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Abstract   Image restoration is an essential preprocessing step for many image analysis applications. 
In any image restoration techniques, keeping structure of the image unchanged is very important. 
Such structure in an image often corresponds to the region discontinuities and edges. The techniques 
based on partial differential equations, such as the heat equations, are receiving considerable attention 
in image restoration. In this paper, a new algorithm is proposed for image restoration using partial 
differential equations applied on neighbors longer than one pixel. To better preserve edges in this 
technique, slant edges are considered in addition to vertical and horizontal edges. A number of 
experiments have been preformed to evaluate performance of the proposed method and to compare its 
performance with the existing algorithms, wiener and median filters. The results express the 
considerable superiority of the proposed methods. 
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ر مـی   ياری از کاربردهای پردازش تـصو     يکی از مراحل اساسی در بس     ير  يز تصو يا کاهش نو  يابی و   يبازچكيده          

وستگی ها و لبه هـای موجـود در آن          ير ناپ ير، نظ ير حفظ ساختار تصو   يک های بازسازی تصو   يدر همه تکن  . باشد
 ـوجـه و  ن ت يراً محقق ـ ير، اخ يبرای بازسازی تصاو  . ت می باشد  يار حائز اهم  يبس ژه ای بـه روش هـای مبتنـی بـر           ي

 ـدی برای باز  يتم جد ين مقاله الگور  يدر ا . ی مانند معادلات گرما نموده اند     يمعادلات با مشتقات جز    ر يابی تـصاو  ي
 ـدر ا . کسل ارائه شده اسـت    يک پ يش از   يگی با عمق ب   يی بر روی همسا   يبا استفاده از معادلات با مشتقات جز       ن ي

برای . ز در نظر گرفته شده است     يب ن يلاوه بر لبه های افقی و عمودی، لبه های ار         روش برای حفظ بهتر لبه ها ع      
 ـانـه آزما ينر و ميلترهای ويسه آن با روش های موجود مانند ف    يشنهادی و مقا  يتم پ يی الگور ينشان دادن کارا   شات ي

 . داردشنهادی برتری قابل توجهیيشات نشان می دهد که روش پيج آزماينتا. مختلفی انجام شده است
 
 

1. INTRODUCTION 
 
Real images are often cluttered with noise. Noise 
reduction is usually the first process used in 
analysing digital images. In any image denoising 
application, it is very important that the deniosing 
process has no blurring effect on the image, and 
has no changes or relocation on image edges. In 
medical imaging, like X-ray imaging, the images 
often have noise which may prevent recognition of 
significant patterns such as a fracture[1,2]. 
     In the literature, there are various methods for 
image denoising. Using simple filters, such as 
average filters, median filters and Gaussian 
filters, are some of the techniques employed for 
image denoising [3]. These filters reduce noise 

with the cost of smoothing the image and hence 
softening the edges. To overcome this problem, 
some other alternative methods have been 
presented in the literature. In [4-6], a denoising 
process is performed by thresholding the wavelet 
coefficients. In [7-9] partial differential equations 
(PDEs) are used as an alternate method for image 
denoising. These methods assume intensity of 
illumination on edges varies like geometric heat 
flow in which heat transforms from a warm 
environment to a cooler one until the temperature 
of the two environments reach to a balanced 
point. It was shown that these changes are in the 
form of Gaussian function [10]. As a result, 
sudden changes in edges might be due to the 
existance of noise. In fact, an image includes a 
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series of regions in which different regions might 
have different standard deviation. This issue is 
considered as a diffusion equation [11]. The 
diffusion equations offer a strong tool for image 
denoising. 
     The existing diffusion-based methods suggest 
the use of side neighbors [12]. This investigation 
shows that these methods may lead to smoothing 
the edges. In this paper, by considering longer 
side neighboring at different directions around a 
pixel, the problem of edge smoothing is 
considerably reduced [21]. In addition, results of 
this paper show that the proposed method has a 
better performance compared to the existing 
methods in image denoising. 
     This paper is organized as follows. Section 2 
briefly describes exiting methods for image 
restoration. Then the proposed technique is 
described in Section 3. Several image quality 
measures are addressed in Section 4 to compare 
performance of the proposed approach with 
performance of the exist methods. Implementation 
and experimental results are provided in Section 5. 
The final section is the conclusion. 
 
 
 

2. EXISTING IMAGE DENOISING 
TECHNIQUES 

 
2.1. Median Filter   The median filter is one of 
the most effective filters used for image denoising 
[25,26]. In this filter square windows of size 

)1k2()1k2( +×+  or in a cross form, are used and 
the central pixel is replaced with the median of the 
window pixels. Here the inner values of gray levels 
of each window are sorted then the middle value is 
the median: 
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One of the advantages of the median filter is its 
high capability in reducing impulse noise, but it is 
not true for Gaussian noise. The other advantage of 

this filter is that it does not generate a new gray 
level value as it may occur in mean filtering [1]. 
But, its main drawback is the relocation of the 
image edges as large as one or two pixels. In this 
approach, the level of denoising is improved by 
considering a larger window size, but it may cause 
more relocation on the image edges [3]. 
 
2.2. Wiener Filter   Wiener filter-base 
approaches have a statistical view to image 
processing. In this filter it is assumed that image 
and noise have Gaussian distribution with zero 
mean. The Wiener filter aims to reduce the means 
square error, between the original image (Iorginal) 
and the approximated image (denoised image) 
(Idenoised): 
 

2
denoisedIorginalI2 −=ε  (2) 

 
The Wiener filter has a high capability in reducing 
Gaussian noises. As mentioned before this filter 
aims to minimize the total mean square error, 
therefore it may not consider the local features. 
Since the noise effect on the human vision system 
is dependent to the texture of the noisy region, so 
the steady luminous or higher luminous regions are 
reconstructed more efficiently than the other 
regions. Also if the damage in different regions of 
the images has different forms, it isn’t possible to 
reconstruct the image by the Wiener filter [3]. 
 
2.3. Nonlinear Diffusion Filter   Nonlinear 
diffusion filtering was introduced by Perona and 
Malik [11,13]. Although their approach in its 
original formulation has a deficiency, the genesis 
of the algorithm has encouraged many researchers 
to improve the technique [7,9,12]. In any diffusion-
based approaches the variation of illumination on 
images is considered as geometric heat. As a result, 
a sudden change in an image is considered as a 
noise. In following subsections, initially, the basic 
idea of using diffusion equations for image nosing 
is briefly introduced. Then a numerical solution for 
the diffusion equation is outlined. 
 
2.3.1. The basic idea   The diffusion equation is 
based on repetition. The main idea of using 
diffusion equations in image processing is the use 
of a two-dimensional Gaussian filter in which the 
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Figure 1. The diffusion factor introduced by Prona and Malik 
[11,13]. 

image I(x,y) is convolved with a window Kσ(x,y): 
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where Kσ(x,y) is a Gaussian filter, and σ represents 
the standard deviation of the filter’s coefficients. 
By convolution operation, there would be the 
problem of edge smoothing. It has been previously 
shown that this problem can be resolved by 
treating intensity variations in an image as 
diffusion of the heat flow [13]. 
     The diffusion equation for an image )y,x(I  
would be as follow: 
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where )y,x(0I)0;y,x(I =  as initial image (t = 0), 

and I(x,y,t) is the image at t = 0.5σ2. 
     The above equation can be rewritten as below: 
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Where ∇ is the gradient operator, c(x,y,t) is the 
diffusion factor, and ∇ is the divergence operator. 
If c  has a constant value (independent to x,y,t), the 
obtained equation is called diffusion equation with 
isotropic diffusion factor. In this case, all points, 
even edges would be smoothed as there is no 
difference between a pixel on edge and other 
pixels. It is obvious that this is not an ideal 
condition. For resolving this deficiency, the 
diffusion factor could be considered as a function 
of x and y. Hence, the above equation is changed 
to a linear and anisotropic equation. If c is 
dependent to the image, the linear equation would 
be transformed to a nonlinear equation. This is the 
idea that was suggested in [11,13]. In these 
researches two different equations for the diffusion 
factor were suggested as below: 
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In these equations the diffusion factor c  changes 
at different point in the image. In those points that 
the gradient of the image is large, this factor has a 
small value (see Figure 1). 
     Consequently, the diffusion factor would be 
small around the edges. In (4) and (5) k is used to 
control the diffusion factor. 
     The major drawback of the above-mentioned 
method is that the gradient is computed from the 
noisy image. Hence, the place of edges in the 
image may not be clearly recognized [11]. In order 
to overcome this problem, it was suggested to find 
the gradient from the smoothed image [14], which 
means: 
 

))t,y,x(IG(GI ∗σ∇=∇  (8) 
 
where Gσ is a Gaussian filter and * is the 
convolution operator. 
     There are a number of methods for solving 
diffusion equations. In any method, there are 
different parameters need to be adjusted. One of 
the most important parameters is to determining 
the diffusion factor. For the diffusion factor, in 
addition to 4 and 5, the following equations are 
also suggested [20]. 
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In 8, the parameter cm is achieved from the solution 
of equation 1)mmc21)(mcexp( =+−  [20]. The value 
of this parameter for m = 2,3,4  will be 2.33666, 
2.9183, 3.31488, respectively. The edges are better 
retained for the larger value of m. 
 
2.3.2. Solution for the diffusion equation   As 
mentioned before, there are a number of methods 
for solving diffusion equations. In [15], the first 
and second derivatives and also the Laplacian of a 
current pixel are computed using the pixels in 
neighbors. Here, the most general numerical 
approach for a solution of these equations is 
presented [16,17]. To state the solution, by 
considering 6, Equation 4 is rewritten as: 
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The approximate solution of 9 is: 
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where the parameters are defined as below: 
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These parameters are the numerical equivalent for 
the derivation and diffusion factors for the four 

cardinal directions. 
     In 10, the goal is to find a solution for the initial 
times before the heat flow. It is obvious that the 
temperature at different points changes toward 
balancing. Therefore, in the case of a gray level 
image, the value of pixels converges which leads 
to denoising. It should be noted that for an area 
containing an edge, a larger diffusion factor is 
chosen to preserve the edge. 
     Considering 11, one can claim that in 10 the 
rate of denoising is low for pixels with a large 
differentiation (d is large ). In other words, for a 
large gradient value, which belongs to the edge, 
smoothing is not taking place. In fact, this is the 
way used in this technique to preserve edges. It is 
not difficult to find out that in 10 only the vertical 
and horizontal edges are considered. In addition, 
sudden changes are considered as edges. 
 
 
 

3. THE PROPOSE METHOD 
 
In order to eliminate the above restrictive 
hypothesis, a new method is proposed. The main 
idea in the proposed method is to change 
neighboring structure for preserving slant edges, in 
addition to vertical and horizontal edges, and also 
it assumes smooth changing for the pixel value on 
edges. For this reason the neighboring structure 
represented in Figure 2 is suggested. 
     In the proposed method the diffusion Equation 
10 is updated as below: 
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Where α is a factor representing the significance 
(plentitude) of slant edges in the image. In this 
equation, the new parameters ( ,...sed,ned ) are 
computed similar to the parameter in (11), (see 
Appendix I for the solution). 
     In Equation 14 the role of those neighbors that 
are closer to the center is more efficient compared 
to the other neighbors, hence the α/2 is applied to 
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Figure 2. The neighboring structure for the numerical solution 
of diffusion equation in the proposed method. 
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Figure 3. The FOM value in each iteration of using the 
proposed and the existing methods on Lena image. 

the second part of the equation. It should be noted 
that in this equation the diffusion factors are 
updated in each iteration. 
    Results in this research indicate that the 
proposed technique, compared to the other existing 
methods, has a better performance in image 
denoising and preserving edges. In addition, this 
algorithm compared to other existing PDE-based 
methods, is converged with a lower number of 
iteration. Figure 3 shows the figure of merit (FOM) 
value in each iteration of using the proposed and 
the existing methods on the image of Lena. As can 
be seen, the proposed method is converged after 50 
iterations whilst the other existing method is 
converged at 200 iterations. In using these 
techniques, the stop criterion is as follows: 
 

)thi(FOM)th)1i((FOM
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error)th)1i((FOM)thi(FOM

>+
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Results show that the proposed technique has also 
a lower blocking effect or artifacts on the enhanced 
image (see Figure 4). 
     In this paper, Δ = 0.25 has been chosen, as it 
was suggested in [13]. To finding the optimum 
value for a and k, different experiments have been 
performed on different images (some of them were 
included in Appendix II). The results indicate that 
the optimum performance of the algorithm is 
achieved by choosing 0 < a < 1, 5 < k < 100. 
     In any PDE-based method the number of 
algorithm iterations are crucial. In other words, 
extra iteration may cause the pixel value to exceed 

the gray level value, relocating the edges, and 
blurring the image. 
 
 
 

4. PERFORMANCE MEASURES 
 
Four criteria were used in the image processing 
techniques, to assess the performance of the 
proposed method, and compare it with the 
performance of other existing methods. These 
criteria are briefly introduced below. 
 
4.1. Figure of Merit   The figure of merit is the 
edge preserving measure that is defined as below 
[22]: 
 

∑

∧

= λ+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧∧

=
N

1i 2
id1

1

idealN,Nmax

1FOM  (16) 

 

In this equation 
∧
N  and idealN are the numbers of 

detected and original edge pixels, id  is the 

Euclidean distance between the thi  detected edge 
pixel and the nearest original edge pixel, and λ is a 
constant typically set to 1/9 [23]. The dynamic 
range of FOM is between 0 and 1. FOM close to 1 
indicates the edges were properly preserved. To 
find edges in all assessed techniques the Canny 
edge detector was used [3]. 
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                        (a)                                                          (b)                                                          (c) 
 

Figure 4. The blocking effect of PDE-based method: (a) original image, 
(b) existing PDE-based method and (c) proposed method. 

4.2. Structural Similarity   The Structural 
Similarity (SSIM) factor can be used to measure 
the similarity between two images [24]. This factor 
consists of three different metrics. Let { }N,...,3,2,1iixx ==  and { }N,...,3,2,1iiyy ==  

be the original and the test images, respectively. 
The SSIM is defined as: 
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The dynamic range of SIMM is [-1,1]. The best 
value 1 is achieved if and only if yi = xi for all i = 
1,2,3,…,N. The lowest value of -1 occurs when 

ixX2iy −=  for all i = 1,2,3,…,N. The SIMM 
indicates any distortion as a combination of three 
different factors: loss of correlation, luminance 
distortion, and contrast distortion. In other words, 

Q in 17 can be rewritten as a product of three 
components: 
 

γ×β×α=
σ+σ

σσ

×
+

×
σσ

σ
===

)y,x(c)y,x(l)y,x(s2
y

2
x

yx2

2)Y(2)X(

YX2

yx

xy
3Q2Q1QQSSIM

 (19) 

 
The first component is the correlation coefficient 
between x and y, which represents the degree of 
linear correlation between x and y, and its dynamic 
range is between -1 and 1. The best value 1 is 
obtained when biaxiy +=  for all i = 1,2,…,N, 
where a and b are constants and a > 0. Even if x 
and y are linearly related, there still might be 
relative distortions between them, which are 
evaluated in the second and third components. The 
second component, with a value range of [0,1], 
measures how much the x and y are close in 
luminance. It equals 1 if and only if YX = . Xσ  

and yσ  can be considered as an estimate of the 

contrast in x and y. Eventually, the third 
component indicates how similar the contrasts of 
the images are. Its values range between 0 and 1, 
where the best value 1 is achieved if and only if 

Xσ  = yσ . 

     Parameters α, β, γ are used to adjust the 
significance of each of the three components. 
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In practice to use the above measure, the image is 
windowed equally, then for each window the SSIM 
is computed to find the average SSIM as follows: 
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where X and Y are the original and the denoised 
images respectively, M is the number of local 
windows in the image, xj and yj are the image 
contents at the jth local window. 
 
4.3. Mean Square Error   The mean square 
error (MSE) is a criterion frequently used in signal 
and image processing, which is defined as below: 
 

∑
=

∑
=

−=
N

1i

M

1j
2))j,i(denoisedI)j,i(orginalI(

MN
1MSE

 (21) 
 
where originalI  is the original image and denoisedI  

is the denoised image. In using this measure, the 
smaller the value of MSE, the better the denoising 
algorithm. 
 
4.4. Signal to Noise Ratio   The signal to noise 
ratio (SNR) is a well known measure which is 
defined as follows: 
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

σ

σ

=

2
orginal

2
denised

10log10db)SNR(  (22) 
 

Where 2
orginalσ  and 2

denisedσ  are the standard 

deviations for the original and the denoised images. 
In using this measure, the larger the SNR value, the 
closer will be the denoised image to original one. 
 
 
 

5. EXPERIMENTAL RESULTS 
 
To evaluate the performance of the above-
described algorithms, they all have been 
implemented using Matlab, and then applied on a 
data set of 100 standard images taken from 
references [18,19]. In these experiments, to make 

the images noisy the Gaussian noise and impulse 
noise have been used with 64 as the average value 
for both of the noises, and variance 400 for the 
Gaussian noise, respectively. These noises have 
been added to the images, once separately and then 
together. The results of the experiments are shown 
in Figure 5. These results have been extracted 
using the 20 images represented in [18,19]. 
     As can be seen in the table, those algorithms that 
are based on heat diffusion equation, especially the 
proposed algorithm, are functioning better than the 
other methods. In addition, in terms of preserving 
the edge, once the depth of the neighbor used in 
diffusion equations increased, such as the one in the 
proposed neighboring, the edge of images are better 
preserved. As can be seen from Figure 5, the SSIM 
measure indicates that the proposed approach has 
often a better performance in preserving the 
structure of original images. 
     These results indicate that the proposed image 
denoising technique has a better performance 
compared to the other existing approach. To judge 
the act of this algorithm from the human eye’s view, 
the results of applying different techniques on two 
of those images are shown in Figures 6 and 7. 
 
 
 

6. CONCLUSIONS 
 
In this paper, a new algorithm has been proposed 
for image denoising using a diffusion equation. In 
this method, the diffusion equation has been used 
in a way that it can consider slant edges in addition 
to vertical and horizontal edges. In other existing 
techniques changes in edges were assumed sudden 
and sharp. It has been indicated that this 
assumption may not be true for real images. The 
results of applying the proposed techniques on 
twenty different images show that it has a better 
performance in image denoising and preserving 
edges, compared to other existing approaches. 
 
 
 

7. APPENDIX I 
 
7.1. The Approximate Solution to the 
Diffusion Equation, and the Proposed 
Method   There are a number of methods in 
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Image Number 
 

Figure 5. Results of measuring performance of the compared algorithms on 20 different images 
shown in Appendix I using: (a) FOM, (b) SSIM, (c) MSE and (d) SNR. 

literature for solving diffusion equations. A 
numerical approach can be used for the application 
of digital image denoising. The proposed approach 
in [27] to the diffusion equation computes the 
differential and Laplacian of a pixel using the 
neighboring pixels. Here the general solution of the 
anisotropic diffusion equation has been described: 
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gradient operator. Equation I1 is equivalent to  
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The above equation can be implemented using a 
finite difference method. Consider the difference 
approximation of : 
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                    (a)                                                              (b)                                                               (c) 
 

                                                
 

                    (d)                                                               (e)                                                             (f) 
 

Figure 6. Output of different methods on image No. 7 shown in Appendix II: 
(a) original image (b) noisy image; output of: (c) the existing diffusion-based method, 

(d) Wiener filter, (e) Median filter and (f) the proposed method. 
 
 
 

                                            
 
                   (a)                                                              (b)                                                              (c) 
 

                                                 
 
                     (d)                                                            (e)                                                              (f) 
 

Figure 7. Output of different methods on image No. 14 shown in Appendix II: 
(a) original image (b) noisy image; output of: (c) the existing diffusion-based method, 

(d) Wiener filter, (e) Median filter and (f) the proposed method. 
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which is expressed as: 
 

{

}

}])ty;x,(I)ty;Δx,x(I[)t ;yx,(c])ty;x,(I

)ty;Δx,x(I[)ty;x,Δx({c2Δx

1]})ty;x,(I

t)y;x,Δx(I[t)y;(x,ct)]y;x,(It)y;x,Δ(xI[

t)y;x,Δx({c2Δx

1])ty;x,(I)ty;Δx,x(I[

y)]c(x,t)y;Δx,[c(xt)]y;Δx,I(x
)t;yx,(I)t;y,x(I)t;yx,Δx(I[)t;yx,(c

2Δx

1)]ty;x,(It)y;Δx,x([I
Δx
1)ty;(x,c

x

−−+

−++=−

−+−+

+≡−+

−++−
+−−+

≈
⎭
⎬
⎫

⎩
⎨
⎧ −+

∂
∂

≈

 (I4) 
 
Similarly, there is 
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this approach can be followed to obtain the other 
differential operators. 
     By inserting Equations I4, I5 into I2 and letting 

1y,1x =Δ=Δ , the difference approximation of 
t/)t;y,x(I δδ  can be obtained which is expressed as 
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Thus, the discrete realization of anisotropic 
diffusion for image can be obtained from Equation 
I6 as follows 
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From Equation I7, it is found that the key problem 
in anisotropic diffusion is the choice of c(x,y;t). 
Similar to 2D anisotropic diffusion, c(x,y;t) can be 
chosen as follows: 
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Therefore it can be written for two dimensional 
image I(x,y;t): 
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Where ∂Θ indicates the border of Θ, k

r
 is the outer 

normal to the ∂Θ and the diffusion coefficient 
c(x,y;t) is given by I8. 
 
7.2. Numerical Implementation of the 
Algorithm   The proposed algorithm Equation I9 
can be solved numerically. Let the time step be Δt 
and the spatial step be h in x, y directions, then the 



IJE Transactions B: Applications Vol. 20, No. 3, December 2007 - 235 

time and space coordinates can be discretized as: 
 
t = nΔ, n = 0,1,2,…; 
 
x = ih, y = jh, 
 
i = 1,2,3,…M-1, 
 
j = 0,1,2,…N-1, 
 
where Mh×Nh is the size of the image. Let 

)tn,jh,ih(In
j,iI Δ=  then the final image can be 

obtained using the four-stage approach described 
below: 
 
7.2.1. Stage I   Computing the derivative 
approximations and the Laplacian approximation 
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The symmetric boundary conditions are used 
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7.2.2. Stage II   Computing the diffusion 
coefficient c(x,y;t) for example: 
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The other diffusion coefficients can be obtained 
similarly. 
 
7.2.3. Stage III   Computing the divergence of 
c(.)∇I 
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With symmetric boundary conditions: 
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7.2.4. Stage IV   The numerical approximation to 
the differential equation is given by 
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This equation is equivalent to 13 (in this paper: 

25.0
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t
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Δ ). 
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