
IJE Transactions A: Basics Vol. 20, No. 3, October 2007 - 263 

SIMULTANEOUS DUE DATE ASSIGNMENT AND 
LOT SIZING WITH UNCERTAIN FLOW TIMES 

 
 

G. Mokhtari* and F. Kianfar 
 

Department of Industrial Engineering, Sharif University of Technology 
Tehran, Iran 

mokhtari@behsad.com - fkianfar@sharif.edu 
 

*Corresponding Author 
 

(Received: January 31, 2007 – Accepted in Revised Form: September 13, 2007) 
 

Abstract   Due date assignment for customer orders has been studied in various production 
environments using different modeling approaches. In this paper the researchers consider a 
production system in which the orders of several customers are produced in a single batch because of 
the economy of scale. If a batch is completed before receiving customer orders, inventory carrying 
cost is incurred but if it is completed after receiving customer orders, shortage cost is incurred and 
finally if the order is delivered after its due date, tardiness cost is charged. The problem is to decide 
on batch size, due date of batch (imposed on supply process) and lead time (to be quoted to the next 
coming customers) so that relevant costs are minimized. The objective function is to minimize total 
cost of supply, inventory carrying, shortage and tardiness. Production flow times are probabilistic 
which follow a probability distribution. The proposed model is solved using real-coded genetic 
algorithms and numerical results are presented. This work was motivated by a heavy equipment 
production system which has some products with relatively low demand rates, high prices and long 
supply lead times. 
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اسـتفاده از روش    در مورد تعيين موعد تحويل سفارش مشتريان در محيط های توليدی مختلـف و بـا                 چكيده          

گيريم کـه بـه دليـل         يک سيستم توليدی را در نظر می       ،در اين مقاله  . سازی متفاوتی، تحقيق شده است     های مدل 
 اگر توليد بچ، قبل از دريافـت        .شوند توليد می ،  صرفه جويی ناشی از مقياس، سفارش چندين مشتری در يک بچ          

آيد اما اگر بعـد از دريافـت سـفارش مـشتريان             وجود می سفارش مشتريان پايان يابد، هزينه نگهداری موجودی ب       
تکميل شود، هزينه کمبود خواهيم داشت و در نهايت اگر سفارشی بعد از موعد تعيين شده، به مـشتری تحويـل                     

مسئله عبارت است از تصميم گيری در مورد اندازه بچ، موعد تحويل بـچ            . گردد داده شود، هزينه تأخير ايجاد می     
 هزينـه هـا   مجمـوع ، به نحـوی کـه   )گردد که به مشتريان اعلام می(و مدت تحويل ) مينأ فرايند تاعمال شده بر  (

زمـان  . مين، نگهداری موجودی، کمبود و تـأخير اسـت  أتابع هدف، حداقل سازی کل هزينه های ت      . حداقل گردد 
ه، با استفاده از الگـوريتم      مدل ارائه شد  . کنند های جريان توليد، احتمالی بوده و از يک توزيع احتمالی پيروی می           

ايـن تحقيـق بـر اسـاس يـک سيـستم توليـد        . ژنتيک با کدينگ حقيقی، حل شده و نتايج عددی ارائه شـده انـد            
 کم، قيمت بالا و مدت تأمين طولانی، توليـد          تجهيزات سنگين انجام گرفت که تعدادی محصول با تقاضای نسبتاً         

 .نمايد می
 
 

 
1. INTRODUCTION 

 
In make-to-order production systems, it is crucial 
to have short lead times and a good due date 
performance. With the latter it is meant that orders 
are delivered as close as possible to their due dates. 
Researches have shown that price, quality and 
response time are the most important criteria in 

contractors selection. Hence trying to reduce lead 
times and on time delivery is essential for 
competition. 
In quoting lead times to the customers a trade-off 
has to be made between the length of lead times 
and reliability of the lead time. Promising a short 
lead time might lead to an impossible task for the 
order realization function with regard to delivering 
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the order close to the order due date. On the other 
hand long lead times make it easy for the order 
realization function to obtain a good due date 
performance but these lead times are, in general, 
not acceptable for the customers. Long lead times 
not only dissatisfy customers but also increase 
WIP and total inventories. Many authors have 
studied this trade-off between the length of lead 
times quoted to the customer and the delivery 
reliability. In due date assignment  two kinds of 
costs exist: 
 
• Too long lead time costs (lost sales, lower 

prices, customer dissatisfaction,…) 
• Too short lead time costs (Tardiness 

penalties, more production costs, quality 
problems, customer dissatisfaction,…) 

 
Due dates must be set so as to minimize total costs. 
In other words, due dates must be attractive for 
customers and profitable for manufacturers. 
     The majority of published papers about due date 
assignment assume a make-to-order production 
system in which each customer order is quoted and 
processed separately. The researcher’s contribution 
is formulating and solving due date assignment in a 
make-to-demand production system in which the 
order of several customers are aggregated and 
produced in a single batch. 
     The rest of this paper is organized as follows. In 
Section 2, some of the relevant literature is 
summerized while Section 3 presents this paper’s 
analytical model. In Section 3, the specific 
problem is described and modeled. In Section 4 
real-coded genetic algorithms are applied to solve 
the sample problems and analyze the results. 
 
 
 

2. LITERATURE REVIEW 
 
In this paper a problem is considered which is 
simultaneously related to due date assignment and 
lot sizing literature. Hence the principal research 
streams in these distinct areas are reviewed. 
Sections 2.1, 2.2 are about due date assignment 
and lot sizing respectively. 
 
2.1. Due Date Assignment Literature   There 
are many published papers about due date 

assignment problem. Here three principal research 
streams are recognized: 
 
• Studies that combine due date assignment 
with orders sequencing and scheduling problems 
[13,15,22,36]. In this line of research, production 
systems may include single machines, parallel 
machines, job shop, flow shop or continuous. 

• Studies that use a simulation approach to 
estimate order lead time based on some 
independent variables [12]. 

• Studies that use flow time approach for due 
date assignment. In this approach, each order has a 
flow time which usually has a probability 
distribution function. [23,28] 
 
Key factors that differentiate between the above 
streams are: 
 
• Amount and precision of information 
considered about workshop schedule and new 
arriving orders: When due date assignment is 
mixed with scheduling, very detailed information 
about workshop load (jobs already in system) is 
considered. But when flow time approach is used, 
information about workshop load is considered 
with some approximations. Some empirical 
methods use non-stochastic estimates like total 
work content (TWK), total work on the critical 
path (TWKCP), job processing time plus a slack 
(SLK), the number of operations (NOP), 
processing time and current queue length (JIQ), job 
processing time, waiting time and number of jobs 
in the system (JIS). 
 

• Decision variables : may include optimal 
due date, product price [16], order acceptance … 

• Objective function: may be minimizing costs 
(including tardiness and earliness cost, long quoted 
lead time cost) or maximizing profit (when 
decision has an effect on sales revenue 
 
The flow time approach is followed in this paper 
so papers that are in this line of research are 
concentrated on. 
     Bertrand and Ooijen [28] examine lead time 
quotation for coming orders. Each order has some 
revenue which is a descending linear function of 
quoted lead time. Order’s flow time has a specific 
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distribution function. Late deliveries incur two kinds 
of tardiness costs (independent of tardiness time and 
proportional to the amount of tardiness). The 
objective function is maximizing profit which is 
revenue minus lead time related costs. Optimal lead 
time is obtained by derivation. Finally they study 
the model performance using a simulation model. 
Ooijen and Bertrand [23] follow the approach of 
Bertrand and Ooijen [28]. In this paper they try to 
use new order information and work loads are taken 
into account. They define Internal and external due 
dates. Internal due dates are used for determining 
the priorities on the shop floor and external due 
dates are quoted to the customer. Internal due date is 
a function of arrival time of order, number of 
operations of order, processing time of operations, 
number of orders in the shop at the arrival time of 
order, number of machines in the shop and steady 
state utilization. At the end of the paper they use 
simulation to verify model performance. 
     Song, et al [11] investigates the problem of 
assigning product due dates for complex multistage 
assemblies. Manufacturing and assembly 
processing times are stochastic. In order to analyze 
multistage assemblies their product structures are 
decomposed into two-stage subsystems. A two-
stage assembly system has some components that 
are processed in parallel and then assembled. In 
assigning product due dates it is assumed that there 
is a production plan of start times which is being 
followed. An operation begins at its planned start 
time, unless it is delayed. It would then start 
immediately after the completion of previous 
activities, or in the case of assemblies, when all 
components are available. The completion time of 
a component and first stage is obtained based on 
these assumptions. They use three different forms 
of earliness and tardiness cost functions (absolute 
deviation, squared deviation and linear 
combination of positive and negative deviations). 
     Saibal and Jewkes [39] study due date 
assignment when both demand rate and product 
price are lead time sensitive. Orders arrive 
according to a Poisson process and processing 
times are exponentially distributed. The firm’s 
objective is to maximize profits by selecting an 
optimal guaranteed delivery time taking into 
account that (i) reducing delivery time will require 
investment, and (ii) the firm must be able to satisfy 
a pre-specified service level. Mean demand rate is 

modeled as a decreasing linear function of price 
and delivery time while price itself is a decreasing 
linear function of the guaranteed delivery time. 
Hence demand rate is a function of delivery time. 
They assume that the investment function takes a 
linear form and later discuss the extension to non-
linear investment functions. The firm has a unit 
operating cost, initially assumed to be constant 
(i.e., economies of scale do not exist). 
     Veral [12] uses a simulation model for 
estimating the order flow time which is the base of 
due date assignment. An average allowance for 
operation i at machine j is calculated using the 
processing time of operation i at machine j and 
average utilization of machine j. The flow 
allowance for a job is calculated as the sum of all 
its operations. 
 
2.2. Lot Sizing Literature   The concept of 
batching has been examined in various families of 
problems. Two major families of problems are lot 
sizing and lot scheduling problems. For a review of 
lot sizing problems the reader is referred to [52]. Lot 
sizing problems are production planning problems 
with setups between production lots. Because of 
these setups, it is often too costly to produce a given 
product in every period. On the other hand, 
generating fewer setups by producing large 
quantities to satisfy future demands, results in high 
inventory holding costs. Thus, the objective is to 
determine the periods where production should take 
place, and the quantities to be produced, in order to 
satisfy demand while minimizing production, setup 
and inventory holding costs. Other costs might also 
be considered. Examples are backorder cost, 
changeover cost, etc. Several models have been 
proposed for lot sizing problems. One of the 
ancestors of these models is the Economic Order 
Quantity (EOQ) model, which is a continuous time 
model with an infinite time horizon. It considers a 
single item and imposes no capacity restrictions. 
Later, the EOQ model was extended to consider 
multiple items and capacity limits. Research on 
continuous models is still carried out. 
     Unlike the above mentioned continuous models, 
the discrete lot sizing models assume that the 
planning horizon is finite and divided into discrete 
periods for which demand is given and may vary 
between periods. Wagner and Whitin’s single item 
problem is a seminal work in this area. 
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     The classification of lot sizing problems is 
based on several criteria: number of machines, 
number of production stages (levels), capacity 
constraints and their nature (fixed or variable), 
length of production periods, etc. Based on 
production stages, single-level and multi-level 
problems can be considered. While if  the focus is 
on period length, big time bucket problems and 
small time bucket problems can be considered. 
Small time bucket problems have short production 
periods, which normally are of the order of a few 
hours. Big time bucket problems consist of longer 
time periods, normally of the order of a few days 
or weeks. The latter can be seen as a time 
aggregation of the former. This leads to the 
consideration of hierarchical planning problems. 
     Lot sizing problem may be considered 
capacitated or uncapacitated. The latter can be seen 
as a lot sizing problem with a single (or aggregate) 
product, in which the production capacity is 
assumed to be high enough to never be binding in 
an optimal solution. 
     For a review of lot scheduling problems the 
reader is referred to [7,9]. In lot scheduling 
problems jobs may be batched if they share the 
same setup on a machine or a machine can process 
several jobs simultaneously. In these problems, 
doing jobs in batches has fewer costs than doing 
them separately. 
     One situation where benefits may result from 
batching occurs when machines require setups if 
they are to process jobs that have differing 
characteristics. The setup may reflect the need to 
change a tool or to clean the machine. In a family 
scheduling model, jobs are partitioned into families 
according to their similarity, so that no setup is 
required for a job if it belongs to the same family 
of the previously processed job. However, a setup 
time is required at the start of the schedule and on 
each occasion when the machine switches from 
processing jobs in one family to jobs in another 
family. In this model, a batch is a maximal set of 
jobs that are scheduled contiguously on a machine 
and share a setup. Large batches have the 
advantage of high machine utilization because the 
number of setups is small. On the other hand, 
processing a large batch may delay the processing 
of an important job belonging to a different 
family. 
     In lot scheduling, problems involving the 

scheduling of a single machine, of m parallel 
machines, and of m-machine flow shops, job shops 
and open shops may be considered. There is a set 
of jobs to be processed. The processing time of 
jobs, release dates, due dates and the weights of 
jobs is known. 
     In scheduling problems it is often assumed that 
due dates are determined before and some of them 
in which due date is a part of decision variables, 
the problem and costs structure is different from 
due date assignment problem [see References 20, 
21]. 
 
 
 

3. PROBLEM DESCRIPTION AND 
FORMULATION 

 
In this section, a specific problem is formulated 
with flow time approach. The problem was defined 
in a heavy equipments company. Consider a 
product that has deterministic demand and because 
of economy of scale is produced in batches and 
each batch satisfies several customer orders. 
Because of relatively long lead times, supply of a 
batch usually starts based on demand forecasting. 
If a batch is completed before receiving customer 
orders for it, inventory carrying cost is incurred but 
if it is completed after receiving customer orders, a 
due date is quoted to each customer and a shortage 
cost is charged (which is also called backlogging 
cost in inventory systems literature and reveals in 
the forms of sales price reduction, customer 
goodwill …). If an order is delivered after its due 
date, tardiness cost is incurred. 
     To formulate the problem symbolically, some 
definitions and notations will be required. Consider 
a product with an interval time between two 
successive orders of  λ. After receiving each order, a 
due date is quoted to its customer, if it could not be 
delivered simultaneously. Let )i(L  be function 
which determines the lead time quoted to customer 
i. Due date of order i will be )i(Li +λ  since order i 
is received at λi . Quoting a lead time x to a 
customer, will charge x.w  cost. Supply cost 
function is )Q(S  in which Q is the batch size. Let 

1π  be tardiness cost per unit of product that is 
delivered after its due date (independent of the 
duration of lateness) and 2π  be unit time tardiness 
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cost rate per unit of product. Inventory carrying cost 
per unit per unit time is h. Consider d to be the batch 
due date that is used in supply planning process. 
Because of uncertainty in supply process, batch 
completion time is a random variable (showed by 
Xd) with a probability density function f which is a 
function of the batch due date. In other words, if  the 
supply due date of a batch is set at d, the batch 
completion time will be a random function of d. 
So decision variables are: 
 
• Batch size (Q) 

• Batch due date (d) 

• Customer due date assignment function, L(i) 

• If the batch size is Q, shortage cost of a 
cycle will be 

 

∑
=

λ>
Q

1i
)idX(P).i(Lw  (1) 

 
In which Xd is batch receive time and )iX(P d λ>  is 
the probability that the batch is not received until 
order receiving time, iλ. 
     Inventory carrying cost is incurred for products 
that are not sold until batch completion. Inventory 
carrying cost of a cycle will be  
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Where x)i(Li −+λ  is the duration of holding 
product i when supply completion time is x and the 
product due date is )i(Li +λ . Inventory carrying 
cost expression has two parts because it could 
happen to be in two different situations. Firstly, it 
incurs if the batch is received before customer 
order, λi . Secondly, it happens if the product is not 
received before customer order so a lead time is 
quoted to him, but it is received before due date 
quoted to its customer. 
     Tardiness cost occurs for products that are 
delivered beyond their assigned due date. 

Tardiness cost of a cycle will be 
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Where )]i(LiX[P d +λ>  is the probability of 
tardiness and )]i(Lix[ −λ− is tardiness of product i, 
if batch is received at time x. It is obvious that 
tardiness occurs when the batch is received in 
range [ ]∞+λ ),i(Li . 
Hence total cost of a cycle is 
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Average cost of unit product is )Q(Z
Q
1  which 

must be minimized. 
     For further elaboration of the model, )i(L  is 
considered to be a linear function of i, i.e. 

iba)i(L −= . Although with respect to the proposed 
solution method, there is no limitation in 
considering other structures for function )i(L . 
Parameters a, b together with d and Q are the 
decision variables of the model. 
 
 
 

4. MODEL SOLUTION USING GENETIC 
ALGORITHMS 

 
Genetic algorithms (GA) are computational models 
that solve a given problem by maintaining a 
changing population of individuals, each with its 



268 - Vol. 20, No. 3, October 2007 IJE Transactions A: Basics 

own level of “fitness”. The change in the 
population is achieved by the selection, 
reproduction and mutation procedures within the 
method. The operation of these three procedures is 
dependent upon the fitness of the individuals 
concerned. 
     Every good GA needs to balance the extent of 
exploration of information obtained up until the 
current generation through recombination and 
mutation operators with the extent of exploitation 
through the selection operator. If the solutions 
obtained are exploited too much, premature 
convergence is expected. On the other hand, if too 
much stress is given on a search (i.e. exploration), 
the information obtained thus far has not been used 
properly. Therefore, the solution time may be 
enormous and the search exhibits a similar behavior 
to that of a random search. The issue of exploration 
and exploitation makes a recombination and 
mutation operator dependent on the chosen selection 
operator for successful GA run. 
 
4.1. Encoding   Genetic algorithms are 
characterized by the fact that all the information 
for any individual in the population is encoded 
using some linear encoding system. This (usually 
binary) encoding is intended to be analogous to 
natural DNA consisting of a string of four kinds of 
chromosomes. The standard encoding technique 
for applying genetic algorithms to non-linear 
optimization problems (where the parameters are 
continuous and real), is a concatenation of all the 
binary approximations to each number. Handling 
continuous search space with binary coded genetic 
algorithm has several difficulties [40]. Real coded 
genetic algorithm represents parameters without 
coding, which makes representation of the 
solutions very close to the natural formulation of 
many problems. Then a chromosome is a vector of 
floating point numbers, the precision of which will 
be restricted to that of the computer with which the 
algorithm is carried out. The size of the 
chromosomes is kept the same as the length of the 
vector which is the solution to the problem; in this 
way, each gene represents a variable of the 
problem. The values of the chromosome genes are 
forced to remain in the interval established by the 
variables they represent so the genetic operators 
must observe this requirement. In real coded GA 
(RCGA) recombination and mutation operators are 

designed to work with real parameters. In this 
paper, RCGA is applied for optimization. 
 
4.2. Cross-Over   The means by which two 
different chromosomes (i.e. members of the 
population) can combine to form some new 
“offspring” is cross-over. Here, some well-known 
or recently proposed crossover operators are 
presented and considered in experiments. 
 
4.2.1. Blend crossover (BLX-α) [46]   Assume 
that )1

nc,...,1
1c(1C =  and )2

nc,...,2
1c(2C = are two 

chromosomes that have been selected to apply 
the crossover operator to them. An 
offspring, )nh,...,ih,...,1h(H =  is generated, 
where hi is a randomly (uniformly) chosen 
number of the interval ].Imaxc,.Iminc[ α+α− , 

)2
ic,1

icmax(maxc = , )2
ic,1

icmin(minc = , 

mincmaxcI −= . The BLX-0.0 and BLX-0.25 
are also called flat crossover and extended 
intermediate crossover respectively. 
 
4.2.2. Heuristic crossover (HX) [49]   With this 
operator, also called direction based crossover, 
from a pair of parents ))1(

nx,...,)1(
2x,)1(

1x()1(x =  

and ))2(
nx,...,)2(

2x,)2(
1x()2(x =  an offspring 

)ny,...,2y,1y(y =  is generated in the following 
manner: 
 

)2(
ix))1(

ix)2(
ix(uiy +−=  

 
Where u is a uniformly distributed random number 
in the interval [0,1] and the parent )2(x  has a 
fitness value no worse than that of parent )1(x . If 
the offspring generated lies outside the feasible 
region, a new random number u is generated to 
produce another offspring. If required, this process 
is repeated up to k times. If it fails to produce a 
feasible offspring, like laplace operator, a random 
point in the feasible region is chosen. In this paper 
k is fixed to be 4 (as in [50,45]). 
     Direction based crossover uses the values of the 
objective function in determining the direction of 
genetic search. 
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4.2.3. Laplace crossover (LX) [45]   Laplace 
crossover is based on laplace distribution. 
Distribution function of Laplace distribution is 
given by 
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Where Ra∈ is called the location parameter and 
b > 0 is termed as scale parameter. 
Using laplace crossover, two offspring 
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pair of parents ))1(
nx,...,)1(
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1x()1(x =  and 

))2(
nx,...,)2(

2x,)2(
1x()2(x =  in the following way. 

First, a uniformly distributed random number 
[ ]1,0u∈  is generated. Then, a random number β is 

generated which folalows the laplace distribution 
by simply inverting the distribution function of 
Laplace distribution as follows: 
 

⎪
⎩

⎪
⎨

⎧

>+

≤−
=β

2
1u,)u(Ln.ba
2
1u,)u(Ln.ba

 (6) 

 
The offspring are given by the equations 
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From the above equations it is clear that both the 
offspring are placed symmetrically with respect to 
the position of the parents. For smaller values of b, 
the offspring are likely to be produced near the 
parents and for larger values of b offspring are 
expected to be produced far from the parents. For 
fixed values of a and b, LX dispenses offspring 
proportional to the spread of parents i.e. if the 
parents are near each other the offspring are also 
expected to be near each other and if the parents 

are far from each other then the offspring are likely 
to be far from each other. 
 
4.2.4. Average-bound crossover (ABX) [42]   The 
two parents will eventually produce two offspring. 
The ABX comprises two operations: average 
crossover and bound crossover which produce 4 
offspring in the following manner: 
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ix1
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[ ]1,0bw,a ∈ω  Denote the user defined weight for 
average crossover and bound crossover, 
respectively. As the value of aω  tends to 1, the 
offspring tends to be the average of the selected 
parents. As the value of aω  tends to 0, the offspring 
tends to be the average of the domain boundary. For 
many optimization problems, the value of the 
weight aω  can be set as 0.5. 
     Changing the value of the weight bω  in the 
ABX will change the characteristics of the bound 
crossover operations. It is also chosen by trial and 
error, which depends on the kind of the optimization 
problem. A value of bω  approaching 1 will make 
the offspring to be near the selected parents. As the 
value of bω  tends to 0, the offspring will become 

near the domain boundary. Among 1
iy  to 4

iy , two 
with the best fitness values are used as the offspring 
of the crossover operation. 
     It seems that ABX is some what like a fuzzy 
connectives based crossover [51] in which the 
interval of the action of each gene is divided into 
three regions and demonstrate exploration and 
exploitation zones. The first two offspring of ABX 
are generated in the exploitation zone and the last 
two are generated in the exploration zone. 
     The offspring have to be feasible with respect to 
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their genes’ values: n,...,1i],iub,ilb[ih =∈  If not 
feasible, the offspring are regenerated following the 
same rule with other randomly picked numbers. 
 
4.3. Mutation   The role of mutation in GA is to 
restore lost or unexpected genetic material into a 
population to prevent the premature convergence of 
GA to sub-optimal solutions. 
     Any good searching algorithm must explore 
large search space at the beginning and the search 
should then narrow down as it converges to the 
solution. 
     Basically each bit within the population is 
flipped with a certain (small) probability. This 
probability is usually less than one in one 
thousand. Some propose that the mutation is 
simply a means of preventing an early convergence 
(and hence allowing the algorithm enough time to 
complete its work). However others claim that it is, 
in fact, an essential means of introducing genetic 
diversity into the population. That is, allowing 
genes which contain desirable characteristics to be 
formed, which would not otherwise be formed. 
Here some of the well-known or recently 
developed mutation operators are introduced: 
 
4.3.1. Non-uniform mutation (NUM) [47]   
Randomly selects one gene ic  and sets its value 
according to the following rule: 
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With 1a  and 2a  two random numbers in [0,1], b a 
constant parameter, t the time or generation 
number, maxt  the maximum number of 
generations the GA is allowed to run. 
     This function gives value in the range [0,1] such 
that the probability of returning a number close to 
zero increases as the algorithm advances. The size 
of the gene generation interval shall be lower with 
the passing of generations. This property causes 

this operator to make a uniform search in the initial 
space when t is small and very locally at a later 
stage, favoring local tuning. 
 
4.3.2. Wavelet mutation (WAV) [42] 
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By using the Morlet wavelet, 
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Where [ ]5.2,5.2−∈ϕ is randomly generated. If δ is 
positive ( 0>δ ) approaching 1, the mutated gene 
will tend to the maximum value of ix . Conversely, 
when δ is negative ( 0≤δ ) approaching -1, the 
mutated gene will tend to the minimum value of 

ix . A larger value of δ  gives a larger searching 

space for ix . When δ  is small, it gives a smaller 
searching space for fine-tuning the gene. 
     The value of the dilation parameter a can be set 
to vary with the value of T/τ  in order to meet the 
fine-tuning purpose, where T is the total number of 
iteration and τ is the current number of iteration. In 
order to perform a local search when τ is large, the 
value of a should increase as T/τ  increases so as 
to reduce the significance of the mutation. Hence, a 
monotonic increasing function governing a and 

T/τ  is proposed as 
 

( ) )g(lnT/1)g(lnea +ζτ−−=  (15) 
 
Where ζ is the shape parameter of the monotonic 
increasing function, g is the upper limit of the 
parameter a. In this paper, g is set as 10,000. The 
value of a is between 1 and 10,000. The maximum 
value of δ is 1 when the random number of 0=ϕ  
and a = 1( 0T/ =τ ) and it ensures that a large 
search space for the mutated gene is given. When 
the value T/τ  is near to 1, the value of a is so large 
that the maximum value of δ will become very 
small. For example, at 9.0T/ =τ  and ζ = 1, the 



IJE Transactions A: Basics Vol. 20, No. 3, October 2007 - 271 

dilation parameter a = 4,000. If the random value 
of ϕ is zero, the value of δ will be equal to 0.0158; 
a small searching space for the mutated gene is 
given for fine tuning. 
     A larger ζ (ζ = 5) means that the RCGA will go 
to perform fine-tuning faster. On the other hand, a 
smaller ζ (ζ = 0.2) means the mutation operation is 
playing a significant role at a later stage. When ζ 
becomes larger, the decreasing speed of the step 
size (δ) of the mutation becomes faster. 
 
4.4. Reproduction   This is one of the most 
important, and surprisingly, least controversial of 
the operations. This is where it is decided which 
members of the population will be allowed to 
survive, and which will perish. It is usually done 
via a weighted random selection. The weighing is 
done on the fitness of each individual. 
     That is, the more fit members of the population 
have a greater chance of progressing to the next 
generation than those less fit. 
     Elitism is a technique to preserve and use 
previously found best solutions in subsequent 
generations of GA. In an elitist GA, the statistic of 
the population’s best solutions cannot degrade with 
the generation. Maintaining archives of non-
dominated solutions is an important issue. The 
final contents of archive represent (usually) the 
result returned by optimization process. It is 
common (and highly effective) to employ an 
archive as a pool from which to guide the 
generation of new solutions. Some algorithms use 
solutions in the archive exclusively for this 
purpose, while others tend to rely on the archive to 
varying degrees according to parameter settings. 
 
4.4.1. Tournament selection   In tournament 
selection, a number Tour of individuals is chosen 
randomly from the population and the best 
individual from this group is selected as a parent. 
This process is repeated until the required numbers 
of parents are selected. These selected parents 
produce uniform offspring at random. The 
parameter for tournament selection is the 
tournament size Tour. Tour takes values ranging 
from 2 to popsize, the number of individuals in the 
population. 
 
4.4.2. Normalized geometric ranking   Rank-

based methods order the chromosomes according to 
their fitness value. Since the selection here depends 
on the degree the fitter chromosomes are favored, 
the GA will produce improved population fitness 
over succeeding populations. The normalized 
geometric ranking scheme [41] is used in this work. 
Individuals in the population are ranked in 
decreasing order according to their fitness value. 
Then each individual is assigned a probability of 
selection based upon a triangular or geometric 
distribution. Michalewicz [47] and Joines and 
Houck [48] have shown that GAs incorporating 
ranking methods based upon the geometric ranking 
distribution outperform those based on the 
triangular distribution. Thus for a finite population 
size the probability assigned to the ith individual or 
chromosome will be 1r)q1(qiP −−= . 
Where q is the probability of selecting the best 
individual and r is the rank of the individual (1 is the 
best rank). Joines and Houck [48] showed that a 
pure geometric distribution is not appropriate since 
its range is defined on the interval one to infinity. To 
alleviate this problem, they developed a normalized 
distribution such that the probability will be 
 

1r)q1(qiP −−′= , P)q1(1

qq
−−

=′  (16) 

 
Where p is the population size.  
 
4.5. Experimental Setup   Table 1 show 24 
different algorithms that were tested with three 
problem instances. 
     The present experiments were carried out using 
the following parameters: the population size is 60, 
the crossover and mutation probabilities are 0.8, 
0.1 respectively. The number of generations in 
each run is 100. Each algorithm of Table 1 was run 
25 times for each sample data set. The Elitism size 
was set to 1. g parameter in wavelet mutation was 
set as 10,000. 
 
4.6. Problem Instances   Parameters values and 
function forms are determined based on studies in 
a manufacturing environment. S function assumed 
to be linear piecewise functions so that the impact 
of batch size on procurement and assembly costs 
could be represented properly. 
     Three sample data sets were considered and 
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TABLE 1. Real-Coded Genetic Algorithms. 
 

ID Selection Crossover Mutation 

RCGA04 Ranking )09.0q( =  BLX )4k,4.0( ==α  NUM )3b( =  

RCGA05 Ranking )09.0q( =  BLX )4k,4.0( ==α  NUM )5b( =  

RCGA06 Ranking )09.0q( =  BLX )4k,4.0( ==α  WAW )5( =ζ  

RCGA07 Tournament )4Tour( =  BLX )4k,4.0( ==α  NUM )3b( =  

RCGA10 Tournament )4Tour( =  HX )4k( =  NUM )3b( =  

RCGA13 Ranking )05.0q( =  HX )4k( =  NUM )3b( =  

RCGA19 Ranking )09.0q( =  HX )4k( =  WAV )5( =ζ  

RCGA20 Ranking )05.0q( =  HX )4( =k  WAV )5( =ζ  

RCGA21 Ranking )05.0q( =  HX )4k( =  WAV )1( =ζ  

RCGA22 Ranking )05.0q( =  HX )4k( =  WAV )2.0( =ζ  

RCGA23 Tournament )4Tour( =  HX )4k( =  WAV )1( =ζ  

RCGA24 Ranking )05.0q( =  BLX )4k,4.0( ==α  NUM )3b( =  

RCGA25 Tournament )3Tour( =  BLX )4k,33.0( ==α  NUM )3b( =  

RCGA26 Ranking )05.0q( =  BLX )4k,4.0( ==α  WAV )5( =ζ  

RCGA27 Tournament )3Tour( =  HX )4k( =  NUM )3b( =  

RCGA28 Ranking )05.0q( =  HX )4k( =  NUM )5b( =  

RCGA29 Ranking )05.0q( =  LX )1k,5.0b,0a( ===  WAV )5( =ζ  

RCGA30 Ranking )05.0q( =  LX )1k,5.0b,0a( ===  NUM )5b( =  

RCGA31 Tournament )4Tour( =  HX )4k( =  WAV )5( =ζ  

RCGA32 Ranking )05.0q( =  ABX )5.0b,5.0a( =ω=ω  WAV )5( =ζ  

RCGA33 Ranking )05.0q( =  ABX )5.0b,5.0a( =ω=ω  NUM )5b( =  

RCGA34 Ranking )05.0q( =  HX )4k( =  WAV )4( =ζ  

RCGA37 Ranking )05.0q( =  LX )4k,5.0b,0a( ===  WAV )5( =ζ  

RCGA38 Ranking )05.0q( =  LX )4k,5.0b,0a( ===  NUM )5b( =  
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TABLE 2. Problem Instances. 
 

Function/Parameter Problem Instance 1 (P1) Problem Instance 2 (P2) Problem Instance 3 (P3) 

Batch Receive Time 
Distribution 

Beta (a,b,p,q): a = d-0.1, b 
= d + 0.3 p = 2, q = 6 

Triangular (a,c,b): a = d-
0.05, b = d + 0.15, c = d 

Uniform (a,b): a = d-
0.05, b = d + 0.15 

s(n) 
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w 12 12 12 

P1 2 2 2 

P2 15 15 15 

h 15 15 15 

λ  0.01 0.005 0.005 

 

solved using different algorithms. As Table 2 
shows, three different probability distribution 
functions (including beta, triangular and uniform) 
have been used. The Beta distribution can be used 
to model events which are constrained to take 
place within an interval defined by a minimum and 
maximum value. For this reason, the Beta 
distribution-along with the triangular distribution-
is used extensively in PERT, CPM and other 
project management/control systems to describe 
the duration of an activity. Beta probability density 
function with parameters p, q distributed over the 
interval a, b is: 
 

1q,p,bxa,
)q,p(â1qp)ab(

1q)xb(1p)ax()x(f ><<
−+−

−−−−
=

 (17) 

In which a, b are lower and upper limits of the beta 
random variable. Parameters p and q determine the 
shape of beta distribution. Mean and variance of 
beta are calculated by: 
 

2)qp)(1qp(

2)ab(pq2,a
qp

qb
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+
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+
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 (18) 
 
Figure 1 shows a sample beta pdf in which a, b are 
0.3, 0.8 respectively. Mean of this random variable 
is 0.425. In the data set 1, p, q were considered to 
be 2, 6 and a, b to be functions of batch due date 
(d) which means that batch receive time is a beta 
random variable whose upper and lower limits are 

0.3db , 0.1-da +== respectively. 
     The triangular distribution is a continuous 
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Figure 1. Beta probability density function with parameters 2, 
6. 
 
 
 

 
 
Figure 2. Triangular probability density function. 

distribution defined on the range [ ]b,ax∈  with 
probability density and distribution functions 
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Figure 2 depicts the triangular pdf. 

4.7. Model Verification   Model verification is 
often defined as “ensuring that the computer 
program of the computerized model and its 
implementation are correct” and the definition is 
adopted here. The following techniques are used 
for model verification: 
 
4.7.1. Structured programming and program 
modularity   The computer program has been 
designed, developed, and implemented using 
techniques found in software engineering. These 
include such techniques as structured programming 
and program modularity. Totally 24 functions and 
15 procedures constitute the overall program that 
could be partitioned in 2 main modules (objective 
function calculation and genetic algorithm). This 
modularity makes the program more traceable. 
 
4.7.2. Testing   Three testing techniques were used: 
Structured walk-through: These are step-by-step 
reviews of program to assure that it behaves 
correctly. 
     Unit test: this type of testing is oriented to 
discovering defects in the individual functions and 
procedures making up the program. For example, 
functions written for beta distribution function 
were tested in this step. 
     Integration test: These are tests at the module 
and program level. As higher levels of integration 
are reached  the purpose of testing moves from 
predominantly verification to validation. These 
groups should be tested to see if they work 
together properly as the program is built. For 
example, objective function is a module that was 
tested in this way. 
 
4.8. Experimental Results   The best solution 
found for test problems are presented in Table 3. 
     For each test problem a table is presented below 
(Tables 4-6). The fitness column is the average of 
best fitness values found in each run. Initial and 
last population average columns show the average 
of fitness of elements in the initial and last 
populations. Total Average is the average of the 
fitness of all the elements appearing through GA’s 
execution. Best Solution Gen. Shows the last 
generation in which the best element was found. 
As it is expected, diversity is the initial (randomly 
generated) population is high and in the last 
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TABLE 3. Optimum Solutions. 
 

Problem n a b d Fitness 

P1 13 0.0622 0.00145 0.03833 20.05777 

P2 26 0.0633 0.00141 0.00136 20.2903 

P3 26 0.1006 0.00356 -0.02364 20.4640 
 
 
 

TABLE 4. Problem Instances. 
 

ID Fitness 
Initial 

population 
Average 

Last 
population 
Average 

Total 
Average 

Best 
Solution 

Gen. 

Successful 
Runs 

RCGA04 20.0582180 115.1006 20.058218 21.9768 97.8 10 

RCGA05 20.0588102 118.8962 20.072111 21.7989 99.2 9 

RCGA06 20.5909955 114.7098 20.600143 22.1423 99.8 24 

RCGA07 20.0582125 104.3831 20.058224 21.9204 99.8 10 

RCGA10 20.0609181 107.7236 20.060918 22.9674 68.5 19 

RCGA13 20.0578337 117.4383 20.057834 24.4680 90.8 23 

RCGA19 20.0639377 109.2584 20.107163 22.3512 81.2 19 

RCGA20 20.0577786 115.2598 20.387223 24.5765 94.7 25 

RCGA21 20.0577831 114.9840 20.448000 26.0360 93.8 23 

RCGA22 20.0579195 120.8111 20.706947 25.9796 94.9 19 

RCGA23 20.0608630 112.2184 20.088022 23.3292 67.2 21 

RCGA24 20.0583427 112.8525 20.058356 22.6366 99.5 10 

RCGA25 20.0595538 119.8462 20.059676 22.2886 98.7 2 

RCGA26 20.3152544 109.2135 20.331042 22.4814 99.4 0 

RCGA27 20.0578613 113.1436 20.057861 23.6181 87.8 22 

RCGA28 20.0578062 109.5346 20.067484 24.3489 86.0 24 

RCGA29 20.0638146 112.5194 20.291238 22.9410 98.2 22 

RCGA30 20.0579165 109.9684 20.067722 22.8390 93.4 20 

RCGA31 20.0578627 103.4213 20.087448 22.6567 73.8 21 

RCGA32 21.4000000 111.5000 22.433333 24.1333 68.8 0 

RCGA33 21.1104617 111.8037 22.042272 25.5210 41.6 0 

RCGA34 20.0577790 107.9320 20.344000 24.7080 95.2 25 

RCGA37 20.0577791 107.8569 20.081416 22.4287 97.8 25 

RCGA38 20.0578615 111.5957 20.062774 22.7158 92.8 22 
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TABLE 5. Results for P2. 
 

ID Fitness 
Initial 

population 
Average 

Last 
population 
Average 

Total 

Average 

Best 
Solution 

Gen. 

Successful 
Runs 

RCGA04 20.3179178 150.7987 20.327535 22.7372 99.8 19 

RCGA05 20.3722906 157.1712 20.411625 22.7302 99.2 6 

RCGA06 20.9230683 149.3076 20.936868 23.1972 99.8 0 

RCGA07 20.3264925 157.4748 20.326961 22.8969 99.5 12 

RCGA10 20.2903147 151.9289 20.290315 24.2431 78.8 25 

RCGA13 20.2903147 146.3522 20.290315 27.4624 94.6 25 

RCGA19 20.3591500 151.5029 20.429075 23.5517 78.6 16 

RCGA20 20.2967899 158.0778 20.864692 27.0578 93.0 23 

RCGA21 20.2903155 157.8921 20.855212 29.2699 98.2 25 

RCGA22 20.2903147 149.2366 21.567079 29.5289 95.2 25 

RCGA23 20.2964821 153.3789 20.319879 24.9234 82.5 24 

RCGA24 20.3362827 150.5686 20.340935 23.5217 99.2 9 

RCGA25 20.3862906 158.7407 20.387894 23.2692 99.6 6 

RCGA26 20.7682720 170.5133 20.787096 24.4654 99.5 0 

RCGA27 20.2903147 161.6875 20.290315 25.4991 93.4 25 

RCGA28 20.2903147 157.6269 20.290315 26.1982 92.6 25 

RCGA29 20.3676368 148.9813 20.550880 24.3864 98.2 11 

RCGA30 20.3289108 157.6736 20.328926 24.0559 97.1 18 

RCGA31 20.3068547 153.3570 20.344982 23.9392 70.9 22 

RCGA32 21.5093297 160.8750 23.299400 26.9899 81.0 0 

RCGA33 21.1398177 151.2442 22.743890 27.7654 42.9 0 

RCGA34 20.2903147 160.3525 20.880219 27.1151 96.5 25 

RCGA37 20.3289261 145.7382 20.441083 23.9764 97.2 17 

RCGA38 20.3178814 157.0021 20.328534 23.7349 96.4 20 
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TABLE 6. Results for P3. 
 

ID Fitness 
Initial 

population 
Average 

Last 
population 
Average 

Total 
Average 

Best Solution 
Gen. 

Successful 
Runs 

RCGA04 20.5834359 161.36 20.583461 23.2912 99.2 2 

RCGA05 20.6045089 158.78 20.604510 22.9444 98.4 1 

RCGA06 21.0556529 159.53 21.072663 23.5274 99.2 0 

RCGA07 20.5673691 157.14 20.567529 23.2800 99.2 2 

RCGA10 20.4743162 148.07 20.474320 24.7782 96.8 23 

RCGA13 20.4701713 161.99 20.470195 27.1952 97.5 24 

RCGA19 20.5110514 162.69 20.539689 24.0052 92.6 17 

RCGA20 20.4743190 156.03 20.572707 27.0499 91.4 23 

RCGA21 20.4640564 159.09 20.786432 30.3777 95.9 24 

RCGA22 20.4640546 161.33 21.545295 30.5182 90.6 25 

RCGA23 20.4654835 166.36 20.495321 25.5842 97.0 24 

RCGA24 20.5489485 156.39 20.549045 23.8561 98.6 9 

RCGA25 20.5801834 168.79 20.580366 23.5307 99.5 1 

RCGA26 21.0731202 153.90 21.099351 24.4922 99.2 0 

RCGA27 20.4640497 162.79 20.464056 25.6914 98.2 25 

RCGA28 20.4640495 156.29 20.464051 26.4296 97.7 25 

RCGA29 20.5255613 152.73 20.657026 24.7777 96.4 13 

RCGA30 20.5008146 160.33 20.500947 24.4406 98.2 18 

RCGA31 20.5090685 163.63 20.537408 24.6862 94.9 17 

RCGA32 21.4778228 155.84 23.997060 27.1444 66.2 0 

RCGA33 21.2324508 157.66 23.844241 27.3270 91.2 0 

RCGA34 20.4701840 156.48 20.673386 26.9250 91.5 23 

RCGA37 20.5767227 161.95 20.624625 24.5855 97.8 5 

RCGA38 20.5110841 154.79 20.511194 24.0719 98.0 14 
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population is low. Successful runs is the number of 
runs in which the deviation of the found solution 
from the optimum fitness is at most 5101 −× . Hence, 
a success was counted when the following 
condition was me 
 

510optf1f
−≤−  

 
Where optf  is the known global minimum of the 

problem and 1f  is the best value obtained by an 
algorithm. 
     Experiment results show that crossover operator 
is the most important part of the algorithm; 
because the crossover operator has significant 
effect on performance of the algorithms. The HX 
crossover presents the best performance 
(algorithms RCGA28, RCGA34, RCGA27, 
RCGA21 and RCGA13) and after it, the LX shows 
better performance (RCGA30) but the worst results 
are obtained from BLX and ABX (RCGA32, 
RCGA33). With normalized geometric ranking, 
q = 0.05 and with tournament selection, Tour = 3 
have a better result. 
     Total average of the best algorithms is 
significantly higher than of other algorithms which 
show that these algorithms are more explorative 
than others. 
 
 
 

5. CONCLUSIONS 
 
In this paper, the problem of due date assignment 
in make-to-demand production systems were 
characterized and an original model were presented 
for it. The main focus was on products with 
relatively low demand rates. In such cases, the 
economy of scale??? could not be ignored. On the 
other hand, quoted lead time and due date related 
costs must be considered. A model was formulated 
for such a problem. In the lot sizing literature, the 
lead time and due date related costs and in the due 
date assignment literature, economy of scale are 
ignored. In this paper both  were considered. A 
real-coded genetic algorithm was developed for 
solving the model. 
     Assumptions are based on a specific 
company. The approach used in this paper may be 

applied to other production systems. Below are 
some of the possible extensions: 
 
• Demand may be considered stochastic. 

• Each customer may order more than one unit 
of product. The customer order quantity may 
follow a probability distribution. 

• Long quoted lead times may lead to lost 
sales. 

• Constraints like resource availability may be 
considered. 
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