
4, k, k and q denote respectively the viscosity
coefficient, micropolar heat conduction coefficient,
medium permeability and the filter velocity.
The Maxwell’s equation yields

S%ZVX((}XH)+81’]V2H (6)
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V.H =0 7

Let us now consider the stability of the system in
the usual way by giving small perturbations on the
initial (rest) state and seeing the reaction of the
perturbations on the system. The initial state is
q=0,v=0,p=p(2),p=p(z) defined as p=

p, [1+apz], and T =T(z) defined as T=-Pz+T,,

where B=- Z—T is the uniform adverse temperature
z

gradient.

3. PERTURBATION EQUATIONS

Let wu(u,,u,u,), ©38,38,06 and h(h,h,h)
denote respectively the perturbations in velocity q,
spin v, pressure p, density p, temperature T and

magnetic field H .
The change in density 8p, caused mainly by the

perturbation 6 in temperature is given by
op =—p,00 )]

Then the Equations 1 to 7 yield the linearized
perturbation equations

Vu=0, )

p, Ou 1 A
— —=-Vép-—(pn+k)u+gap,08 +kVxwm+
c ot p k] (M ) gap,ve,

2P0 (ux @)+ - (Vxh)x H, (10)
Fes 4

.6(1) f It 1v72 k
P ST = () V(V.0) +1'V20 + —V xu ~ ko, (1)

[PiC.o+p.C,(1-0)] 22 =

kTvze_S'(me)zB_'_pOCvuZB’ (12)
ggt_h = Vx(uxH)+enVh, (13)
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and
Vh =0 (14)

Where, the non-linear terms (u.V)u,(u.V)0,
VO.(Vxe) and (uV)e in Equations 9-14 are

neglected (using the first order approximations) as
the perturbations applied on the system are
assumed to be small, the second and higher order
perturbations are negligibly small and only linear
terms are retained.

Now, it is usual to write the balance equations
in a dimensionless form, scaling as

2
%y, 2)= (%, y*, 294, t=Po0 % 9= pder,
u

XT % H'XT %
u=—u", =— , @O=
d P d? P

h = (“dfj.h*

and then removing the stars (*) for convenience,
the non-dimensional form of Equations 9-14
become

5ot =t o,
d2 p0d2

Vu=0 (15)
la—u:—VSp—i(H K)u+ RO€, +
g ot R
2 1
KVxo+ =(uxQ)+—(Vxh)xH, (16)
€ 4
T%’):CIV(V.@)—COVX(VX(D)+ K(lwu—zmj,(ﬂ)
&
Eplgzvzewz ~-3(Vxo),, (18)
e P v uxH) + -V, (19)
ot P,
and
Vh =0 (20)

Where the following new non-dimensional
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parameters are introduced

g,app,d’
WXy
Rayleigh number,

and R = is the dimensionless

is the dimensionless Prandtl number, ; (21)

p =

p, = —H_is the dimensionless magnetic Prandtl
PoM

number.

ke
P C,
Here, we consider the boundary conditions for
both free boundaries and perfectly heat conducting.
On a free surface, shear stress is zero and the
velocity normal to the surface is zero. For micro-
rotation boundary conditions, we assume the
micro-rotation to be zero on the surface. Thus, the
dimensionless boundary conditions are

and we have put x; = for thermal diffusivity.

o’u,
u,=0,—-=0,0=0,6=0 at z=0 and z=1. (22)
z
4. DISPERSION RELATION

Applying the curl operator twice to Equation 16
and taking the z-component, we get

2 2
19y, :R[a—+6—Je—%(l+ K) V2u,
|

¢ ot oy
+KV2Q, - 2% H O (V*h)) (23)
€ 0L 4moz
Where,
2 2 2 , 60)
V2=a_2+6_2+6_29 sz(vx(’))z= _y_a(Dx
ox- oy oz OX oy
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and

ou
¢, =(Vxu), = (—y —%] is the z-component of
ox oy
vorticity.
Applying the curl operator once to Equations
16, 17 and 19 and taking z-component, we get

l%:_i(1+}()€z+£g% +i£ (24)

g ot P € 07 4m oz

T@ -C,V*Q, -K [1 Vi, + 292'} (25)
ot €

T L (26)
ot oz P,

oh,  oh .
Where, &, = (Vxh), = | ——- —| is the z-
OX oy

component of current density.

The linearized form of Equation 18 is

Eplg = V0+u,-5Q, (27)

and the z-component of Equation 19 is

e M _ g gy (28)
ot oz p,

If the medium adjoining the fluid is electrically
non-conducting, then the boundary conditions are

& 5 oh
u =0, D% g oM,
oz oz oz

Q,=0and 6=0 at z=0 and z=1. (29)

In Equation 25 for spin, the coefficients C, and K

account for spin diffusion and coupling between
vorticity and spin effects respectively.

Analyzing the disturbances into normal modes,
we assume that the perturbation quantities are of
the form

[UZ’QZ’QZ'7&Z’9’ hZ] =
[U(2). Z(2),G(2), X(2), ©(2), B(2) |exp(ik, x + ik y +ot),
(30)
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Where, o is the stability parameter which is, in
general, a complex constant and k =,/k’+k’ is

the wave number.
Following the normal mode analysis, the
linearized perturbation dimensionless equations are

(D? —kz){g+%(l+K)}U =—RK’© +
S

K(D® —Kk*)G - 2QDz + 3 (D” ~k?) DB, (31)
€ 4
[lmi(u K)} z-20pu+ M px, (32)
€ P € 4n

[lo+2A-(D* -k*)|G=-Ac (D’ -k)U, (33)

[Epc—(D’-k*)]®@=U -3G (34)
{G—L(Dz —kz)} X —¢'H DZ, (35)
2
and
[0 L kZ)} B=¢'H DU (36)
P,
Where,
|:J*A’ A:£
K C,
and
D Ei.
dz

Here, the micropolar coefficient A is the ratio
between the micropolar viscous effects and
micropolar diffusion ones.

Now, for finding the dispersion relation,
diminishing ©, Z, B and G from Equations 31-36,

we obtain

(D* —k?) {oa-‘ +%(1+ K)}
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[Epo—(D*-k)][lo+2A-(D*-k*)]

x {c—i(D2 —kz)}

2

B ar 7 2 -1
{cgl+L(l+K) o— (D2 k|- HE DZ}U
i R i . ]

~ Rk’
o M1 & L H%'
og +F(1+K) c—— (D" -k%) |- D

| P,

x[lo+2A-(D* —k*)+ 8" A(D* —Kk*)

o- (D =k |U
L 2 i
—kAe™ (D* ~Kk*)’[ Ep,o - (D —k) |

o- (D -k

P,

-1 i _i 2 _ 2 _ﬁ 2
X{Ga +P|(1+K):||:G pz(D k)} = D}U

~40’e” [ Epjo—(D* k) |[lo+2A—(D* -k*)]

P,

[G L —kz)} DU

H4: (D* —k*)[ Ep,o — (D —k*)][lo + 2A— (D> —k*) |

x {[Gsl +i(1 + K):||:G—L(D2 - kz)}
R P,

H2e™
- 4n

+

Dz} DU (37)

The boundary conditions (29) transform to

U=DU=0, DZ=0, ®=0, X =0, G=0, DB=0
(38)

at z=0 and z=1

Using (38), Equations 31-36 give

D’®@=0, D’G=0,D’Z=0, D’X =0, D’B=0(39)
at z=0 and z=1.

Differentiating (31) twice with respect to z and
using (39), it can be shown that D*U =0, i.e., all
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even order derivative of U vanish on the
boundaries.

Now, solutions of Equations 31-36 must be
sought which satisfy the boundary conditions (38)
and (39).

The proper solutions for U belonging to the
lowest mode, satisfying boundary conditions (38)
and (39) is given by

U =U, sinnz (40)

Where U, is a constant.
Substituting (40) in (37), we get

2 -1
Rk> |:GSI+L(1+ K)Mmi}r H me
R P, 4

[|G+ 2A+b —gsflAbJ x {G+£}

P,

=b {681 +%(l+ K)} [Ep,c+b][lo+2A+b]
|

X |:G+£:| {|:68_1 +L(1 + K)} |:G + i} + M}
P, R P, 4

—KAe™'b’ [Ep,c +b] |:G + L}

2

{{cal +l(l+ K)} {c + 3} +H e }
R P, 4

2
+4Q°n’e” [Ep,o +b][lo + 2A+b] |:G + pi}
2

H%'n
+

41 b H2re™!
x{|:68 +E(I+K)}{c+p—j+—4 } 41

Where,

b[Ep,c+b][lo+2A+b]

b=nr’+k>.

Equation 41 1is the required dispersion
relation studying the effect of medium
permeability, rotation and magnetic field of
the system.

In the absence of rotation (Q=0), Equation 41

reduces to

1JE Transactions A: Basics

Rk? {mi} [|c+ 2A+b—og" Ab] =
P,

[MH[Eplﬁb]

2

<[lo+2A+b]| &b+ —(1+K)b | KAgb?
P

><[Ep10+b]{c+p£}

2

H2re™

(b> + Ep,cb) (Ic+2A + b) (42)

A result derived by [18].
In the absence of magnetic field (H= 0),

Equation 41 reduces to

b{agl +%(1+ K)} [Ep,o +b][lo+2A+b]=

Rk? {ag‘l +%(1+ K)}[|a+2A+b—Sg“Ab]

+KAs™'b* [Ep,o +b] {agl +%(1 + K)}
|

-4 e [Ep10'+ b] [|0'+ 2A+ b]

A result derived by [Sharma, et al [16], Equation
31].

In the absence of both magnetic field and
rotation, Equation 41 reduces to

b[s‘b +%(l+ K)}[Epla+b][la+2A+ b]=
|

Rk [lo +2A+b— e ' Ab] +KAs™'b* [Ep,o +b]

a result derived by [Sharma, et al [11], Equation
28].

5. STABILITY OF THE SYSTEM AND
OSCILLATORY MODES

Here, we examine the possibility of the oscillatory
modes, if any, on stability problem due to the
presence of rotation, magnetic field, medium
permeability and micropolar parameters.
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Multiplying Equation 31 by U *, the complex
conjugate of U and integrating w.r.t. z between
the limits z=0 to z=1 and making use of
Equations 32 to 36 with the help of boundary
conditions (38) and (39), we get

c 1
—+—(1+K)|I, -
Zetavly
RK? {(Eplc*lz +1,)+3[] G*@dz}

% 1 € 1
+{s 'c +F(1+K)} |4+4_TE[G|5+D_2I6]

Ke * € * 1
_T{UG +2A) 1 + |8}+E(c l, +p—|mj=0(43)

2

L =] (IDU+K*|U*)dz,1, =] @] dz,
=] (DO +k* |@)dz, I, =] |Z|*dz.
= 1X|* dz,

<[ [IDX >+ | X ] dz,

=N

L= 16/ a, (44)
<[ [IDGI* +K*|G|*]dz,
l,=[ [IDBJ* +Kk*|B|*]dz
and

|10=j0l [ID’B|” +2k* | DB|* +k* |B|* ] dz

The integrals 1, to I, are all positive definite.
Putting o=o0, +io; and equating the real and
imaginary parts of Equation 43, we obtain

1 € Ke
[E(Il + |4)+4_rc(|5 +1,)— szEp1 ) _TI |7:|Gr

_ {(ILK) (I +1,)-RKI, +

g 1 Ke
Ep_2(|6+|10)_7(2A|7+|8):| (45)
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and

{l(ll —1,)+RK*Ep, 1, +
€

€ Kel
E(|5_|9)+T|7:|6i =0 (46)

Where, for the sake of convenience, we have taken
§=0, i.e., absence of coupling between spin and
heat flux.

It is evident from Equation 45 that o, is
positive or negative. The system is, therefore,
stable or unstable. It is clear from Equation 46 that
o, may be zero or non-zero, meaning that modes
may be non-oscillatory or oscillatory. In the
absence of rotation and magnetic field, Equation
46 reduces to

[1I1+Rk2Ep1I2+K—8|I7}ci 0 47)
€ A

and the terms in the bracket are positive definite.
Thus o, =0 which means that oscillatory modes
are not allowed and the principle of exchange of
stabilities (PES) is satisfied for micropolar rotating
fluids heated from below saturating a porous
medium in the absence of rotation, magnetic field
and coupling between spin and heat flux (5=0).
Thus, oscillatory modes are introduced due to the
presence of rotation and magnetic field which were
non-existence in their absence. The presence of
coupling between spin and heat flux may also
introduce oscillatory modes.

5.1. Effect of Magnetic Field In the absence
of rotation (Q = 0) Equation 46 become

1 € € Kel
[;I]—%I9+szEp]I2+EI5+TI7}ci =0 (48)

Equation 48 must be satisfied at the marginal state
since o, =0 . Now, for the principle of exchange of

stabilities (PES) to be valid at the marginal state,
we must have o; =0, which implies that the terms

in the bracket of Equation 48 must be positive
definite. To prove this, Equation 36 and o, =0

yield
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L0 -Kk)B = ¢'H DU (49)

P,

Multiplying both sides of Equation 49 by B" the
complex conjugate of B, integrating the resulting
equation over the vertical range of z and separating
the real parts of both the sides of equations
obtained, yield

—ijl B*(D? —k?) B dz :Reﬂj1 B'DU dz
p 0 £ 0
2
or
—1, = %Rej; B"DU dz (50)

Now,

Re jol B* DUdz <

= [, 1BIIDU |dz

< \/jol|B|2 \/j;|DU|2dz
< \/jO‘ [IDB* +Kk*|B|*]dz \/IO‘ DU |? dz

<J, /I;|DU|2dz (51)

Equations 50 and 51 give

1 H i ;
p—2|9 s?mg /[, IDU* dz

Which implies

1
—Il,< —p, [ |DU|" dz (52)

Also,
= [ [IDU]P+K*|U*]dz > [ |DU P dz (53)

Making use of Equations 52 and 53 in Equation 48,

1JE Transactions A: Basics

we get

1 g’ > Kel
|:;(Il —4—n|9J+Rk2Ep]|2 +E|5 +T |7:|
2 2
> P[I_H—pzjjl |DU | dz +
€ 4r 0

RK’Ep, I, +4i| L }

T’ A
H2p2
But if 2 <1, then terms in the bracket of

4n
Equation 48 are positive definite, which implies
that o, =0 and hence the necessary conditions for
the validity of the principle of exchange of
stabilities (PES) in thermal instability of
micropolar fluids in porous medium in the
presence of magnetic field is

) -

or

2
Hp
<1,
(ponmJ

Where

n
PN

p, =

or

H < 2PN /o
v

Thus, in the absence of coupling between spin and
heat flux (i.e., 8 =0), rotation (Q=0) and in the
presence of magnetic field (H #0), the necessary

conditions for existing PES, i.e., non-oscillatory
modes, i.e., non-existence of overstability at the
marginal state is

H < (z"—Onjﬁ (54)

n

5.2. Combined Effect of Rotation and
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Magnetic Field We may write Equation 46 as

1 g’ »
-l =1, +—1, |+ Rk“Ep1, +
€ 4n

€ Kel
_|5+T|7}si ~ 0 (55)

4r

Equation 32 and o, =0 yields

K17 - 20pu+ 1 px (56)
P € 4n

Multiplying both sides of Equation 56 by Z" the
complex conjugate of Z , integrating the resulting
equation over the vertical range of z and separating
the real parts of both the sides of equation so
obtained, we get

1+K j‘z*Zdz=
PI 0

Re (EII z*DUdz+ij1 Z'DX dzj
g 70 4n 0

or

LRI zp < Eg‘jl ZDU dz‘
P 0 < 0

[“Re(x+y) < |x+y|<|x]+]y]]

IN

§j1|z*||DU\dz
e 0
2Q 1
:TJO|Z||DU|dz
20 1 2 1 2
T\/IO|Z| dz \/j0|DU\ dz

40°P?
e (1+K)>

IN

ie., I, < [ 1DU? dz (57)

Equations 52 and 57 together gives

2 2p2 2.2
('wg—'gjﬁ(z‘m‘ - psz‘Dumz (58)
4n e (1+K) 4n 0

Also,

l, = [ [IDUP+K|U*]dz = [ [DU* dz (59)
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Equations 58 and 59 together gives

{Il—(lfi-ilgﬂ >
4
B 4QZPIZ H2p22 1 5
{1 {82(1+K)2+ = HJO|DU| dz (60)

Thus the terms within the bracket of Equation 55
are positive definite if

4QZP|2 . H2p22 B 1
S(+K)? | 4n

or

H < ZP_oﬂJn{l_—j‘QzP'zQ} (61)
n e (1+K)

Where,

Which implies that o; =0 and hence Equation 61 is

the necessary condition for the validity of the
principle of exchange of stabilities (PES) in
thermal instability of micropolar fluids in porous
medium in the presence of magnetic field and
rotation both.

5.3. Effect of Rotation Similarly, under the
effect of only rotation (Q # 0, H =0) the condition

(61) reduces to

ed’(1+K)
2K,

Q < (62)

for the validity of PES.

6. THE CASE OF OVERSTABILITY
The present section is devoted to find the

possibility that the observed instability may really
be overstability. Let us put o=o0, +ic;, where
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o,, o; are real, it being remembered that o is in

ro

general, a complex constant. The marginal state is
reached when o, =0 implies o, =0, one says that

principle of exchange of stability (PES) is valid
otherwise we have overstability and then o =ic, at
marginal stability. Thus putting o=ioc;, in
Equation 41, equating real and imaginary parts of
Equation 41 and eliminating R between them, we
obtain

f,C'+fC’+f,C’+fC +f, =0 (63)
Where,
C = Giz
1’ 1 1+K
f,=Ib [—) {(Ep]551A+ —b+Ep|l ( H (64)
€ € R

f,=Db" Kl) {2_'20 + Ep,de'A) + (1—Sa‘A)H
€ P,
+ b’ Klj {Epl (1-Ss‘A)[l+ K_ KAglJ
3 R
L 2Ep (1+ KJ+A8_]I(K_1+K SJ}
P, R R
+ (l} {2A(1—§81A)+2A}}
e
+ b’ [ll(l +Ep, 3¢ A) [ﬂj +(1j
€ R €
1+K 1+ K = .
(1] x|
+ | = | 2A")<{=(2-KEp)
e S

N E{Hznszb {EPII

4
+(1+Ep, 3¢ A) e {H’b - 40’

1+K),_ me? s 5
+[ > JI EplT{8Qn—bH }

-7+ EplgalA)}

e P,

+b[@2 (%j Ep, 4A’ +(1EKJ3 . Ep]I2] (65)
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The other coefficients being quite lengthy and not
needed in the discussion of overstability, has not
been written here.

Since o, is real for overstability, the true values

of C, (=c;) are positive. The sum of roots of
Equation 63 is —f, / f, and if this is to be negative,
then f, >0 (because f, >0).

It is clear from (65) that f, is always positive if

0<3<<, 5< K R, L p<<,
A 1+K 1+K A

KEp, <2, Epl>7p, (I + Ep,de”'A)

and
4% < (r* +k*) H? <8Q¥w.

Which implies that

KEp, <2, 0<5<mini 3] L __L
A A(7p, Ep
and (66)

40°n< (m +k*)H?* <8Q°n

Thus for the above conditions, overstability can not
occur and the principle of exchange of stabilities is
valid. Hence the above conditions are the sufficient
conditions for the non-existence of overstability,
the violation of which does not necessarily imply
the occurrence of overstability.

6.1. Particular Cases

1. In the absence of magnetic field condition
(66) reduces to

1+K)eb

oy

0<3<%, KEp, <2 and Q < (67)

2. In the absence of coupling between spin and
heat flux (& =0), magnetic field (H=0), rotation

(@=0) and for very-very large medium
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permeability (B — =), it is clear from (65) that f,
is always positive if KEp, <2 (Sharma, et al [11])

is automatically satisfied. Then the only possible
solution of Equation 63 are those with ¢, =0 and

so overstable solutions will not exist. Thus
presence of magnetic field, rotation, permeability
and coupling between spin and heat flux may bring
overstability in the system

3. Effect of magnetic field and rotation together

(a) In the absence of coupling between spin and
heat flux (6=0) and medium permeability very-
very large (P — ) : The sufficient conditions for
the non-existence of overstability become

80 n

KEp, <2, H>>—~-~
P (n® +k?)

and Ep, >5p, (68a)

(b) In the presence of coupling between spin and
heat flux (8#0) and medium permeability very-

very large (P — o), the sufficient conditions for
non-existence of overstability become

0<3<<, KEp, <2,
A

2
Epl >5 (I +Ep,d¢'A) and H? >[&“2j

P, 7'C2 +k
Which implies that

0<5<min| S, &L _ 111 kep <2

A A(5p, Ep
and
8’
H’ 68b
>[n2 + kJ (68b)

7.STATIONARY CONVECTION

When the instability sets in as stationary
convection and coupling between spin and heat
flux is present (8 #0), the marginal state will be

characterized by o, =0. Hence putting =0 in
Equation 41, then the Rayleigh number is given by
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2 -1
(2A+b)(l+ K].b— KAe"'b? + (2A+b) ZS pz}

2 -1 2 3
ILKJ£+ H me }b—+4§228‘2n2b—2(2A+b)}
|

p2 4 p2 p2

-1
2 -1
(1+KJL+H ZS }ix(2A+b—gelAb)}

2

:LHbZ [“PK)(zm b) — KAe'b’ +

H2ne™ -1

b 2A+ b)}x {2A+b(1-3&"'A)

+4Q%e 7 n’h’ (2A+b) x

H(IJ;’.KJM HZZS_I pz}{2A+ b(l—Ss‘A)}} (69)

In the absence of rotation (Q=0), Equation 69

becomes

2 -1
{1+K_KA8l}bh{ZA(lJrK)}szrﬁH p,be™ (2A+b)
R

P 4

k> [2A+b(1-52"A)

Which is in good agreement with the result obtained
by [R. C. Sharma, et al [18], Equation 44].
In the absence of magnetic field (H = 0),

Equation 69 becomes

b2[1+ KM(H K)_kAgl}+
R R

2
b? {M(IPJ;K) +4Q% s 7 } +b[8Q e 7% A

@[b (1-86" A+ 2A]

A result derived by [Sharma, et al [16], Equation 37].
In the absence of both magnetic field (H = 0)

and rotation (Q =0), Equation 69 becomes

7)o sty

R* [2A+b(1-52"'A) ]

R =
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a result derived by Sharma, et al [11] (Equation
39).

Before we investigate the effects of various
parameters and a discussion of the results depicted
by figures, we first make assumptions that the
micropolar parameters K, A and & are non-negative
[1,21].

To investigate the effect of medium permeability
(R), rotation (), magnetic field (H), coupling
parameter (K), micropolar coefficient A (=K/C,)

and micropolar heat conduction parameter (3), we

examine the behaviour of d—R,d—R,d—R,d—R,d—R
dP "dQ dH dK dA

and j—g analytically. Equation 69 gives

drR 1

P KRA+bI—3¢ A

2 _.-2_2
bZ(HZKJ(zAer) - 407 1’b :
P 1-1—Kb+H21128’1p2
P 4

Which is always negative if

4072 7b

4K, HAe ', ’
P 4

<1 and 5<%
A

Which implies that
5<% po be(l +H|<2)
(ZQI - pzj I
4
or
P,

This shows that the medium permeability has a
destabilizing effect when condition (70) holds. In
the absence of micropolar heat conduction
parameter (8 = 0) and rotation (Q = 0), the medium
permeability always has a destabilizing effect on the
system for stationary convection in porous medium.
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From condition (70), it is clear that this phenomenon
also exists in the absence of magnetic field.
Equation 69 also gives

darR _
aQ
8Qe’h>(2A+D)

S 1+ K H2re™ =
k H( : jb+ ZS pz}{2A+b(l—88 A)}}

Which is always positive if

= &
&< — 71
< (7

This shows that the rotation has a stabilizing effect

when condition (71) holds. In the absence of

micropolar heat conduction parameter (3), the

rotation always has a stabilizing effect on the system.

It is clear from (71) that stabilizing effect of rotation

remains unaffected in the presence of magnetic field.
Equation 69 also yields

drR
dH

-1 2. .-2_2
2Hne 0,b(2A+b) |1 40 n°b

4 1+ K bJerne‘l .
R 4 ’

k> {2A+b (13 A)f

Which is always positive if

2.-2,_2
4 b <land § < =
{[1+ KJ H’re™ } A
b+ P,
P 4
Which implies that
H? > 80vb and 5<< (72)
P, A

This shows that the magnetic field has a stabilizing
effect when conditions (72) hold. In the absence of
micropolar heat conduction parameter and rotation,
the magnetic field always has a stabilizing effect,
on the system.

It can easily be derived from Equation 69 that
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drR 1

_— = — X
dK KA {2A+b(1-3c'A)}

Abz(i_g}g | AT 2A+D)
Roe) R {(HK] H e }2
b+ p,

P 4

Which is always positive if

>=, 8<

”m | o

1 &
R A
and

2
K>TE—P'{2Q 2A+p) -1 pZ}—l
be 4

or

K >7;—P'[

20 J2A+ b)] (73)

This shows that coupling parameter has a
stabilizing effect when conditions (73) hold. In the
absence of rotation and in a non porous medium,

(73) yields that S—E is always positive, thereby the

stabilizing effect of coupling parameter. It is clear
from (73) that stabilizing behaviour of K is
independent of presence of magnetic field.

It follows from Equation 69 that

R b*e™ I+K 3—(—K )P, +
dA P 1+K
H?p, . 4077 1*h*S
4 {1+Kj H?me™! }
b+ P,
P 4
/2[2A+b(1-SslA)]2

Which is always positive if

b8 me?

3>P (74)
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This shows that the micropolar coefficient A has a
stabilizing effect when condition (74) holds. Thus
the stabilizing behaviour of micropolar coefficient
is virtually unaffected by magnetization parameter
(H) but is significantly affected by micropolar

heat conduction parameter (8). The stabilizing
effect of micropolar coefficient (A) also implies

the destabilizing effect of spin diffusion (couple
stress, C, = K/A) parameter which has been found
earlier by many authors for

ferromagnetic fluids [21-23].
Equation 69 also yields

micropolar

dr

dd
2 -1
bs"A{b3 {I’LPK—KAF,“}+b2 {ZA(ILK]+ H Zg p2}+
| |

407721’ A+ b)

+
1+K )|, Home! )
P | 4 7

/k2 QA+b(1-8¢"A)?

Which is always positive if

1 A
-2 75

- (75)
This shows that the micropolar heat conduction
parameter (3) has a stabilizing effect when

condition (75) holds. Here we also observe that in

. drR . .\
a non-porous medium, PH is always positive,

implying thereby the stabilizing effect of
micropolar heat conduction parameter. Thus, we
have seen that the stabilizing behaviour of
micropolar heat conduction is virtually unaffected
by effect of magnetic field.

In article 9, the dispersion relation (69) is also
analyzed numerically. Marginal instability curves
have been plotted for stationary condition by
giving some numerical values to the dimensionless
parameters to depict the stability characteristics in
the presence and absence of micropolar heat
coupling parameter (3).
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8. VARIATIONAL PRINCIPLE

A Variational Principle can be established for the
present problem following Chandrasekhar [13].
Let one of the characteristic values be o, and let

the corresponding solutions be denoted by a

subscript “i’, then from Equations 15-20 after
using (30), we have

—kzLiz{ﬂ+i(l+ K)} DU, —
e P

KDG, +gZiQ—i(D2 -k*)B (76)
€ 4r

and
(o] 1

-DL, = {—'Jr o+ K)}Ui - KG, - RO, (77)
€ ]

Where L is the form of F(z) in dp and D ="
z
Let o, be a characteristic value different from

9

o,, and let subscript j’ distinguishes the

corresponding solutions. We multiply Equations 76
and 77 respectively by DU; and U; and integrate

them with respect to z from z=0 to z=1 using
the boundary conditions

U=DU=0, DZ=0, G=0, ®=0,X =0,DB=0
at z=0 and z=1(78)

Further, using Equations 32-36, putting i=j and
suppressing the subscript, yields

1 1
—%jo [U2+k—2(DU)2}dz—
(LT
PI 0
+$I;(Ic+2A)szz
ted

K 1|~ 1 N
+Fjo [G +.7(DG) }dz

+R[ Epo@dz+R[ [(DO*)+k'0*]dz

+ki2(DU)2}dz

1

- 1{— —(1+ K)}Z dz
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R
47tk2p

j [(DB)* +k*B?]dz

jO‘ [(DX)* +k>X2]dz

4k2

L rn2py2 2 2 ,14R2 _
_4nk2 p_zjo [D?B)* +2k*(DB)* +k‘B*1dz =0 (79)
Now we will show below that Equation 79
provides a basis for the variational formulation of
the problem.

a=] l[ L (ou) }
S

(K 2
3= et dz

———2AG’ dz,
0 k?Ag

JS:IJ%{GZ+%(DG)2}dZ
- REp,©%dz,

J,=[. R[(D®)* +K*0* ] dz,
ngjo'sz dz,

it (1+K)
Jg—jo kzP, Z° dz,

1 —
3, =[, SROG dz,

:47'ck2 I X*dz

. kz—j [(DX)* +K*X? ] dz,

=g kzj [(DB) +k’B? ] dz,

» (D*B)’ +2k*(DB)* + k*B* | dz
an |<2

(80)

With the help of (80), Equation 79 can be written as
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-c[J, - J;
J,+Jds+7,

—Jo+ g+, +J1-J, +
—Jy+J,-J, -, =0 (81)

Let us now consider the variations 8¢ in ¢ caused
by the first order small  variations
38U, 80,8G,8X and 8Bin U, 0,G,Z,X and B

respectively.  Further, we  assume  that
dU,80,8G,8Z and 8B satisfy the boundary

conditions (78). The changes in U,®,G, Z, X and
Blead to the corresponding changes in Js,
denotes by 8J,s. We can analyse these changes
with the help of Equation 81 which gives,

—86[J, —J; —J, +J, +J,, + 31— o[dd, -8,
—8J, + 8, +8J,, +8J,,]—8J, + 8], +8J, +5J,
—8J, +8J,, —8J,, —8J,, =0 (82)

We, now use the expressions for J's given by
(80) to evaluate 8J;'s. Integrating Equation 80 by

parts a suitable number of times and using (78),
we find

=—j —au (D> -k*)U dz,

6J2 H1+K | 1 2 L2
it N —8U (D* —k*)U dz,
2 I“[ P sz ( )

83, 1 KI
7 jo e —(3G)G dz,

2KA
= jo % A 7 (5G) G dz,
SJ

—_ 2 2
jo s ISG(D —k*)Gdz,

6 _
hiaed 2 jo REp, (50) Odz,

(o4
<N

_7:_j1 RSO (D? —k*) ©dz,

—jO‘ - 62)Zdz,

_jol (HKJZSZdz,

Sy _jol —{Ga®+@ae}dz
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8J,, “I
2 0 41tk2 P,

L ox (0? =k X 1 dz

8‘]13 _ 2 2
T_—jo = [5B (D* —k?)B]dz, (83)

8‘]14_ 1 & 2 242
T_jo m—[SB(D —k*)?B]dz

Combining Equations 82 and 83 and using
Equations 32 to 36 in it and rearranging the terms,
we get

tlej

_7[‘]1 -4 =3 -+ J, + 5]+ 080(3 - I, +3,5)

+Rj [USO - 05U ] dz+j 22 (05G -GsO) dz = 0 (84)

Further, taking first order perturbations in Equation
34, integrating and simplifying, we get

R[ U0 -©5U]dz=-30], + |, RS {©3G -G6} dz (85)
using Equation 85, Equation 84 reduces to

oc
_7[J1 +J,+J—J+J, - J, ]+

—r1 R
5 jo E(@5(3-66@) dz=0 (86)

in the absence of coupling between spin and heat
flux (8§ =0), we get

8c5=0

Because the quantity within [ ] on the L.H.S. of
Equation 86 can not vanish. Therefore Equation 79
provides a basis for variational formulation of the
problem under investigation.

9. NUMERICAL COMPUTATION

Here in this section, we have plotted the variation
of thermal Rayleigh number R with B, Q, H and

micropolar parameters K, A and & in Figures 2-7.

Figures 2-4 represent the plots of thermal
Rayleigh number R versus P for various values

1JE Transactions A: Basics



250000 - 0-0 250000 - —Q=0
—m Q=10 —=-Q=10
200000 4 Q=100 200000 - a— Q=100
150000 4 150000 -
a4 o
100000 - 100000 -
50000 - 50000 +
0 : : 0 - -
0 0.005 0.01 0.015 0 0.005 0.01 0.015
P, Pi
(a) (b)

Figure 2. Marginal instability curve for variation of rayleigh number R versus P for € =0.5,k =1,

A=05p, =4, p =2,E=1,H=5G, (i) 6 =0.05,(i) 5=0.
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150000 - 150000 -
@ @
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Figure 3. Marginal instability curve for variation of Rayleigh number R versus Q for €e=0.5, K =1, ,
A=0.5, P =003, p,=4, p=2,E=1,H=5G, (i) § =0.05, (ii) 6 =0.
of O, R versus Q for various values of wave micropolar heat conduction parameter § .
number k and R versus H for various values of Figure 2 depicts that as P, increases, R
k, respectively, in the presence and absence of decreases for small values of Q, whereas for the
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Figure 4. Marginal instability curve for variation of Rayleigh
number R versus H for e=0.5,K =1, A=0.5, Q=10

rivmin, p, =4, p,=2,E=1, P =0.03, (i) 6 =0.05,
(i) 6 =0.

higher values of QQ, R decreases for lower value of
P, and then increases for higher values of P, in the
presence and absence of &, depicting the
destabilizing effect of the medium permeability for

lower values of the rotation parameter Q , whereas
for sufficiently higher values of rotation parameter,
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Figure 5. Marginal instability curve for variation of Rayleigh
number R versus K for €=05H=5G, A = 05,
Q=10 riv min’, p,=4, p=2,E=1LR=0.03 and

o =0.05.
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——k=1
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4000 P e  — ————
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A
Figure 6. Marginal instability curve for variation of Rayleigh
number R versus A for e=0.5,K=1,H=5G, Q=10
rivmin”, p, =4, p,=2,E=1,R = 0.03 and § =0.05.

the medium permeability may have a destabilizing
or a stabilizing effect, which are in good agreement
with the result obtained earlier [21,24-27].

Figure 3 and 4 represent the plot of thermal
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Figure 7. Marginal instability curve for variation of R versus
S for £=0.5,K=1,A=0.5,H =5G, Q=10 riv min’,
p,=4,p =2E=1R =0.03.

Rayleigh number R versus Q and R versus
magnetic field H respectively, for various values
of the wave number k, in the presence and
absence of micropolar heat conduction parameter
5. These figures indicate that the Rayleigh
number R increases with the increase in rotation
parameter (Q) and magnetic field (H),
respectively, in the presence and absence of &,
indicating that the onset of instability is delayed by
the presence of the rotation and magnetic field,
depicting the stabilizing effect of rotation and
magnetic field on the stationary convection, which
are in good agreement with the results obtained
earlier [15-19]. The Figures 2-4 also indicate that
higher values of R are needed for the onset of
convection in the presence of & , hence justifying
the stabilizing behaviour of micropolar heat

conduction parameter & . This can also be
observed in Figure 7. It is also noted from Figures
2-4 that the Rayleigh number in the absence of
micropolar heat conduction parameters is less than
the Rayleigh number for stationary convection
(i.e., in the presence of micropolar heat conduction
parameter) for a fixed wave number.

Figures 5-7 represent the plots of thermal
Rayleigh R versus coupling parameter K,
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micropolar coefficient (A) and micropolar heat
conduction parameter & for various values of k.
These figures indicate the value of R increases with
the increase in the value of K, A and &,
respectively, depicting the stabilizing effect of
coupling parameter, micropolar coefficient and
micropolar heat conduction parameter, respectively.
The stabilizing behaviour of micropolar coefficient
A also implies the destabilizing effect of spin
diffusion (couple stress, C,= K/A) parameter.
The stabilizing behaviour of coupling parameter
(K ), micropolar heat conduction parameter (5 )

and destabilizing behaviour of spin diffusion
parameter (C,) has been depicted earlier by many

authors [21-23].

10. DISCUSSION OF RESULTS

In order to investigate our results, we must review
the results and its physical applications.

It is well known that the rotation introduces
vorticity into the fluid in case of Newtonian fluid
[13]. Then the fluid moves in the horizontal
planes with higher velocities. On account of this
motion, the velocity of the fluid perpendicular to
the planes reduces, and hence delay the onset of
convection implying stabilization behaviour of
rotation as in Figure 3. When the fluid layer is
assumed to be flowing through an isotropic and
homogeneous porous medium, free from rotation
or small rate of rotation, then the medium
permeability has a destabilizing effect. As
medium permeability increases, the void space
increases and as a result of this, the flow
quantities perpendicular to the planes will clearly
be increased. Thus, increase in heat transfer is
responsible for early onset of convection, thus
increasing P lead to decrease in R implying the

destabilizing effect of B in the absence of

rotation or for small value of rotation (Figure 2).
In case of high rotation, the motion of the fluid
prevails essentially in the horizontal planes. This
motion increased as medium permeability
increases. Thus the component of the velocity
perpendicular to the horizontal planes reduces,
leading to delay in the onset of convection.
Hence, the destabilization effect of medium
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permeability changes to stabilizing effect in case
of high rotation, implying the destabilizing or
stabilizing effect of medium permeability in case
of high rotation (Figure 2).

When the magnetic field permeating the
medium is considerably large, it induces viscosity
into the field, and the magnetic lines are distorted
by the convection, these magnetic lines hinder the
growth of disturbances, leading to the delay in the
onset of instability. However, the viscosity
produced by the magnetic field lessens the rotation
of the fluid particles; thus controlling the
stabilizing effect of K [28]. Similar phenomenon
has been noticed, when the system is subjected to
both rotation and magnetic field [13].

When the fluid is heated from below (R> 0),

the onset of instability is delayed as K, A or &
increases or it is hastened as spin diffusion
C,(=K/A) increases. The mechanism underlying

this physical phenomenon can be understood by
having a probe into the nature of micropolar
fluids.

The increase in K indicates the increasing
concentration of microelements and as a result of
this, a greater part of the energy of the system is
consumed by these elements in developing
gyration velocities in the fluid, leading to delay on
the onset of convection, implying thereby the
stabilizing effect of K (Figure 5).

As value of micropolar coefficient A increases,
the spin diffusion, i.e., couple stress (C,) decreases

which causes the microrotation to increase and
hence makes the system more stable, depicting the
stabilizing effect of A (Figure 6) or destabilizing
effect of spin diffusion parameter (C,). Also when

& increases, the heat induced into the fluid due to
micro elements is also increased, thus reducing the
heat transfer from the bottom to the top. The
decrease in the heat transfer is responsible for
delaying the onset of instability. Thus increasing
S leads to increase in R. In other words, &
stabilizes the flow (Figure 7).

Nevertheless, the above phenomenon is true
whether the magnetic field is present or not. Thus
the discussion concludes that the stabilizing effect
of microrotation is controlled by the presence of
magnetic field, which is in good agreement with
the results obtained by K. V. Rama Rao [28] in a
non-porous medium.
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11. CONCLUSIONS

In this paper, thermal convection in a thin
electrically conducting micropolar rotating fluid
layer, heated from below in the presence of
uniform vertical magnetic field, in a saturated
isotropic and homogeneous porous medium has
been investigated. The behaviour of various
parameters such as medium permeability, rotation,
magnetic field, coupling parameter, all micropolar
parameters (spin  diffusion parameter and
micropolar heat conduction parameter) on the
onset of convection has been analysed analytically
and numerically and the results have been depicted
graphically in the Figures 2-7. The results show
that for the case of stationary convection, the
medium permeability has destabilizing/stabilizing
effect under certain condition(s), whereas rotation,
magnetic field and micropolar parameters
(K,A and &§) have a stabilizing effect under

certain condition(s). In the absence of micropolar
heat conduction parameter, rotation and magnetic
field always has a stabilizing effect on the system,
whereas in the absence of micropolar heat
conduction parameter and rotation, medium
permeability always has destabilizing effect.

The principle of exchange of stabilities (PES) is
found to hold true for the present problem in the
absence of magnetic field, rotation and micropolar
heat conduction parameter, whereas in the
presence of rotation and magnetic field, PES is
valid under certain conditions. The oscillatory
modes are introduced due to the presence of
magnetic field and rotation, which were non-
existence in their absence. The presence of
micropolar heat conduction parameter may also
introduce the oscillatory modes.

In addition, conditions KEp; < 2,

0< 38 <min i,a—l L , and 4 Q% <
A A\7p, Ep

(m*+k?) H* < 8Q?x, are the sufficient conditions for
the non-existence of overstability, violation of
which does not necessarily imply the occurrence of
overstability. For the medium permeability, very
very large (P;—w) and in the absence of
micropolar heat conduction parameter (&),
rotation and magnetic field, the expected condition
reduce to KEp; < 2, which is in good agreement
with the results obtained earlier [Sharma, et al

1JE Transactions A: Basics



[11]]. Thus, presence of coupling between spin and
heat flux, magnetic field, rotation and medium
permeability may bring overstability in the system.

An attempt is also made to apply the variational
principle for the present problem and found that a
variational principle can be established for the
present problem in the absence of coupling
between spin and heat flux.

Thus, from the above analysis, we conclude that
the micropolar parameters, rotation, magnetic field
and permeability have a deep effect on the onset of
convection in porous medium. It is hoped that
present work will be helpful for understanding
more complex problems involving the various
physical effects investigated in the present
problem.
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