
IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 361

A BASIC PERIOD APPROACH FOR SOLVING
THE ECONOMIC LOT AND DELIVERY SCHEDULING

IN FLEXIBLE FLOW LINES

S.A. Torabi*

Department of Industrial Engineering, College of Engineering, University of Tehran
P.O. Box 11155/4563, Tehran, Iran

satorabi@ut.ac.ir

M. Jenabi

Department of Industrial Engineering, Amirkabir University of Technology
P.O. Box 15916-343, Tehran, Iran

m.jenabi@aut.ac.ir

*Corresponding Author

(Received: October 9, 2007 – Accepted in Revised Form: May 9, 2008)

Abstract In this paper, the problem of lot sizing, scheduling and delivery of several items in a two-
stage supply chain over a finite planning horizon is studied. Single supplier via a flexible flow line
production system (FFL), produces several items and delivers them directly to an assembly facility.
Based on basic period (BP) strategy, a new mixed zero-one nonlinear programming model has been
developed with the objective of minimizing the average setup, inventory-holding and delivery costs
per unit time in the supply chain without any stock-out. The problem is very complex and it can not
be optimaly solved, especially in real-sized problems. So, an efficient hybrid genetic algorithm
(HGA) has been proposed based on applying, the most applied BP approach i.e. power-of-two policy.
Based on some problem instances, the solution quality of the algorithm has been evaluated and also
compared with the common cycle approach. Numerical experiments demonstrate the effectiveness of
the proposed HGA.

Keywords Flexible Flow Lines, Lot and Delivery-Scheduling, Basic Period Approach, Power-of-
Two Policy, Hybrid Genetic Algorithm (HGA)

ره يک زنجيل آنها در يد و تحوين اندازه انباشته های اقتصادی و زمان بندی توليين مقاله مسئله تعيدر اچكيده

کننده محصولات مختلفی را در نيک تاميره ين زنجيدر ا. شود ک افق محدود بررسی میين دو سطحی طی يتام
برای مدل سازی . دهد ک مونتاژگر میيل يم تحويد و بطور مستقيان کارگاهی مختلط توليد جريستم توليک سي
ح با هدف يخطی مختلط عدد صحريک مدل غي استفاده و هيکل پايبندی س است زمانين مسئله از سيا

ل عدم امکان يبدل. شود ره ارائه میيل در کل زنجياندازی، نگهداری و تحو نه های راهيسازی مجموع هز حداقل
است يبی با در نظر گرفتن سيک ترکيتم ژنتيک الگوري ،اضی برای مسائل با ابعاد واقعیين مدل ريم ايحل مستق

بندی است زمانيسه با سين روش در مقايی ايانگر کارايج محاسبات عددی بيافته و نتايدو توسعه های عدد توان
 .کل مشترک استيس

1. INTRODUCTION

Nowadays, there is a great tendency to develop
integrated models in research community for
simultaneously cost-effective planning of different
activities in supply chains. Among them, integrated
production and delivery planning between adjacent
supply parties is of particular interest which can

reduce the total logistics-related costs considerably.
 Literature review reveals that one of the earliest
studied problems in this area is the economic lot
scheduling problem (ELSP). This problem
addresses lot-scheduling of several items with
static and deterministic demands over an infinite
planning horizon at a single facility, where
products are delivered to the customer

362 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics

continuously. Researches on the ELSP usually
focus on cyclic schedules (i.e., schedules that are
repeated periodically) with three well known
policies: common cycle, basic period (or multiple
cycle) and time varying lot size approaches
(Torabi, et al [1]). Several authors have extended
the ELSP to multistage production systems with
common cycle production policy [e.g., 2-9].
 The economic lot and delivery-scheduling
problem (ELDSP) is an extension of ELSP to a
two-stage supply chain where a supplier produces
several items for an assembly facility and delivers
them in a static condition. Hahm, et al [10,11]
provided an excellent review of models related to
ELDSP and developed two efficient heuristic
algorithms to solve, based on common cycle and
nested schedule strategies, respectively. Jensen, et
al [12] developed an optimal polynomial time
algorithm for the ELDSP under common cycle
approach. Finally, Torabi, et al [5] considered the
ELDSP in flexible flow lines under common cycle
approach and over a finite planning horizon. They
developed an effective HGA to obtain near (or
ideally optimal) solutions.
 Regarding the basic period (BP) approach,
Bomberger, et al [13] assumed different production
cycles for items in which each cycle time must be
an integer multiple of a BP that is long enough to
meet the demand of all items. The production
frequency of each product during the global cycle
is then determined as a multiple of the selected BP.
In such a case, infeasibility results from the
artificial restrictions are imposed by the concept of
BP. Elmaghraby, et al [14] provided a review of
the various contributions to ELSP and presented an
improvement upon the BP approach, called
extended basic period (EBP) method. Its main
difference from Bomberger’s BP method was that
it allowed items to be loaded on two BPs
simultaneously and at the same time relaxed the
requirement that, the basic period should be large
enough to accommodate such simultaneous
loading. Yao, et al [15] developed an evolutionary
algorithm for ELSP under basic period policy.
Also, Ouenniche, et al [16-18] proposed three
efficient heuristic approaches, i.e. power of two,
two groups and G-group methods for the ELSP in
a flow shop systems over an infinite planning
horizon under basic period approach.
 In all the above works, the planning horizon is

assumed to be infinite. However, this assumption
considerably reduces the usefulness of the
proposed contributions, because in practice,
planning horizon is often finite. In this regard,
there are few research works which have assumed
the finite planning horizon [1,2,5,19].
 Consequently, to the best of our knowledge,
there is no research on ELDSP in flexible flow
lines under basic period approach over a finite
planning horizon so far. It is noted that the
solutions obtained via the basic period approach
are generally better than the common cycle's
solutions, and this is our main motivation in this
research work.
 In this paper we have studied the finite horizon
economic lot and delivery scheduling problem in
flexible flow lines under basic period approach.
At first, a new mixed zero-one nonlinear program
has been developed whose optimal solution
simultaneously determines; the optimal assignment
of products in basic periods, optimal assignment
of products to machines at stages with multiple
parallel machines, the optimal products sequence
for each machine at each stage, the optimal lot
sizes and the optimal production and delivery
schedule at each global cycle.
 To solve the problem, we assume that the cycle
time of product i, Ti, is an integer multiple, say ki,
of a basic period F; i.e. Ti = ki.F for all i. In
addition we are required that the basic period F
to be such that the planning horizon PH is an
integer multiple of a global cycle H.F; that is
PH = r.H.F where r is an integer and H denotes
the least common multiple (LCM) of the ki’s.
Consequently, to solve the problem, a hybrid
genetic algorithm (named PT-HGA) has been
proposed based on power of two policy (the most
applied BP strategy).
 The outline of the paper is as follows: problem
formulation has been presented in Section 2. The
proposed HGA have been explained in Section 3.
In Section 4, an efficient procedure has been
developed for determining upper bounds on ki
values. An efficient feasibility test for capacity
checking along with an iterative repair procedure
based on ki values modifications to convert an
infeasible solution to a feasible which are also
proposed in Section 5. Computational experiments
are provided in Section 6. Finally, Section 7 is
devoted to conclusion remarks.

IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 363

2. PROBLEM FORMULATION

The following assumptions are considered for the
problem formulation:

• Machines at stages with multiple parallel

machines are identical (in all characteristics
such as production rates and setup times/cost)

• Machines of different stages are continuously
available and each machine can only process
one product at a time.

• At stages with parallel machines, each product
is processed entirely on one machine.

• Setup times/costs in supplier's production
system are sequence independent.

• Production sequence at each basic period for
each machine at each stage is unique and is
determined by the solution method.

• The supplier incurs linear inventory holding
costs on semi-finished products.

• Both the supplier and the assembler incur
linear holding costs on end products.

• Preemption/Lot-splitting is not allowed.

Moreover, the notations used for the problem
formulation are defined as follows:

Parameters

n Number of products
m Number of work centers (stages)
mj Number of parallel machines at stage j
Mk'j K'-th machine at stage j
di Demand rate of product i
pij Production rate of product i at stage j
sij Setup time of product i at stage j
scij Setup cost of product i at stage j
hij Inventory holding cost per unit of product i

per unit time between stages j and j+1
hi Inventory holding cost per unit of final

product i per unit time
A transportation cost per delivery
PH Planning horizon length
M A large real number

Decision Variables

σk Sequence vector in basic period k
σkk'j Sequence vector of machine Mk'j related to

the basic period k

r Number of production cycles over the finite
planning horizon

nkk'j Number of products assigned to machine
Mk'j related to the basic period k

F Basic period length
bij Production beginning time of product i at

stage j (after related setup operation)
ki Time multiple of product i

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

′−=′

.Otherwise,0
jkMofpositionththeto

assignediskperiodbasicatiproductIf,1

kjkix ll

It is noted that based on above variables, the global
cycle length is equal to the least common multiple
of the ki variables, in other words we would have:
H = LCM (k1, k2,…,kn). Also, the production cycle
length, the production lot size of product i and the
processing time for a lot of product i at stage j
would be as follows:

Ti = ki.F, Qi = di.Ti, ptij= Qi /pij =di.ki.F / pij.

Moreover, at stages with only one machine the
value of mj and index k' would be only one. Since
after processing each product at each stage, there
would be a value added for the product, values of hij
parameters will be non-decreasing; that is hi,j-1≤ hij.
 The objective function of this problem
(Problem P) includes two fundamental expressions.
First expression is related to the setup and
transportation costs. This expression consists of
two parts: the first part computes the setup cost of
products with respect to their production cycle
times. The second part computes the transportation
cost of products on each basic period.

.
n

1i

m

1j F
A

Fik
ijsc

C ∑
=

∑
=

+=

The inventory holding costs are often more
complicated which are incurred at both the supplier
and the assembler. Figure 1 shows the inventory
level of final product i in one cycle at the assembly

facility is 2iTid
2
iT

iTid
iT

1
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
. Therefore, the

average inventory of component i per unit time at

364 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics

time

Ti

iI

ii T . d

Figure 1. Inventory level at the assembler in one cycle.

time

ijiiij pF.k.db +1j,iii1j,i pF.k.db −− +1j,ib − ijb

ii T . d

1j,iWIP −

Figure 2. WIP between stages j-1 and j at the supplier.

imiiim pFk.db +

time

iI

ii T . d

imb iT

Figure 3. Final product inventory at the supplier.

the assembly facility will be:

∑
=

n

1i
idikih

2
F

Two types of inventories i.e. WIP and finished
product inventories are considered for the supplier.
Figures 2 and 3 show the evolution of WIP
inventory of product i between two successive
stages j-1 and j, and the inventory level of final
product i, respectively.

From Figure 2 it is obvious that the average WIP
inventory of product i between two successive
stages j-1 and j per unit time is:

.
1j,ip2

Fikid
1j,ib

ijp2

Fikid
ijbid

ijp
iTid

2
iTid

1j,ip
iTid

1j,ibijbiTid
1j,ip

iTid

2
iTid

iT
1

1j,iI

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−−−+=

⎪⎭

⎪
⎬
⎫

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−−−

⎪⎩

⎪
⎨
⎧

+
−

=−

IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 365

Therefore, the total WIP inventory holding cost for
all products per unit time at the supplier would be
as follows:

.
1j,ip2

Fikid
1j,ib

ijp2

Fikid
ijbid

n

1i

m

2j
1j,ih

WIPTC

⎪⎭

⎪
⎬
⎫

−
−−

⎪⎩

⎪
⎨
⎧

−+∑
=

∑
=

−

=

Also, from Figure 3, we can derive the average
inventory of final product i per unit time:

.imbidFik
imp2
id

.1id

imp
iTid

imbiTiTid
imp

iTid
.

2
Tid

T
1

1j,iI

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎪⎭

⎪
⎬
⎫

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

⎪⎩

⎪
⎨
⎧

+=−

Thus, the total inventory holding cost for all final
products per unit time is:

.imb.id
n

1i
.ihFik .

ikmp.2
id

1id
n

1i
.ih

FITC

∑
=

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∑

=

=

So, the total cost per unit time (i.e. objective
function of Problem P) would be as follows:

.
n

1i
imbidih

n

1i

m

2j
1j,ibijbid.1j,ih

m

2j 1j,ip
1

ijp
1

1j,ih.
2

2
id

n

1i imp
id

3.
2

ik.id.ih
.F

n

1i

m

1j Fik
ijsc

F
ATC

∑
=

−∑
=

∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−+

⎥
⎥
⎥

⎦

⎤
∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−−

∑
= ⎢

⎢
⎣

⎡
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+∑

=
∑
=

+=

Regarding this objective function and logical
relationships between variables of Problem P (that
some of them are recognizable from inventory
level curves), a mixed zero-one nonlinear model is
developed to obtain optimal solution of the
problem.
 Problem P has the following set of constraints.
Constraints (2) state that no product can be
processed before it is completed at previous stage.

Constraints (3) show that, no product can be
processed before the completion of its
predecessor in the related production sequence
(σkk'j). Constraints (4) reveal that at each position
of each machine, there is at most one product;
because for each machine such as Mk'j, may
assigne less than n products. Constraints (5) state
that one product can be assigned at one position
of machine Mk'j; if another product is to be
assigned at the previous position of this machine.
Constraints (6) ensure assignment of product i to
one of the first ki basic period and implies that
each assigned product at each stage has a unique
position in the sequence of one machine.
Constraints (7) determine assignment of products
in appropriate basic periods during the H basic
periods. Constraints (8) denote that if product i
has been assigned to basic period k at stage j, it
must be assigned to that basic period at all stages.
Constraints (9) show that if product i is the first
product in the sequence vector of one machine at
stage j, it’s processing cannot be started before
setting up the corresponding machine. Constraints
(10) assure that the resulting schedule is cyclic so
that the process completion time for each product
at final stage is less than or equal to a basic cycle
time F. Constraint (11) implies that the planning
horizon PH is an integer multiple of H.F, where H
= LCM (k1,…,kn), and F is the basic period
length. Constraints (12) show that r is an integer
greater than or equal to one. Finally, Constraints
(13) are the non-negativity constraints of
variables.

.
n

1i
imbidih

n

1i

m

2j
1j,ibijbid1j,ih

m

2j 1j,ip
1

ijp
1

1j,ih
2

2
idik

n

1i imp
id

3
2

ik.id
ihF

n

1i

m

1j Fik
ijsc

F
A Z Min

:P Problem

∑
=

−∑
=

∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−

+
⎥
⎥
⎥

⎦

⎤
∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−−+

∑
= ⎢

⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+∑

=
∑
=

+=

Subject to

m,...,2j ;n,...,1i ; ijb
1j,ip

Fikid
1i,j-b ==≤

−
+ (2)

366 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics

()

 nk,...,1kcmlH,H,...,1k ;n

;jm,...,1k ;m,...,1j ;iu ,n,...,1i

;kjk1uxkjkix2Mujbijs
ijp

Fikid
ijb

⎟
⎠
⎞⎜

⎝
⎛==<

=′=≠=

⎟
⎠
⎞⎜

⎝
⎛

′+−′−≤−++

l

ll

 (3)

⎟
⎠
⎞⎜

⎝
⎛===

=′=≤∑
=

′

nk,...,1klcmH,H,...,1k ;n,...,1

;jm,...,1k ;m,...,1j ; 1
n

1i
kjkix

l

l
 (4)

()

⎟
⎠
⎞⎜

⎝
⎛==<=

==∑
=

′≤∑
=

′+

nk,...,1kcmlH,H,...,1k ;n ;jm,...,1k

;m,...,1j ;n,...,1i ;
n

1u
kjkux

n

1i
kjk1ix

l

ll
 (5)

m,...,1j ;n,...,1i ; 1
jm

1k

n

1

ik

1k
kjkix ===∑

=′
∑
=

∑
=

′
l

l (6)

()

2
ik

H,...,0b ;ik,...,1t ;m,...,1j ;n,...,1i

 ;
jm

1k

n

1 jik1btki
x

jm

1k

n

1 jibktki
x

−====

∑
=′

∑
= ++′

=∑
=′

∑
= +′

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

l l

l l

 (7)

H,...,1k ;mj,m,...,1j ;m,...,1i

;
jm

1k

n

1
1j,kkilx

jm

1k

n

1
kjkilx

=<==

∑
=′

∑
=

+′=∑
=′

∑
=

′
ll

 (8)

⎟
⎠
⎞⎜

⎝
⎛===

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∑
=′

′−−≥

nk,...,1kcmlH,H,...,1k ;n,...,1i

,m,...,1j ;
jm

1k
kjk1ix1Mijsijb

 (9)

,n,...,1i;F
imp

Fikid
imb =≤+ (10)

⎟
⎠
⎞⎜

⎝
⎛== nk,...,1kcmlH;PHH.F.r (11)

rand Intege , 1r ≥ (12)

{ } .k,j,k,,i;1,0kjkix ;j,i 0ijb ;0F ′∀=′∀≥≥ ll (13)

It is noted that this model can be run for a set of
known ki variables. In other words, to run this
model, at first the ki values must be determined,
and then the corresponding optimal basic period
length, optimal assignments, sequence vectors and
production and delivery schedule of products are
obtained via solving Problem P.

3. Proposed hybrid genetic algorithm

During the last thirty years, there has been a
growing interest in obtaining the optimal solutions
for complex systems using genetic algorithms
(GA). Genetic algorithms maintain a population of
potential solutions and simulate evolution process
using some selection process based on fitness of
chromosomes and some genetic operators. To
improve solution quality and to escape from
converging to local optima, various strategies of
hybridization have been suggested [5,20]. In
designing a hybrid genetic algorithm (HGA), the
neighborhood search (NS) heuristic usually acts as
a local improver into a basic GA loop.
 In our HGA, each solution is characterized with
a set of ki multipliers and the value of basic period
F. Beside the cost minimization; we have to
generate feasible schedules. Therefore, a capacity
feasibility test has been developed in Section 5
which is able to identify the infeasible solutions
and converting them to feasible schedules.

3.1. Chromosome Representation The
proposed HGA search in the solution space of ki
values, so that each chromosome is a binary (zero-
one) string, and each ki multiplier will be
represented as a particular part of a chromosome.
For instance, the first u1 bits are used to encode the
value of k1 and the particular piece of chromosome
from the (u1+1)-th bit to the (u1+u2)-th bit
represents the value of k2 and so on. In order to
represent all the possible values of ki for each item
i, we need an upper bound (see Section 4) on the

value of ki (or vi so that iv
2ik =). Because of

IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 367

encoding the value of ki into a binary string, we
have to establish a mapping between each binary
string and an integer ki. In fact, we map a binary
string consisting of ui bits to an integer value ki by
using the following equations for the power of two
and non-power of two cases, respectively:

iv
2ik

10iv

10

iu

1j

1j2jb

2
1b...1iub

iub

=⇒⎟
⎠
⎞⎜

⎝
⎛=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

−

=−

3.2. Determining The σk Vectors In assigning
and sequencing of products in different basic
periods i.e. determination of σk vectors, it is not
easy to derive a simple necessary and sufficient
condition to have a non-empty set of feasible
solutions. Given a vector of multipliers ki; i =
1,…,n, the procedure starts to make a vector say V'
by sorting the products in ascending order of ki
and, within the products having the same multiplier
ki , in the descending order of ρi where:

∑
=

==ρ
m

1j
.n...,,1i,

ijp
idik

i

Each product i in the vector V' is assigned to the
basic period t within the first ki periods of global
cycle H which minimizes:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+∑

σ∈=+= ijp
idik

ku ujp
uduk

m,...,1j
maximum

,...imt,tk
maximum

Finally, for each k, k=1,…,H, we determine the
sequence of products within σk such that if i, u ∈
σk and i is ordered before u in V', then i also is
ordered before u in σk.

3.3. Determining the σkk'j Vectors First
available machine (FAM) rule has been employed
to assign and sequence the products of each basic
period to machines of different stages (Torabi, et al
[5]. According to this procedure, for any given
permutation vector V; the products are assigned to
machines of first stage by using FAM rule (if m1 >
1). Then, for each of subsequent stages, the products

have been first sequenced according to increasing
order of their process completion time at the
previous stage, and then assigned to the machines at
the current stage according to FAM rule.

3.4. Initial Population Initial population of
binary chromosomes is generated randomly.
According to feasibility test, each infeasible
solution is converted to a feasible one and then is
inserted into the initial population.

3.5. Evaluation Function Each chromosome
in the population represents a potential solution to
the problem. Evaluation function is responsible for
rating these potential solutions by assigning a real
number as a measure of their fitness. In our
problem after determining the σkk'j vectors for each
chromosome, evaluation function is obtained by
solving the following NLP model (Problem P1).
This problem is derived from Problem P by
substituting xilkk'j values by corresponding ones.
Also, σkk'j(i) indicates the i-th product in the
sequence vector of machine Mk'j in basic period k.
Problem P1 can be solved by the following
iterative procedure:

Initial step. Let r = 1, and solve the resultant

linear program.
Iterative step. Increase r by 1 and solve the

corresponding linear program for
this new value of r. If this model
has no feasible solution, stop; else,
if the objective function for current
value of r (i.e. Zr) is less than this
value for previous r (i.e. Z), then
set Z = Zr and F* = PH/r.H, and go
to the next iteration.

Problem P1:

∑
=

−∑
=

∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−

+
⎥
⎥
⎥

⎦

⎤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−∑

=
−

∑
= ⎢

⎢
⎣

⎡
+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+∑

=
∑
=

+=

n

1i
im.bi.dih

n

1i

m

2j
1ji,bijbi.d1ji,h

F
1ji,p

1

ijp
1m

2j 2

2
id

.i.k1ji,h

n

1i imp
id

3
2
id

.i.kih
n

1i

m

1j Fik
ijsc

F
A Min Z

368 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics

Figure 4. Two-point crossover.

Subject to:

j.i, 0ijbF,
integer and 1r PH;r.H.F

n1,...,i F;
imp

iF.dik
imb

)nk,...,1k(lcmHH,1,...,k ;jm1,...,k

m;1,...,j ;j),1(jkkσ
sj),1(jkkσ

b

)nk,...,1(klcmHH,1,...,k

 ;jm1,...,k m;1,...,j;jkkn2,...,i

 ;j),i(jkkσ
bj),i(jkkσ

s

j),1i(jkkσ
p

)1i(jkkσ
F.d)1i(jkkσ

k

j,)1i(jkkσ
b

m2,...,j n,1,...,i ;ijb
1ji,p
iF.dik

1ji,b

∀≥
≥=

=≤+

===

=
′

≥
′

==

=′=′=

′
≤

′

−
−′

−′−′
+−′

==≤
−

+−

3.6. Selection and Crossover Operators In
proposed HGAs, we have used the tournament
selection approach. It randomly chooses two
chromosomes from parent pool, and then chooses
the fittest one if a random value generated (τ) is
smaller than a pre-set probability value φ (0.5<φ<
1). Otherwise, the other one is chosen. Then, the
selected chromosomes are duplicated and pairs of
them are selected as parents to undergo the
crossover operation.
 The main purpose of crossover is to exchange
genetic materials between randomly selected
parents with the aim of producing better offspring.
In this research we have used the classic two point
crossover based on the results obtained from the
initial tests. According to this crossover, at first
two positions are randomly selected, and then the

genes between them in the parent chromosomes
are exchanged (see Figure 4).

3.7. Mutation Operator Mutation introduces
random variation (diversification) into the
population. Most genetic algorithms incorporate
mutation operator mainly to avoid convergence to
local optima in the population and recovering lost
genetic materials. In the proposed HGAs, we have
used the swap mutation. Figure 5 illustrates an
example of this operator.

3.8. Local Improver Our local improvement
procedure is based on an iterative neighborhood
search (NS) so that within successive interchanges,
given offspring is replaced with an elite
(dominating) neighbor. We have used inversion
operator as local improver. Figure 6 is an example
of this operator.

3.9. Population Replacement Chromosomes
for the next generation are selected from the
enlarged population. After offspring were
generated from GA operators (crossover and
mutation) and then improved by the neighborhood
search procedure, the improved offspring are
added to the current population. This population is
called the enlarged population, and then about 60
percent of the new population is filled out by the
best and the fittest chromosomes of the enlarged
population. Remaining chromosomes are selected
randomly from the remainder chromosomes in the
enlarged population.

3.10. Termination Criteria Termination
criterion determines when GA will stop. In other
words, the genetic operations are repeated until one
of the termination conditions is met. In our
implementation, we stop HGAs, if pre-determined
number of generations, max_gen, has been

IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 369

Figure 5. Swap mutation.

Figure 6. Inversion operator.

executed or the pre-set number of generations
without any improvement in the last best solution,
max_nonimprove, reaches.

4. DETERMINING UPPER BOUNDS ON ki
VALUES

In order to represent all possible and feasible
values of each ki multiplier, we determine an upper
bound for each one. In our HGAs, we derive an
upper bound on ki through determining an upper
bound on the objective value of each product i.
Following steps describe how we can compute an
upper bound for each ki (ki

UB):

Step 1. For each product i, assume ki= 1 and
calculate ∑j di/pij, arrange the products in ascending
order of these values. Assign the products and
sequence them to machines at all stages via FAM
rule. Finally, find the corresponding common cycle
solution and its objective function, TCcc.

Step 2. Calculate the cost share of each product i,

∑ ≠=−= n
iu,1u

u
ccTCccTCi

ccTC . As it had been

mentioned by Yao, et al [15], we would have:
TCi

BP ≤ TCi
cc, where TCi

BP is cost share of product
i under basic period approach. So, TCi

BP values
must be determined.

Step 3. Assume there is only one product (say

product i) with following objective function:

.imbidih
m

2j
1j,ibijbid.1j,ih

m

2j 1j,ip
1

ijp
1

1j,ih.
2

2
idik

imp
id

3.
2

ik.id.ih
.F

m

1j Fik
ijsci

BPTC

−∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−+

⎥
⎥
⎥

⎦

⎤
∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−−+

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+∑

=
=

Obviously, to obtain the optimal solution, we have
to determine the starting times so that minimize
(bij-bi,j-1)-bim. Also, the smallest feasible value of
bij-bi,j-1 is equal to kiF.di/pi,j-1. Therefore, the best
value of TCi

BP is equal to:

∑
−

=
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+∑
=

=

1m

1j ijp
12

idih

m

2j 1j,ip
1

ijp
1

1j,ih.
2

2
id

imp
id

3.
2

id.ih

.Fik
m

1j Fik
ijsci

BPTC

Finally for a given value of F, we can derive an

upper bound on vi, (iv
2ik =), denoted by vi

UB by
using following equations:

.
minF.iH2

m

1j
ijsciH4

2i
ccTCi

ccTC

2logUB
iv

 0
m

1j
ijsci

ccTC.FikiH2F2
ik

i
ccTCiH.Fik

m

1j Fik
ijsc

 i
ccTCi

BPTC

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
=

−⎟
⎠
⎞⎜

⎝
⎛+

=

⇒≤∑
=

+−⇒

≤+∑
=

⇒≤

Where

∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+−+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

m

2j 1j,ip
1

ijp
1

1j,ih.
2

2
id

imp
id

3.
2

id.ih
iH

370 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics

Moreover, to determine the minimum value of F,
Fmin, assume that F must be large enough so that at
least one product with ki = 1, can be produced
during it. Consequently, Fmin is obtained from the
following equation:

.m
1j ijpid1

m
1j ijs

n,...,1i
maximumF

 F
m

1j ijp
Fidm

1j
ijs

n,...,1i
maximum

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑ =−

∑ =

=
≥⇒

≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑
=

+∑
==

5. FEASIBILITY TEST AND REPAIR
PROCEDURE

For a given chromosome and related ki, σk and σkk'j
vectors, a simple test for capacity feasibility can be
carried out. To do so, the process completion times
of products for all H basic periods are first
calculated. We can use the following procedure for
doing so.
 Then, if at least at one basic period, the related
completion time would be greater than or equal to
1, the corresponding chromosome is infeasible and
otherwise, it is feasible. In other words, if at least
one of the ftk values, k = 1,…, H, be greater than or
equal to 1, this solution would be infeasible.

for k = 1,…,H
 for each i ∈ σk
 for j = 1,…,m

 .1j,kM machineon k period
 basicat i before isu product

 ;
1j,ip

idik

1j,kku 1j,up
uduk

2process

 ,jkM machineon k period
 basicat i before isu product

 ;
jkku ujpuduk1process

−′

−
+∑

−′σ∈ −
=

′

∑
′σ∈=

 fin = max{process1,process2} + kidi /pij
 end
 ftik = fin
 end
ftk = maxi{ftik}
end

For converting an infeasible solution to a feasible
one, we have also proposed following iterative
repair procedure based on ki values modifications.

Step 1. Choose the basic period with maximal
value of ftk, e.g. basic period k1.

Step 2. Among the products of basic period k1,
select the product with maximum amount of
process time (maxi {∑j = 1,…,m kidi/ pij}; i ∈ σk1), e.g.
product i.

Step 3. If vi ≠ 0; set vi = vi -1, and obtain σk and
σkk'j vectors for this new set of multiples. If this
solution is feasible, stop, otherwise go to step1. If
vi = o; select the product with subsequent
maximum amount of process time and go to step 3.
 It is noteworthy that each chromosome obtained
via genetic operators (crossover, mutation and
local improver) is checked with aforementioned
feasibility test.

6. COMPUTATIONAL EXPERIMENTS

To verify the efficiency of the proposed algorithm,
in terms of the solution quality and the required
computation time, some numerical experiments
have been conducted. In this regard, all of the
experimental tests have been implemented on a
personal computer with an Intel Pentium IV 1800
MHz CPU and HGA has been coded with
MATLAB 6.5. Moreover, to solve the mixed zero-
one non-linear models, LINGO 6.0 optimization
software has been used. It should be mentioned
that the main motivation of authors to conduct this
research work is that the problem has been inspired
from a real industrial case where a supplier, based
on a mid-term contract (at most up to one year
planning horizon), produces 3 types of products for
an automotive manufacturer company. Supplier's
production facility is a 5-stage FFL in which the
drilling, cutting and pressing work centers have 2
parallel machines for processing the WIP parts.
Some types of products need not to pass some
stages. Because the master production plan of the
automotive manufacturer is almost constant, then
the supplier could assume a continuous and
constant demand rates during the planning horizon.

IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 371

However, because of the confidentiality as well as
the lack of some required data, we decided to
generate random problem instances.

6.1. Parameter Setting and Data Set The
tuned parameters of the HGA after some initial
tests have been adjusted as: population size
pop_size = n, maximum number of generations
max_gen = m×n, maximum number of generations
without improvement max_nonimprove = n,
crossover probability Pc = 0.8, mutation probability
Pm= 0.2, and tournament selection parameter φ =
0.7.
 Furthermore, the parameters of each problem
instance have been randomly generated from the
following uniform distributions:

() ()
() ()
() .20000,10000U~A

,10,1U~1ih ,025.0,01.0U~ijs

,15000,5000U~ijp ,1000,100U~id

Because processing at each stage has a value added
on products, hij values should be non-decreasing
with j. So, after random generation of hi1 for each
product i, other associated hij values are
determined by randomly generating incremental
additions i.e. hij = hi,j-1 + U(1,3). Also there could
be a correlation between scij and sij values.
Therefore, for each randomly generated sij, its
corresponding scij parameter has been computed
using the following equation: scij = 15000 × sij +
1000 × U(0,1).

6.2. Performance Evaluation To verify
efficiency of proposed solution method, we have
considered eight different problem sizes. For each
problem size, 20 problem instances have been
randomly generated. Also, we have divided our
problem instances in two parts: problem instances
with 4 and 5 products, and 2 and 3 stages (as the
small-sized problems), and problem instances with
5 and 10 products and 5 and 10 stages (as the
medium and large-sized problems). For small size
problems, the solutions of HGA have been
compared with the solution of LINGO software.
Also, for medium and large-sized problems, we
have calculated an index λ by the λ = (TC-LB)/LB
equation and used it as a base of comparisons. In

index λ, the TC is the total cost of a problem
instance obtained by each algorithm and LB is the
associated lower bound.
 To calculate the LB, we must obtain minimum
value of the following equation:

.
n

1i
imb.id.ih

n

1i

m

2j
1j,ibijbid.1j,ih

F
1j,ip

1

ijp
1m

2j 2

2
id

.ik.1j,ih

n

1i imp
id

3
2
id

.ik.ih
n

1i

m

1j Fik
ijsc

F
A Z

∑
=

−∑
=

∑
=

⎟
⎠
⎞⎜

⎝
⎛

−−−

+
⎥
⎥
⎥

⎦

⎤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−∑

=
−+

∑
= ⎢

⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+∑

=
∑
=

+=

If we assign to bij the values that minimize (bij-bi,j-1),
then the above equation is minimized. According
to constraints 2, the minimum possible amounts of
(bij-bi,j-1) are di.kiF/pi,j-1. Also, if products can be
scheduled as soon as possible, we can substitute
bim with ∑j=1,…,m-1 di.kiF/pij. Therefore, a good
lower bound can de computed as follows:

.
n

1i
F

1m

1j ijp
1

ik2
idih

1j,ip
1

ijp
1m

2j 2

2
id

.ik.1j,ih

imp
id

3
2
id

.ik.ih

n

1i

m

1j Fik
ijsc

F
A LB

n

1i

1m

1j ijp
1

ik2
idih

1j,ip
1

ijp
1m

2j 2

2
id

.ik.1j,ih

imp
id

3
2
id

.ik.ih

n

1i

m

1j ik
ijsc

A

F

∑
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑
−

=
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+∑

=
−

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+∑
=

∑
=

+=

∑
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑
−

=
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
+∑

=
−

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∑
=

∑
=

+

=

372 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics

TABLE 1. Results of Small-Sized Test Problems.

Problem
Size (n×m)

Number of Times That the
PTHGA’s Solution Was Better

Than the LINGO’s Solution

The Average of Percentage Decrease
in PTHGA’s Solution Compared to

LINGO's Solution (%)

Average
CPU Time
for LINGO

(In Seconds)

Average
CPU Time
for PTHGA
(In Seconds)

4 × 2 17 3.44 2736.98 34.43

4 × 3 16 5.05 5684.45 53.47

5 × 2 16 5.35 5770.77 54.69

5 × 3 18 9.07 9737.29 133.65

TABLE 2. Results of Medium and Large-Sized Test Problems (Comparison with LB).

Problem Size (n×m) The Average Performance Ratio of
PTHGA (%)

The Average CPU Time of
PTHGA (In Seconds)

5 × 5 10.26 149.34

5 × 10 18.86 787.66

10 × 5 16.4 1825.9

10 × 10 23.63 2126.58

TABLE 3. Results of Medium and Large Size Test Problems (Comparison with the Common Cycle Approach).

Problem Size (n×m) The Average Improvement in PTHGA's Solution
Compare to Common Cycle Approach (%)

5 × 5 9.76
5 × 10 6.49
10 × 5 8.35

10 × 10 6.82

Table 1 represents the computational results for the
small sized problem instances and Table 2 and 3

gives these results for medium and large sized
problem instances.

IJE Transactions A: Basics Vol. 21, No. 4, November 2008 - 373

 In summary, we find out the following results
from our numerical experiments:

• In Table 1, solution qualities of the proposed
algorithm have been compared with the
related optimal solution obtained via LINGO
6.0. As we can see, for the small size
problem instances, the solutions of the PT-
HGA are 67 times better than the solutions
of LINGO. It seems that having a mixed
zero-one and nonlinear nature of the
proposed mathematical model makes the
LINGO can not obtain good results. Also, in
average, the solutions qualities obtained by
the PT-HGA are 4.3 percent better than the
solutions of LINGO. Totally, the results
shown in Table 1 indicate superiority of the
proposed algorithm with respect to both CPU
time and solution quality in compare to
solutions of the LINGO.

• For the medium and large-sized problem
instances, performance ratio λ has been
calculated and used as a measure to evaluate
the proposed algorithms. In Table 2, we
have calculated the performance of the
proposed algorithm. We observe that the
average performance ratio for the problem
instances increases when the problem size
increases. However, this increase can be
either due to an increase in the difference
between the lower bound and the
corresponding optimal cost, or due to
reduction of effectiveness (performance) of
the proposed algorithms due to increase in
corresponding solution space.

• Table 3 reports the average cost differences
between the solutions obtained through
proposed algorithm and the solutions of
common cycle approach. These results
reveal the average improvement of 7.85
percent in solutions of the PT-HGA over the
common cycle's solutions, respectively.
Totally, these results indicate superiority of
applying the basic period policy versus
common cycle approach in the problem.

7. CONCLUSION REMARKS

In this paper, the basic period approach has been

applied to solve the economic lot and delivery-
scheduling problem in flexible flow lines over a
finite planning horizon. To do so, a new mixed
zero-one nonlinear model has been developed to
optimaly solve the problem. Providing an optimal
solution is not a practical approach for routine
decision-making in case of the medium and large-
sized problems. Thus, an efficient meta-heuristic
(PT-HGA) based on power-of-two policy, of basic
period approach has been developed.
 Since there is no other solution method for the
problem, we have compared the solutions of PT-
HGA with the LINGO solution software in small-
sized problems. Also, for medium and large-sized
problems, we have calculated an index λ which
calculates the distance of solutions obtained by PT-
HGA from a lower bound. Computational results
are very promising and indicate the superiority of
PT-HGA over the common cycle approach with
respect to the solution quality.

8. ACKNOWLEDGEMENT

This study was supported by the University of
Tehran under the research grant No. 8109920/1/01.
The authors are grateful for this financial support.

9. REFERENCES

1. Torabi, S. A., Karimi, B. and Fatemi Ghomi, S. M. T.,

“The Common Cycle Economic Lot Scheduling in
Flexible Job Shops: The Finite Horizon Case”,
International Journal of Production Economics, Vol.
97, (2005), 52-65.

2. Ouenniche, J. and Boctor, F. F., “Sequencing, Lot
Sizing and Scheduling of Several Components in Job
Shops: The Common Cycle Approach”, International
Journal of Production Research, Vol. 36, (1998),
1125-1140.

3. Ouenniche, J., Boctor, F. F. and Martel, A., “The Impact
of Sequencing Decisions on Multi-Item Lot Sizing and
Scheduling in flow Shops”, International Journal of
Production Research, Vol. 37, (1999), 2253-2270.

4. Fatemi Ghomi, S. M. T. and Torabi, S. A., “Extension
of Common Cycle Lot Size Scheduling for Multi-
Product, Multi-Stage Arborscent Flow-Shop Environment”,
Iranian Journal of Science and Technology, Transaction
B, Vol. 26, No. B1, (2002), 55-68.

5. Torabi, S. A., Fatemi Ghomi, S. M. T. and Karimi, B.,
“A Hybrid Genetic Algorithm for the Finite Horizon
Economic Lot and Delivery Scheduling in Supply

374 - Vol. 21, No. 4, November 2008 IJE Transactions A: Basics

Chains”, European Journal of Operational Research,
Vol. 173, (2006), 173-189.

6. Yang, P. C. and Wee, H. M., “A Single-Vendor and
Multiple-Buyers Production-Inventory Policy for a
Deteriorating Item”, European Journal of Operational
Research, Vol. 143, (2002), 570-581.

7. Chung, C. J. and Wee, H. M., “Optimal Replenishment
Policy for an Integrated Supplier-Buyer Deteriorating
Inventory Model Considering Multiple JIT Delivery and
Other Cost Functions”, Asia Pacific Journal of
Operations Research, Vol. 24, (2007), 125-145.

8. Yang, P. C., Wee, H. M. and Yang, H. J., “Global
Optimal Policy for Vendor-Buyer Integrated System
with Just in Time Environment”, Journal of Global
Optimization, Vol. 37, (2007), 505-511.

9. Wee, H. M. and Yang, P. C., “A Mutual Beneficial
Pricing Strategy of an Integrated Vendor-Buyers
Inventory System”, International Journal of Advanced
Manufacturing Technology, Vol. 34, (2007), 179-
187.

10. Hahm, J. and Yano C. A., “The Economic Lot and
Delivery-Scheduling Problem: The Common Cycle
Case”, IIEE Transactions, Vol. 27, (1995a), 113-125.

11. Hahm, J. and Yano, C. A., “The Economic Lot and
Delivery Scheduling Problem: Models for Nested
Schedules”, IIEE Transactions, Vol. 27, (1995b), 126-
139.

12. Jensen, M. T. and Khouja, M., “An Optimal Polynomial
Time Algorithm for the Common Cycle Economic Lot
and Delivery Scheduling Problem, European Journal
of Operational Research, Vol. 156, (2004), 305-311.

13. Bomberger, E. E., “A Dynamic Programming Approach
to the Lot Size Scheduling Problem”, Management
Science, Vol. 12, (1966), 778-784.

14. Elmaghraby, S. E., “The Economic Lot Scheduling
Problem: Review and Extensions”, Management Science,
Vol. 24, (1978), 587-598.

15. Yao, M. J. and Elmaghraby, S. E., “On the Economic
Lot Scheduling Problem under Power-of-Two Policy”,
Computers and Mathematics with Applications, Vol.
41, (2001), 1379-1393.

16. Ouenniche, J. and Boctor, F. F., “The Multi-Product,
Economic Lot-Sizing Problem in flow Shops: The
Powers-of-Two Heuristic”, Computers and Operations
Research, Vol. 28, (2001a), 1165-1182.

17. Ouenniche, J. and Boctor, F. F., “The Two-Group
Heuristic to Solve the Multi-Product, Economic Lot-
Sizing and Scheduling Problem in flow Shops”,
European Journal of Operational Research, Vol. 129,
(2001b), 539-554.

18. Ouenniche, J. and Boctor, F. F., “The G-Group
Heuristic to Solve the Multi-Product, Sequencing, Lot-
Sizing and Scheduling Problem in Flow Shops”,
International Journal of Production Research, Vol.
39, (2001c), 89-98.

19. Ouenniche, J. and Bertrand, J. W. M., “The Finite
Horizon Economic Lot Sizing Problem in Job Shops:
The Multiple Cycle Approach”, International Journal
of Production Economics, Vol. 74, (2001), 49-61.

20. Cheng, R. and Gen, M., “Parallel Machine Scheduling
Problems using Memetic Algorithms”, Computers and
Industrial Engineering, Vol. 33, (1997), 761-764.

