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Abstract   In this study fuzzy arithmetic is presented as a tool to tackle the prediction of the amount 
of barium, strontium and calcium sulfates scales in oilfield operations. Since the shape of fuzzy 
numbers’ membership functions is a spread representative of the whole possible values for a special 
model parameter, fuzzy numbers are able to consider the uncertainties in parameter determinations 
and thus give more real results than crisp values. Solubility product models and other required 
Equations for scale prediction contain uncertain parameters and therefore application of fuzzy 
numbers can be useful. LR fuzzy numbers and related primary arithmetical operations based on 
Zadeh's extension principle have been introduced and their use in predicting scale depositions has 
been investigated. Parameters such as solubility products, free sulfate concentration and scale mass 
have been determined as fuzzy numbers. As a case study, scale depositions of barium and strontium 
sulfate resulted from mixing two incompatible waters have been obtained and compared with none 
fuzzy approach. Fuzzy computations are able to predict the maximum scale mass with respect to 
existing information. 
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مخازن و يق از جبرفازي براي پيش بيني رسوب سولفاتهاي باريم، استرانسيم و کلسيم در در اين تحق   هچكيد
از آنجاييکه اعداد فازي با شکل تابع عضويت خود، گستره . نفت استفاده شده استتجهيزات بهره برداری 

 در تعيين کنند، عدم قطعيتهاي موجود ن مشخص ميآمقادير ممکن براي يک پارامتر مدل را با درجه عضويت 
. دهند گيرند و لذا نتايج واقعي تري را نسبت به حالت غيرفازي بدست مي پارامتر مدل را بطور کامل درنظر مي

تواند  باشند و بهمين دليل کاربرد اعداد فازي مي مدلهاي پيش بيني رسوب داراي پارامترهايي با عدم قطعيت مي
 معرفي شده اند و کاربرد آنها Zadeh ر اساس اصل گسترش و اعمال جبري اوليه بLRاعداد فازي . مفيد باشد

پارامترهايي . براي پيش بيني رسوب ناشي از اختلاط دو آب سازندي و آب دريا مورد بررسي قرار گرفته است
براي مثال . مانند حاصلضرب حلاليت، غلظت سولفات آزاد و جرم رسوب بصورت اعداد فازي بدست آمده اند

هاي باريم و استرانسيم ناشي از اختلاط دو آب ناسازگار تعيين شده و با روش غيرفازي ميزان رسوب سولفات
محاسبات فازي قادر است حداکثر رسوب ممکن را با توجه به اطلاعات موجود بدست . مقايسه گرديده است

 .دهد

 
 

 
1. INTRODUCTION 

 
Inorganic scale deposition is a common problem in 
oilfield operations, production wells, equipment, 
and transportation pipes. The general usage of the 
term scale denotes hard, adherent deposits of 
inorganic mineral constituents of water that formed 
in these places [1]. Barium, strontium, and calcium 
sulfate scale occurrence is considered a potentially 

serious problem that causes formation damage near 
the production well-zone. Sulfate scale may result 
from changes in temperature and/or pressure while 
water flows from one location to another, but the 
major cause of sulfate scaling is the chemical 
incompatibility between the injected sea water 
which is high in sulfate ion, and the formation 
water, which originally contains high concentrations 
of barium, calcium, and/or strontium ions [2]. An 
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accurate, convenient, and fast model capable of 
predicting such scaling problems can be useful in 
planning water flooding schemes and selecting 
appropriate chemical inhibitors in terms of scale 
type and its potential severity. A large number of 
equations and super saturations indices have been 
developed in order to predict such scaling 
tendencies. These Equations estimate solubility 
products with respect to the effective parameters 
such as temperature, pressure and ionic strength. 
But the model parameters obtained from 
experiments and mathematical formulations may 
contain substantial uncertainties. 
     In general, reliable results for the numerical 
solution of engineering problems can be achieved, 
provided exact values for the parameters of the 
problem equations are available. In practice, 
however, these exact values may often not be 
achieved. Model parameters usually show 
variability, e.g. due to special difficulties with 
sample collection and existing uncertainties in 
analysis. Thus, the results obtained for solutions 
that just use some specific crisp values for the 
uncertain parameter cannot be perceived as the 
representative of the whole spread of possible 
results. To eliminate this limitation, application of 
fuzzy set theory, first introduced by Zadeh in 1965, 
proves to be a practical and realistic approach. 
Again, the uncertainties in the model parameters 
can be treated by fuzzy numbers which represent 
the effect of scatter with their shape derived from 
experimental data. Fuzzy arithmetical operations, 
which are the generalized ones for fuzzy numbers, 
can theoretically be defined by means of Zadeh’s 
extension principle [3-4]. Using fuzzy arithmetic, 
initially assumed uncertainties can be processed 
through the computation procedure leading to 
fuzzy results that show the reliability of problem 
solution. 
 
 
 

2. FUZZY ARITHMETIC 
 
The concept of fuzzy numbers originates from the 
fact that many qualitative phenomena in the real 
world cannot be expressed by precise and certain 
numbers (e.g. about 10. 25 or around 7). Basically, 
fuzzy numbers can be considered as a special class 

of fuzzy sets showing some specific properties [3]. 
The fuzzy sets, themselves, result from a 
generalization of conventional sets by allowing 
elements of a universal set not only to belong or 
not to belong entirely to a specific set, but also to 
belong to the set to a certain degree [4-5]. Crisp 
sets can be defined by using the concept of 
characteristic function as following 
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where A  is a subset of the universe set U . 
Extending the domain of the characteristic function 
from the set {0-1} to the interval [0-1] lead to the 
emerging of a new type of sets renowned as fuzzy 
sets. Each element of the universal set has a 
membership degree in the arbitrary subset A  or set 
A , for short. The characteristic function is then 

( ) [ ]1,0∈xAμ  specified by a certain mathematical 
function. 
     Fuzzy numbers are convex fuzzy sets over the 
universal set U  with their membership functions 
( ) [ ]1,0∈xμ  where solely one single value 

Umx ∈=  has the membership degree of unity. 
Convexity of fuzzy set A  is achieved when 
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As a fuzzy number, Gaussian shapes are defined 
by the membership function 
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where am  and aσ  are the mean value and the 
standard deviation of the Gaussian distribution, 
respectively. (Figure 1) 
     The membership function for triangular fuzzy 
numbers is also determined as 
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Arithmetical operations with fuzzy numbers can be 
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defined according to Zadeh’s extension principle 
[3]. On this basis, if a~  and b~  are fuzzy numbers 
with the membership functions ( ) Uxxa ∈,~μ  and 

( ) Uyyb ∈,~μ , then the result of the binary 
operation: 
 

( )b
~

,a~fc~ =  (5) 
 
for an arbitrary function f  is determined by: 
 

( )
( )

( ) ( ){ }yμ,xμminsupzμ b
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=
=  (6) 

 
Since performing engineering calculations with 
Equation 6 are sometimes tedious and time-
consuming, LR fuzzy numbers have been defined 
by Dubios and Prade [6]. The membership 

functions of these fuzzy numbers are 
parameterized, in which arithmetical operations 
can effectively be performed through a certain 
pattern. 
 
2.1 Definition   If fuzzy number a~  has a 
membership function of the form 
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where L  and R  are none ascending functions 
from +ℜ  to [0,1] and ( ) ( ) 100 == RL , then a~  is 
an LR  fuzzy number that can now be denoted as 

( )LRma βα ,,~ =  where m  is the mean value [3, 
6]. Numbers α  and β  determine the width of 
distribution on the left and right, respectively; and 
in the case of symmetric fuzzy numbers are equal. 
     Parameterization of the Gaussian and triangular 
fuzzy numbers make them LR ones, e.g. the basis 
functions L  and R  for the latter are of the form 

cba ,,  
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Now, using the above definition and the extension 
principle, one can determine the results of 
arithmetical operations for fuzzy numbers. For 
example, the fuzzy addition of ( )LRma βα ,,~ =  

and ( )LRnb γδ ,,~
=  is determined as 

( )LRnmba γβδα +++=⊕ ,,~~ . 

 
 
 

3. SCALE PREDICTION 
 
Prediction of scaling tendency is a complex task 
due to many effective parameters such as 
hydrodynamic factors, change in temperature and 
pressure, ionic strength, pH, impurities, 
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Figure 2. Triangular fuzzy number with threeParameters. 
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Figure 1. Gaussian distribution of the fuzzy number a~ . 
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TABLE 1. Coefficients and Standard Deviations of The Solubility Constants [8]. 
 

 σ  Coefficients of 
MgSO4 

 σ  Coefficients of 
SrSO4 

 σ  Coefficients of 
BaSO4 

a 0.037 1.858 a 0.086 6.105 a 0.062 10.025 
b 0.0000437 0.000451 b 0.00091 0.00198 b 0.00047 -0.0047 
c 0.000001342 -0.0000001173 c 0.00000252 0.000006379 c 0.000000772 0.0000011411 
d 0.000002317 0.0000010658 d 0.0000063 -0.000004573 d 0.0000024 -0.00004750 
e 0.046 -2.378 e 0.087 -1.887 e 0.076 -2.616 
f 0.017 0.583 f 0.039 0.667 f 0.0033 0.889 
g 0.000015 -0.00133 g 0.000030 -0.00188 g 0.00014 -0.00203 

commingling of incompatible waters, etc. Various 
methods have been used to predict scaling 
phenomenon in oilfield operations. Vetter [7] 
proposed a competitive model for predicting 
sulfate scale forming minerals. Yuan and Todd [2] 
improved the Vetter model by an iterative 
algorithm which used the Pitzer equation for ion 
activity coefficients. Correcting the solubility of 
sulfates for temperature, pressure, and ionic 
strength, Oddo and Tomson [8] presented a new 
saturation index to predict when the scale forms. 
     The atkinson [9-10] method rests on the special 
case of the Pitzer equation and standard 
thermodynamical ones. These scale prediction 
models usually have deficiencies that restrict their 
applications for precise estimation of potential 
scale problems in water flooding operations. 
Therefore, there is a necessity for an improved 
model, which considers cardinal scale forming 
factors of the various locations within the 
formation, production wells, and surface 
equipment. In such cases, the use of fuzzy numbers 
can be helpful. Since fuzzy numbers completely 
consider the uncertainties of model parameters, the 
results obtained from the fuzzy calculations can be 
more reliable and realistic. 
 
3.1. Ordinary Equations of Solubility 
Products   The equations extracted by Oddo and 
Tomson [8] from data in the literature were used to 
calculate the sulfates solubility products. These 
equations are of the following functional form 
 

TIgIfIePdTcTbaKp 5.05.02 ++++++=  (9) 

where  pK is negative logarithm of solubility, T  
= temperature (F), P  = pressure (psi), and I  = 
ionic strength (M). Required parameters can be 
specified according to Table 2. To quantify the 
scale mass, the effect of the common ion must also 
be taken into account. In scale calculations, hence, 
the free sulfate concentration should be 
determined. 
The free sulfate ion concentration can be 
calculated using Equation 9. 
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where,
4SOC , CaC , MgC  are total sulfate (M), total 

4
/1' MgSOKK =  calcium (M), total magnesium (M), 

respectively [8]. 
 
3.2. Fuzzy Equations of Solubility Products   
Using data in the Table 1, the possibility 
(membership) distribution functions of the 
respective parameters of the required Equations 
were determined. To simplify the calculations, 
these Gaussian functions were approximated to the 
triangular ones. The original fuzzy number a~  with 
the membership function ( )xa~μ  can be 

approximated by a symmetric triangular fuzzy ta~  
with the membership function ( )x

ta~μ  that can be 
obtained by postulating: 
 

( ) ( ) 1mm nn~nn~t
=μ=μ  (11) 
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and 
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Equation 10 guarantees that the converted 
membership function remains convex and 
Equation 11 approximates the equality of Gaussian 
area of uncertainty to that of a triangular one. The 
membership function ( )x

ta~μ  is then given by 
Equation 12. 
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Obviously, the use of triangular fuzzy numbers has 
two main advantages. First, the very simple way of 
implementation with linear functions and solely 
three parameters that can even be reduced to two 
parameters in the case of symmetric fuzzy 
numbers. And second, the quite uncomplicated 
realization of the elementary fuzzy arithmetical 
operations leads again to triangular fuzzy numbers. 
Using Equation 13 and data in Table 1, one can 
determine the membership function of the 
solubility product of the sulfates as follows 
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where the first parameter denotes the mean value 
and the second one shows the right and left 
spreads. 
 
 
 

4. CASE STUDY 
 
In this part of the study, the possibility of scale 
formation resulting from mixing of the formation 
and sea water is discussed. Ion concentrations of 
two water types have been listed in Table 2. As 
mentioned before, Kp ~

 is a symmetric triangular 
fuzzy number that can be specified by the Equation 
3 or 13. Using the extension principle, K~  or the 
membership function of the one dimensional 
operator Kp ~

10 − , can be determined as follows 
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Also, 4

~OS  mirrors the free sulfate concentration as 
a fuzzy number obtained by using the extension 
principle. As an example, these membership 
functions for barium sulfate are shown in Figure 4, 
5, and 6. 
     Equation 15 is used to calculate the amount of 
barite or celestite that can precipitate from a 

0

1

( )xn~μ

( )x
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nm nnm σπ2+nnm σπ2−
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Figure 3. Original fuzzy number a~  with a Gaussian shape 

and its linear approximation to a triangular fuzzy number ta~ .

 
 
 
TABLE 2. Composition of The Formation Water (Ninian 
field) and Seawater (North sea) [7]. 
 

Concentration in sea 
water (mg/l) 

Concentration in 
formation water 

(mg/l) 
Ion species 

10500 8511 Na 
380 160 K 
1350 25 Mg 
400 151 Ca 
8.1 44 Sr 
0.03 20 Ba 
19354 12660 Cl 
2712 14 SO4 
142 1430 HCO3 
0.7 0.4 Calculated 
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solution of known composition [11] 
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where 
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In non-fuzzy computations, however, free 
concentration of sulfate, [ ] freeSO4 , and spK  have 

only a single crisp value that eventually leads to 
one crisp value as the representative of scale mass 
whereas in fuzzy computations they are some 
fuzzy numbers and the use of the extension 
principle leads to some fuzzy numbers showing the 
respective scale mass. Figure 7, 8, 9 and 10 show 
these fuzzy numbers that predict the amount of 
barite and celestite that can deposit in various 
temperature, pressure and ionic strength. 
     Whitening gray or fuzzy numbers is a 
procedure that is called defuzzification. In the 
present study, the mean of area defuzzification 
method was used. In this regard, however, the 
value which divides the area covered by a fuzzy 
number into two equal sections is selected as the 
representative of the related fuzzy number [12]. 
Figure 11, 12, and 13 show the amount of the scale 
of barite and celestite predicted by the fuzzy and 
non-fuzzy methods. 
 
 
 

5. RESULTS AND DISCUSSION 
 
Fuzzy numbers represent the whole spectrum of 
possible values for a specific model or equation 
parameter by their shape and consequently, show 
the spread of possible results recurring from 
arithmetical operations as a fuzzy number. The 
great advantage of application of fuzzy numbers 
and their arithmetic is to conserve the set of 
available information so that human experts can 
have a wider perspective over the problem. Also 
the degree of possibility of a crisp value 
occurrence as a response of the solution is 
determined by the membership function of the 
respective fuzzy number. 
     Once the problem solution is achieved, there is a 
need for a single crisp value to make a comparison 
between the fuzzy and none fuzzy procedure. 
     Although the process of reducing the final fuzzy 
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Figure 4. Negative logarithm of solubility product of barium 
sulfate, 

4

~
BaSOKp , at T = 77° F, P = 14.5 psi and 10%

seawater as a triangular fuzzy number. 
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Figure 5. Application of the extension principle to predict 
solubility product of barium sulfate, 

4

~
BaSOK , at T = 77° F, P

= 14.5 psi and 10% seawater. 
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Figure 6. Application of the extension principle to predict free 
concentration of sulfate, 4

~OS , at T = 77° F, P = 14.5 psi, and 
10% seawater. 
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set to a crisp value does seem appropriate for some 
cases such as control problems, much information 
is lost by doing this and further work needs to be 
done on how to use the information available in the 
solution fuzzy set. 
 
 
 

6. CONCLUSIONS 
 

In this study, prediction of sulfates scale mass was 
performed by using the arithmetic of LR fuzzy 
numbers. From the results of this study, it can be 
pointed out that: 
 

1.  Parameters such as solubility product 
constant, free sulfate concentration and 
amount of barium and strontium sulfate, can 
effectively be determined by means of fuzzy 
numbers and their arithmetical operations 
defined by Zadeh’s extension principle. 

2.  As a case study, the sulfate scale mass, which 
can be deposited as a result of mixing 
incompatible waters, calculated by both crisp 
and fuzzy numbers. 

3.  The fuzzy number based solution gives more 
reliable and realistic results. Furthermore, 
calculation of the maximum scale mass in 
fuzzy procedure can be helpful in planning 
the water flooding scheme and selecting 
suitable chemical inhibitors. 
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8. NOMENCLATURE 
 
Ci total concentration of component i, 

molar 
I ionic strength, molar 
K equilibrium constant 
Ks solubility product 
M molar unit 
[ ]Metal  metal concentration, molar 
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Figure 7. Scale mass of barite obtained from fuzzy 
calculations at room temperature, pressure and various 
seawater in mixture. 
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Figure 8. Scale mass of celesite obtained from fuzzy 
calculations at room temperature, pressure and various 
seawater in mixture. 
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Figure 9. Scale mass of barite obtained from fuzzy 
calculations at T = 212° F, P= 4000 psi and various seawater 
in mixture. 
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Figure 10. Scale mass of celesite obtained from fuzzy 
calculations at T = 212° F, P = 4000 psi and various seawater 
in mixture. 
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P pressure, psi 
pK  negative logarithm of equilibrium 

constant 
Saltppt  amount of precipitated salt, mole/kg 

H2O 
[ ] freeSO −2

4  free concentration of sulfate ion, molar 

T temperature, Fahrenheit 
( )xμ  membership function of parameter x  
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Figure 11. Comparison of the amount of barite predicted by 
the fuzzy and non-fuzzy methods (T = 77° F, P = 14.5 psi). 
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Figure 12. Comparison of the amount of celestite predicted 
the by fuzzy and non-fuzzy methods (T = 77° F, P = 14.5 psi).
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Figure 13. Comparison of the amount of barite predicted by 
the fuzzy and non-fuzzy methods (T = 212° F, P = 4000 psi). 
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Figure 14. Comparison of the amount of celestite predicted by 
the fuzzy and non-fuzzy methods (T = 212° F, P = 4000 psi). 


