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Abstract   In this paper, the problem of lot sizing, scheduling and delivery of several items in a two-
stage supply chain over a finite planning horizon is studied. Single supplier via a flexible flow line 
production system (FFL), produces several items and delivers them directly to an assembly facility. 
Based on basic period (BP) strategy, a new mixed zero-one nonlinear programming model has been 
developed with the objective of minimizing the average setup, inventory-holding and delivery costs 
per unit time in the supply chain without any stock-out. The problem is very complex and it can not 
be optimaly solved, especially in real-sized problems. So, an efficient hybrid genetic algorithm 
(HGA) has been proposed based on applying, the most applied BP approach i.e. power-of-two policy. 
Based on some problem instances, the solution quality of the algorithm has been evaluated and also 
compared with the common cycle approach. Numerical experiments demonstrate the effectiveness of 
the proposed HGA. 
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ره يک زنجيل آنها در يد و تحوين اندازه انباشته های اقتصادی و زمان بندی توليين مقاله مسئله تعيدر اچكيده       

کننده محصولات مختلفی را در  نيک تاميره ين زنجيدر ا. شود ک افق محدود بررسی میين دو سطحی طی يتام
برای مدل سازی . دهد ک مونتاژگر میيل يم تحويد و بطور مستقيان کارگاهی مختلط توليد جريستم توليک سي
ح با هدف يخطی مختلط عدد صحريک مدل غي استفاده و هيکل پايبندی س است زمانين مسئله از سيا

ل عدم امکان يبدل. شود ره ارائه میيل در کل زنجياندازی، نگهداری و تحو نه های راهيسازی مجموع هز حداقل
است يبی با در نظر گرفتن سيک ترکيتم ژنتيک الگوري ،اضی برای مسائل با ابعاد واقعیين مدل ريم ايحل مستق

بندی  است زمانيسه با سين روش در مقايی ايانگر کارايج محاسبات عددی بيافته و نتايدو توسعه های عدد  توان
 .کل مشترک استيس

 
 

1. INTRODUCTION 
 
Nowadays, there is a great tendency to develop 
integrated models in research community for 
simultaneously cost-effective planning of different 
activities in supply chains. Among them, integrated 
production and delivery planning between adjacent 
supply parties is of particular interest which can 

reduce the total logistics-related costs considerably. 
     Literature review reveals that one of the earliest 
studied problems in this area is the economic lot 
scheduling problem (ELSP). This problem 
addresses lot-scheduling of several items with 
static and deterministic demands over an infinite 
planning horizon at a single facility, where 
products are delivered to the customer 
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continuously. Researches on the ELSP usually 
focus on cyclic schedules (i.e., schedules that are 
repeated periodically) with three well known 
policies: common cycle, basic period (or multiple 
cycle) and time varying lot size approaches 
(Torabi, et al [1]). Several authors have extended 
the ELSP to multistage production systems with 
common cycle production policy [e.g., 2-9]. 
     The economic lot and delivery-scheduling 
problem (ELDSP) is an extension of ELSP to a 
two-stage supply chain where a supplier produces 
several items for an assembly facility and delivers 
them in a static condition. Hahm, et al [10,11] 
provided an excellent review of models related to 
ELDSP and developed two efficient heuristic 
algorithms to solve, based on common cycle and 
nested schedule strategies, respectively. Jensen, et 
al [12] developed an optimal polynomial time 
algorithm for the ELDSP under common cycle 
approach. Finally, Torabi, et al [5] considered the 
ELDSP in flexible flow lines under common cycle 
approach and over a finite planning horizon. They 
developed an effective HGA to obtain near (or 
ideally optimal) solutions. 
     Regarding the basic period (BP) approach, 
Bomberger, et al [13] assumed different production 
cycles for items in which each cycle time must be 
an integer multiple of a BP that is long enough to 
meet the demand of all items. The production 
frequency of each product during the global cycle 
is then determined as a multiple of the selected BP. 
In such a case, infeasibility results from the 
artificial restrictions are imposed by the concept of 
BP. Elmaghraby, et al [14] provided a review of 
the various contributions to ELSP and presented an 
improvement upon the BP approach, called 
extended basic period (EBP) method. Its main 
difference from Bomberger’s BP method was that 
it allowed items to be loaded on two BPs 
simultaneously and at the same time relaxed the 
requirement that, the basic period should be large 
enough to accommodate such simultaneous 
loading. Yao, et al [15] developed an evolutionary 
algorithm for ELSP under basic period policy. 
Also, Ouenniche, et al [16-18] proposed three 
efficient heuristic approaches, i.e. power of two, 
two groups and G-group methods for the ELSP in 
a flow shop systems over an infinite planning 
horizon under basic period approach. 
     In all the above works, the planning horizon is 

assumed to be infinite. However, this assumption 
considerably reduces the usefulness of the 
proposed contributions, because in practice, 
planning horizon is often finite. In this regard, 
there are few research works which have assumed 
the finite planning horizon [1,2,5,19]. 
     Consequently, to the best of our knowledge, 
there is no research on ELDSP in flexible flow 
lines under basic period approach over a finite 
planning horizon so far. It is noted that the 
solutions obtained via the basic period approach 
are generally better than the common cycle's 
solutions, and this is our main motivation in this 
research work. 
     In this paper we have studied the finite horizon 
economic lot and delivery scheduling problem in 
flexible flow lines under basic period approach. 
At first, a new mixed zero-one nonlinear program 
has been developed whose optimal solution 
simultaneously determines; the optimal assignment 
of products in basic periods, optimal assignment 
of products to machines at stages with multiple 
parallel machines, the optimal products sequence 
for each machine at each stage, the optimal lot 
sizes and the optimal production and delivery 
schedule at each global cycle. 
     To solve the problem, we assume that the cycle 
time of product i, Ti, is an integer multiple, say ki, 
of a basic period F; i.e. Ti = ki.F for all i. In 
addition we are required that the basic period F 
to be such that the planning horizon PH is an 
integer multiple of a global cycle H.F; that is 
PH = r.H.F where r is an integer and H denotes 
the least common multiple (LCM) of the ki’s. 
Consequently, to solve the problem, a hybrid 
genetic algorithm (named PT-HGA) has been 
proposed based on power of two policy (the most 
applied BP strategy). 
     The outline of the paper is as follows: problem 
formulation has been presented in Section 2. The 
proposed HGA have been explained in Section 3. 
In Section 4, an efficient procedure has been 
developed for determining upper bounds on ki 
values. An efficient feasibility test for capacity 
checking along with an iterative repair procedure 
based on ki values modifications to convert an 
infeasible solution to a feasible which are also 
proposed in Section 5. Computational experiments 
are provided in Section 6. Finally, Section 7 is 
devoted to conclusion remarks. 
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2. PROBLEM FORMULATION 
 
The following assumptions are considered for the 
problem formulation: 
 
• Machines at stages with multiple parallel 

machines are identical (in all characteristics 
such as production rates and setup times/cost)  

• Machines of different stages are continuously 
available and each machine can only process 
one product at a time. 

• At stages with parallel machines, each product 
is processed entirely on one machine. 

• Setup times/costs in supplier's production 
system are sequence independent. 

• Production sequence at each basic period for 
each machine at each stage is unique and is 
determined by the solution method. 

• The supplier incurs linear inventory holding 
costs on semi-finished products. 

• Both the supplier and the assembler incur 
linear holding costs on end products. 

• Preemption/Lot-splitting is not allowed. 
 
Moreover, the notations used for the problem 
formulation are defined as follows: 
 
Parameters 
 
n Number of products 
m Number of work centers (stages) 
mj Number of parallel machines at stage j 
Mk'j K'-th machine at stage j 
di Demand rate of product i 
pij Production rate of product i at stage j 
sij Setup time of product i at stage j 
scij Setup cost of product i at stage j 
hij Inventory holding cost per unit of product i 

per unit time between stages j and j+1 
hi Inventory holding cost per unit of final 

product i per unit time  
A transportation cost per delivery 
PH Planning horizon length 
M A large real number 
 
Decision Variables 
 
σk Sequence vector in basic period k 
σkk'j Sequence vector of machine Mk'j related to 

the basic period k 

r Number of production cycles over the finite 
planning horizon 

nkk'j Number of products assigned to machine 
Mk'j related to the basic period k 

F Basic period length  
bij Production beginning time of product i at 

stage j (after related setup operation) 
ki Time multiple of product i 
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It is noted that based on above variables, the global 
cycle length is equal to the least common multiple 
of the ki variables, in other words we would have: 
H = LCM (k1, k2,…,kn). Also, the production cycle 
length, the production lot size of product i and the 
processing time for a lot of product i at stage j 
would be as follows: 
 
Ti = ki.F, Qi = di.Ti, ptij= Qi /pij =di.ki.F / pij. 
 
Moreover, at stages with only one machine the 
value of mj and index k' would be only one. Since 
after processing each product at each stage, there 
would be a value added for the product, values of hij 
parameters will be non-decreasing; that is hi,j-1≤ hij. 
     The objective function of this problem 
(Problem P) includes two fundamental expressions. 
First expression is related to the setup and 
transportation costs. This expression consists of 
two parts: the first part computes the setup cost of 
products with respect to their production cycle 
times. The second part computes the transportation 
cost of products on each basic period. 
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The inventory holding costs are often more 
complicated which are incurred at both the supplier 
and the assembler. Figure 1 shows the inventory 
level of final product i in one cycle at the assembly 

facility is 2iTid
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1
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. Therefore, the 

average inventory of component i per unit time at 
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Figure 1. Inventory level at the assembler in one cycle. 
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Figure 2. WIP between stages j-1 and j at the supplier. 
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Figure 3. Final product inventory at the supplier. 

the assembly facility will be: 
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Two types of inventories i.e. WIP and finished 
product inventories are considered for the supplier. 
Figures 2 and 3 show the evolution of WIP 
inventory of product i between two successive 
stages j-1 and j, and the inventory level of final 
product i, respectively. 

From Figure 2 it is obvious that the average WIP 
inventory of product i between two successive 
stages j-1 and j per unit time is: 
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Therefore, the total WIP inventory holding cost for 
all products per unit time at the supplier would be 
as follows: 
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Also, from Figure 3, we can derive the average 
inventory of final product i per unit time: 
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Thus, the total inventory holding cost for all final 
products per unit time is: 
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So, the total cost per unit time (i.e. objective 
function of Problem P) would be as follows: 
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Regarding this objective function and logical 
relationships between variables of Problem P (that 
some of them are recognizable from inventory 
level curves), a mixed zero-one nonlinear model is 
developed to obtain optimal solution of the 
problem. 
     Problem P has the following set of constraints. 
Constraints (2) state that no product can be 
processed before it is completed at previous stage. 

Constraints (3) show that, no product can be 
processed before the completion of its 
predecessor in the related production sequence 
(σkk'j). Constraints (4) reveal that at each position 
of each machine, there is at most one product; 
because for each machine such as Mk'j, may 
assigne less than n products. Constraints (5) state 
that one product can be assigned at one position 
of machine Mk'j; if another product is to be 
assigned at the previous position of this machine. 
Constraints (6) ensure assignment of product i to 
one of the first ki basic period and implies that 
each assigned product at each stage has a unique 
position in the sequence of one machine. 
Constraints (7) determine assignment of products 
in appropriate basic periods during the H basic 
periods. Constraints (8) denote that if product i 
has been assigned to basic period k at stage j, it 
must be assigned to that basic period at all stages. 
Constraints (9) show that if product i is the first 
product in the sequence vector of one machine at 
stage j, it’s processing cannot be started before 
setting up the corresponding machine. Constraints 
(10) assure that the resulting schedule is cyclic so 
that the process completion time for each product 
at final stage is less than or equal to a basic cycle 
time F. Constraint (11) implies that the planning 
horizon PH is an integer multiple of H.F, where H 
= LCM (k1,…,kn), and F is the basic period 
length. Constraints (12) show that r is an integer 
greater than or equal to one. Finally, Constraints 
(13) are the non-negativity constraints of 
variables. 
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It is noted that this model can be run for a set of 
known ki variables. In other words, to run this 
model, at first the ki values must be determined, 
and then the corresponding optimal basic period 
length, optimal assignments, sequence vectors and 
production and delivery schedule of products are 
obtained via solving Problem P. 
 
 
 

3. Proposed hybrid genetic algorithm 
 
During the last thirty years, there has been a 
growing interest in obtaining the optimal solutions 
for complex systems using genetic algorithms 
(GA). Genetic algorithms maintain a population of 
potential solutions and simulate evolution process 
using some selection process based on fitness of 
chromosomes and some genetic operators. To 
improve solution quality and to escape from 
converging to local optima, various strategies of 
hybridization have been suggested [5,20]. In 
designing a hybrid genetic algorithm (HGA), the 
neighborhood search (NS) heuristic usually acts as 
a local improver into a basic GA loop. 
     In our HGA, each solution is characterized with 
a set of ki multipliers and the value of basic period 
F. Beside the cost minimization; we have to 
generate feasible schedules. Therefore, a capacity 
feasibility test has been developed in Section 5 
which is able to identify the infeasible solutions 
and converting them to feasible schedules. 
 
3.1. Chromosome Representation   The 
proposed HGA search in the solution space of ki 
values, so that each chromosome is a binary (zero-
one) string, and each ki multiplier will be 
represented as a particular part of a chromosome. 
For instance, the first u1 bits are used to encode the 
value of k1 and the particular piece of chromosome 
from the (u1+1)-th bit to the (u1+u2)-th bit 
represents the value of k2 and so on. In order to 
represent all the possible values of ki for each item 
i, we need an upper bound (see Section 4) on the 

value of ki (or vi so that iv
2ik = ). Because of 
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encoding the value of ki into a binary string, we 
have to establish a mapping between each binary 
string and an integer ki. In fact, we map a binary 
string consisting of ui bits to an integer value ki by 
using the following equations for the power of two 
and non-power of two cases, respectively: 
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3.2. Determining The σk Vectors   In assigning 
and sequencing of products in different basic 
periods i.e. determination of σk vectors, it is not 
easy to derive a simple necessary and sufficient 
condition to have a non-empty set of feasible 
solutions. Given a vector of multipliers ki; i = 
1,…,n, the procedure starts to make a vector say V' 
by sorting the products in ascending order of ki 
and, within the products having the same multiplier 
ki , in the descending order of ρi where: 
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Each product i in the vector V' is assigned to the 
basic period t within the first ki periods of global 
cycle H which minimizes: 
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Finally, for each k, k=1,…,H, we determine the 
sequence of products within σk such that if i, u ∈ 
σk and i is ordered before u in V', then i also is 
ordered before u in σk. 
 
3.3. Determining the σkk'j Vectors   First 
available machine (FAM) rule has been employed 
to assign and sequence the products of each basic 
period to machines of different stages (Torabi, et al 
[5]. According to this procedure, for any given 
permutation vector V; the products are assigned to 
machines of first stage by using FAM rule (if m1 > 
1). Then, for each of subsequent stages, the products 

have been first sequenced according to increasing 
order of their process completion time at the 
previous stage, and then assigned to the machines at 
the current stage according to FAM rule. 
 
3.4. Initial Population   Initial population of 
binary chromosomes is generated randomly. 
According to feasibility test, each infeasible 
solution is converted to a feasible one and then is 
inserted into the initial population. 
 
3.5. Evaluation Function   Each chromosome 
in the population represents a potential solution to 
the problem. Evaluation function is responsible for 
rating these potential solutions by assigning a real 
number as a measure of their fitness. In our 
problem after determining the σkk'j vectors for each 
chromosome, evaluation function is obtained by 
solving the following NLP model (Problem P1). 
This problem is derived from Problem P by 
substituting xilkk'j values by corresponding ones. 
Also, σkk'j(i) indicates the i-th product in the 
sequence vector of machine Mk'j  in basic period k. 
Problem P1 can be solved by the following 
iterative procedure: 
 
Initial step. Let r = 1, and solve the resultant 

linear program. 
Iterative step. Increase r by 1 and solve the 

corresponding linear program for 
this new value of r. If this model 
has no feasible solution, stop; else, 
if the objective function for current 
value of r (i.e. Zr) is less than this 
value for previous r (i.e. Z), then 
set Z = Zr and F* = PH/r.H, and go 
to the next iteration. 

 
Problem P1: 
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Figure 4. Two-point crossover. 
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3.6. Selection and Crossover Operators   In 
proposed HGAs, we have used the tournament 
selection approach. It randomly chooses two 
chromosomes from parent pool, and then chooses 
the fittest one if a random value generated (τ) is 
smaller than a pre-set probability value φ (0.5<φ< 
1). Otherwise, the other one is chosen. Then, the 
selected chromosomes are duplicated and pairs of 
them are selected as parents to undergo the 
crossover operation. 
     The main purpose of crossover is to exchange 
genetic materials between randomly selected 
parents with the aim of producing better offspring. 
In this research we have used the classic two point 
crossover based on the results obtained from the 
initial tests. According to this crossover, at first 
two positions are randomly selected, and then the 

genes between them in the parent chromosomes 
are exchanged (see Figure 4). 
 
3.7. Mutation Operator   Mutation introduces 
random variation (diversification) into the 
population. Most genetic algorithms incorporate 
mutation operator mainly to avoid convergence to 
local optima in the population and recovering lost 
genetic materials. In the proposed HGAs, we have 
used the swap mutation. Figure 5 illustrates an 
example of this operator. 
 
3.8. Local Improver   Our local improvement 
procedure is based on an iterative neighborhood 
search (NS) so that within successive interchanges, 
given offspring is replaced with an elite 
(dominating) neighbor. We have used inversion 
operator as local improver. Figure 6 is an example 
of this operator. 
 
3.9. Population Replacement   Chromosomes 
for the next generation are selected from the 
enlarged population. After offspring were 
generated from GA operators (crossover and 
mutation) and then improved by the neighborhood 
search procedure, the improved offspring are 
added to the current population. This population is 
called the enlarged population, and then about 60 
percent of the new population is filled out by the 
best and the fittest chromosomes of the enlarged 
population. Remaining chromosomes are selected 
randomly from the remainder chromosomes in the 
enlarged population. 
 
3.10. Termination Criteria   Termination 
criterion determines when GA will stop. In other 
words, the genetic operations are repeated until one 
of the termination conditions is met. In our 
implementation, we stop HGAs, if pre-determined 
number of generations, max_gen, has been 
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Figure 5. Swap mutation. 

 
 
 

 
Figure 6. Inversion operator. 

executed or the pre-set number of generations 
without any improvement in the last best solution, 
max_nonimprove, reaches. 
 
 
 

4. DETERMINING UPPER BOUNDS ON ki 
VALUES 

 
In order to represent all possible and feasible 
values of each ki multiplier, we determine an upper 
bound for each one. In our HGAs, we derive an 
upper bound on ki through determining an upper 
bound on the objective value of each product i. 
Following steps describe how we can compute an 
upper bound for each ki (ki

UB): 
 
Step 1.   For each product i, assume ki= 1 and 
calculate ∑j di/pij, arrange the products in ascending 
order of these values. Assign the products and 
sequence them to machines at all stages via FAM 
rule. Finally, find the corresponding common cycle 
solution and its objective function, TCcc. 
 
Step 2.    Calculate the cost share of each product i, 

∑ ≠=−= n
iu,1u

u
ccTCccTCi

ccTC . As it had been 

mentioned by Yao, et al [15], we would have: 
TCi

BP ≤ TCi
cc, where TCi

BP is cost share of product 
i under basic period approach. So, TCi

BP values 
must be determined. 
 
Step 3.   Assume there is only one product (say 

product i) with following objective function: 
 

.imbidih  
m

2j
1j,ibijbid.1j,ih

m

2j 1j,ip
1

ijp
1

1j,ih.
2

2
idik

imp
id

3.
2

ik.id.ih
.F

m

1j Fik
ijsci

BPTC

−∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−+

⎥
⎥
⎥

⎦

⎤
∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−−+

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+∑

=
=

 

 

Obviously, to obtain the optimal solution, we have 
to determine the starting times so that minimize 
(bij-bi,j-1)-bim. Also, the smallest feasible value of 
bij-bi,j-1 is equal to kiF.di/pi,j-1. Therefore, the best 
value of TCi

BP is equal to: 
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Finally for a given value of F, we can derive an 

upper bound on vi, ( iv
2ik = ), denoted by vi

UB by 
using following equations: 
 

.
minF.iH2

m

1j
ijsciH4

2i
ccTCi

ccTC

2logUB
iv

 0
m

1j
ijsci

ccTC.FikiH2F2
ik 

i
ccTCiH.Fik

m

1j Fik
ijsc

    i
ccTCi

BPTC

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
=

−⎟
⎠
⎞⎜

⎝
⎛+

=

⇒≤∑
=

+−⇒

≤+∑
=

⇒≤

 

 

Where 
 

∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

m

2j 1j,ip
1

ijp
1

1j,ih.
2

2
id

imp
id

3.
2

id.ih
iH  



370 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics 

Moreover, to determine the minimum value of F, 
Fmin, assume that F must be large enough so that at 
least one product with ki = 1, can be produced 
during it. Consequently, Fmin is obtained from the 
following equation: 
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5. FEASIBILITY TEST AND REPAIR 
PROCEDURE 

 
For a given chromosome and related ki, σk and σkk'j 
vectors, a simple test for capacity feasibility can be 
carried out. To do so, the process completion times 
of products for all H basic periods are first 
calculated. We can use the following procedure for 
doing so. 
     Then, if at least at one basic period, the related 
completion time would be greater than or equal to 
1, the corresponding chromosome is infeasible and 
otherwise, it is feasible. In other words, if at least 
one of the ftk values, k = 1,…, H, be greater than or 
equal to 1, this solution would be infeasible. 
 
for k = 1,…,H 
    for each i ∈ σk 
        for j = 1,…,m 

 .1j,kM machineon k   period 
 basicat  i  before isu product  
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      fin = max{process1,process2} + kidi /pij 
       end 
   ftik = fin 
   end 
ftk = maxi{ftik} 
end 

For converting an infeasible solution to a feasible 
one, we have also proposed following iterative 
repair procedure based on ki values modifications. 
 
Step 1.   Choose the basic period with maximal 
value of ftk, e.g. basic period k1. 
 
Step 2.   Among the products of basic period k1, 
select the product with maximum amount of 
process time (maxi {∑j = 1,…,m kidi/ pij}; i ∈ σk1), e.g. 
product i. 
 
Step 3.   If vi ≠ 0; set vi = vi -1, and obtain σk and 
σkk'j vectors for this new set of multiples. If this 
solution is feasible, stop, otherwise go to step1. If 
vi = o; select the product with subsequent 
maximum amount of process time and go to step 3. 
     It is noteworthy that each chromosome obtained 
via genetic operators (crossover, mutation and 
local improver) is checked with aforementioned 
feasibility test. 
 
 
 

6. COMPUTATIONAL EXPERIMENTS 
 
To verify the efficiency of the proposed algorithm, 
in terms of the solution quality and the required 
computation time, some numerical experiments 
have been conducted. In this regard, all of the 
experimental tests have been implemented on a 
personal computer with an Intel Pentium IV 1800 
MHz CPU and HGA has been coded with 
MATLAB 6.5. Moreover, to solve the mixed zero-
one non-linear models, LINGO 6.0 optimization 
software has been used. It should be mentioned 
that the main motivation of authors to conduct this 
research work is that the problem has been inspired 
from a real industrial case where a supplier, based 
on a mid-term contract (at most up to one year 
planning horizon), produces 3 types of products for 
an automotive manufacturer company. Supplier's 
production facility is a 5-stage FFL in which the 
drilling, cutting and pressing work centers have 2 
parallel machines for processing the WIP parts. 
Some types of products need not to pass some 
stages. Because the master production plan of the 
automotive manufacturer is almost constant, then 
the supplier could assume a continuous and 
constant demand rates during the planning horizon. 
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However, because of the confidentiality as well as 
the lack of some required data, we decided to 
generate random problem instances. 
 
6.1. Parameter Setting and Data Set   The 
tuned parameters of the HGA after some initial 
tests have been adjusted as: population size 
pop_size = n, maximum number of generations 
max_gen = m×n, maximum number of generations 
without improvement max_nonimprove = n, 
crossover probability Pc = 0.8, mutation probability 
Pm= 0.2, and tournament selection parameter φ = 
0.7. 
     Furthermore, the parameters of each problem 
instance have been randomly generated from the 
following uniform distributions: 
 

( ) ( )
( ) ( )
( ) .20000,10000U~A

,10,1U~1ih  ,025.0,01.0U~ijs

,15000,5000U~ijp  ,1000,100U~id

 

 
Because processing at each stage has a value added 
on products, hij values should be non-decreasing 
with j. So, after random generation of hi1 for each 
product i, other associated hij values are 
determined by randomly generating incremental 
additions i.e. hij = hi,j-1 + U(1,3). Also there could 
be a correlation between scij and sij values. 
Therefore, for each randomly generated sij, its 
corresponding scij parameter has been computed 
using the following equation: scij = 15000 × sij + 
1000 × U(0,1). 
 
6.2. Performance Evaluation   To verify 
efficiency of proposed solution method, we have 
considered eight different problem sizes. For each 
problem size, 20 problem instances have been 
randomly generated. Also, we have divided our 
problem instances in two parts: problem instances 
with 4 and 5 products, and 2 and 3 stages (as the 
small-sized problems), and problem instances with 
5 and 10 products and 5 and 10 stages (as the 
medium and large-sized problems). For small size 
problems, the solutions of HGA have been 
compared with the solution of LINGO software. 
Also, for medium and large-sized problems, we 
have calculated an index λ by the λ = (TC-LB)/LB 
equation and used it as a base of comparisons. In 

index λ, the TC is the total cost of a problem 
instance obtained by each algorithm and LB is the 
associated lower bound. 
     To calculate the LB, we must obtain minimum 
value of the following equation: 
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If we assign to bij the values that minimize (bij-bi,j-1), 
then the above equation is minimized. According 
to constraints 2, the minimum possible amounts of 
(bij-bi,j-1) are di.kiF/pi,j-1. Also, if products can be 
scheduled as soon as possible, we can substitute 
bim with ∑j=1,…,m-1 di.kiF/pij. Therefore, a good 
lower bound can de computed as follows: 
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TABLE 1. Results of Small-Sized Test Problems. 
 

Problem 
Size (n×m) 

Number of Times That the 
PTHGA’s Solution Was Better 

Than the LINGO’s Solution 

The Average of Percentage Decrease 
in PTHGA’s Solution Compared to 

LINGO's Solution (%) 

Average 
CPU Time 
for LINGO 

(In Seconds) 

Average 
CPU Time 
for PTHGA 
(In Seconds)

4 × 2 17 3.44 2736.98 34.43 

4 × 3 16 5.05 5684.45 53.47 

5 × 2 16 5.35 5770.77 54.69 

5 × 3 18 9.07 9737.29 133.65 
 
 
 

TABLE 2. Results of Medium and Large-Sized Test Problems (Comparison with LB). 
 

Problem Size (n×m) The Average Performance Ratio of 
PTHGA (%) 

The Average CPU Time of 
PTHGA (In Seconds) 

5 × 5 10.26 149.34 

5 × 10 18.86 787.66 

10 × 5 16.4 1825.9 

10 × 10 23.63 2126.58 
 
 
 

TABLE 3. Results of Medium and Large Size Test Problems (Comparison with the Common Cycle Approach). 
 

Problem Size (n×m) The Average Improvement in PTHGA's Solution 
Compare to Common Cycle Approach (%) 

5 × 5 9.76 
5 × 10 6.49 
10 × 5 8.35 

10 × 10 6.82 

Table 1 represents the computational results for the 
small sized problem instances and Table 2 and 3 

gives these results for medium and large sized 
problem instances. 
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     In summary, we find out the following results 
from our numerical experiments: 
 

• In Table 1, solution qualities of the proposed 
algorithm have been compared with the 
related optimal solution obtained via LINGO 
6.0. As we can see, for the small size 
problem instances, the solutions of the PT-
HGA are 67 times better than the solutions 
of LINGO. It seems that having a mixed 
zero-one and nonlinear nature of the 
proposed mathematical model makes the 
LINGO can not obtain good results. Also, in 
average, the solutions qualities obtained by 
the PT-HGA are 4.3 percent better than the 
solutions of LINGO. Totally, the results 
shown in Table 1 indicate superiority of the 
proposed algorithm with respect to both CPU 
time and solution quality in compare to 
solutions of the LINGO. 

• For the medium and large-sized problem 
instances, performance ratio λ has been 
calculated and used as a measure to evaluate 
the proposed algorithms. In Table 2, we 
have calculated the performance of the 
proposed algorithm. We observe that the 
average performance ratio for the problem 
instances increases when the problem size 
increases. However, this increase can be 
either due to an increase in the difference 
between the lower bound and the 
corresponding optimal cost, or due to 
reduction of effectiveness (performance) of 
the proposed algorithms due to increase in 
corresponding solution space. 

• Table 3 reports the average cost differences 
between the solutions obtained through 
proposed algorithm and the solutions of 
common cycle approach. These results 
reveal the average improvement of 7.85 
percent in solutions of the PT-HGA over the 
common cycle's solutions, respectively. 
Totally, these results indicate superiority of 
applying the basic period policy versus 
common cycle approach in the problem. 

 
 
 

7. CONCLUSION REMARKS 
 
In this paper, the basic period approach has been 

applied to solve the economic lot and delivery-
scheduling problem in flexible flow lines over a 
finite planning horizon. To do so, a new mixed 
zero-one nonlinear model has been developed to 
optimaly solve the problem. Providing an optimal 
solution is not a practical approach for routine 
decision-making in case of the medium and large-
sized problems. Thus, an efficient meta-heuristic 
(PT-HGA) based on power-of-two policy, of basic 
period approach has been developed. 
     Since there is no other solution method for the 
problem, we have compared the solutions of PT-
HGA with the LINGO solution software in small-
sized problems. Also, for medium and large-sized 
problems, we have calculated an index λ which 
calculates the distance of solutions obtained by PT-
HGA from a lower bound. Computational results 
are very promising and indicate the superiority of 
PT-HGA over the common cycle approach with 
respect to the solution quality. 
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