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Abstract   This paper presents a new approach for large-deflection analysis of truss structures 
employing the Dynamic Relaxation method (DR). The typical formulation for DR has been 
established utilizing the finite difference technique which is categorized as an explicit method. The 
special characteristic of the explicit method is its simple algebraic relationships in comparison with 
complicated matrix operations in a finite element method. In this paper, a new procedure is developed 
using the Taylor series in order to reduce the number of iterations needed for convergence and 
consequently time and effort. Moreover, the validity of the proposed technique has been demonstrated 
by solving some truss structures with nonlinear behavior. 
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روش صريح با رابطه های ساده . گيرند تحليل های غير خطی در دو دسته صريح و ضمنی جا می   چکيده
تفاوت محدود . راهکار رهايی پويا در اين گروه قرار دارد. پذيرد بری و دوری از عمليات ماتريسی انجام میج

در اين مطالعه، يک روش نو بر پايه گسترش دنباله تيلور برای کاهش . آسانترين راه رابطه سازی اين شيوه است
شود و نتيجه آنها با کار ديگران   تحليل میبا راهکار پيشنهادی چند سازه خرپايی. شود تکرارها پيشنهاد می

 .گردد مقايسه می
 
 

1. INTRODUCTION 
 
In order to analyze various engineering problems 
with geometrical nonlinearity, a stable and 
efficient numerical method is of great importance. 
Also, it is essential to develop a powerful 
algorithm appropriate for a wide range of 
problems. The newly developed dynamic 
relaxation method (DRM) has proved to have a 
promising potential with a number of distinguished 
features. For instance, it has a clear and simple 
algorithm so that the required computer 
programming is straightforward. Moreover, it 
needs not to solve large scale equations directly, 
because of its explicit formulation. Finally, it is 
very reliable and stable for analyzing nonlinear 
problems. 

      The DR technique is based on the fact that a 
system undergoing damped vibration ultimately 
comes to rest in the displaced position of the static 
equilibrium. The damped vibration starts when 
exciting the system by a constant force. The 
method can be interpreted both by physics and 
mathematics. Physically, the procedure is similar 
to obtaining the steady state solution of a dynamic 
system. Accordingly, in order to achieve the 
solution of a static problem, it could be transferred 
to a fictitious dynamic space. Due to this 
transference, it is necessary to specify some extra 
factors for the problem. These factors are mass, 
damping and time step. Mathematically, the DR 
method can also be generated from the second - 
order Richardson role. The convergence 
acceleration could be investigated in a pure 
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mathematical way [1]. 
As an iterative method, the DR scheme has a 
corrector procedure. In this approach, the tangent 
stiffness matrix has a great deal of importance. 
Moreover, the unbalanced force is used to correct 
the displacement vector. 
     In the following, a brief history of dynamic 
relaxation will be reviewed. Then, the DR method 
will be presented by illustrating its formulation and 
suggesting strategies for the determination of its 
required factors. Finally, a new formulation is 
introduced and some examples are solved to 
investigate the capability of the proposed 
technique. 
 
 
 

2. BRIEF HISTORY 
 
Using the Dynamic Relaxation process goes back 
to the first decades of the twentieth century. This 
term is an abbreviation of systematic relaxation of 
constraints. It has an iterative procedure for solving 
large equation systems making use of finite 
difference method [2]. 
     In the nineteenth century, Rayleigh presented a 
new way for the static solution of a mechanic 
system. He regarded the steady state solution of a 
dynamic system as a static solution. In 1950, 
Frankle developed the DR method which 
originates from the second - order Richardson role 
[3]. Frankle states that the formal equivalence of 
Richardson algorithm to the first order time 
dependant equations suggests the extension to a 
solution algorithm equivalent to a second order 
time dependant equation. For this, it seems that 
Frankle was the first one who made the connection 
between the static problems and dynamics. The 
terms of Dynamic Relaxation appears to have been 
coined by Otter in the mid – 1960s. Cassell [4] and 
Welsh [5] are among the researchers who 
developed this method and applied it to the 
structural analysis. They introduced the artificial 
mass. Then, Rushton applied the Dynamic 
Relaxation scheme to the nonlinear analysis of 
structures [6]. In recent decades, Underwood and 
Park have conducted numerous researches. Wood 
worked on explicit formulation and also compared 
this method with other existing ones [7]. From 
1970 till now, a large number of investigations 

have been conducted in this field. They have 
demonstrated that the Dynamic Relaxation 
technique can be used as a powerful and reliable 
method for analyzing engineering problems [8, 9]. 
Its abilities will be more obvious in comparison 
with other methods. 
 
 
 

3. ADVANTAGES AND DISADVANTAGES 
 
In comparison with other methods, the dynamic 
relaxation scheme has its own strengths and 
weaknesses. These characteristics are mentioned 
below:  
 
Advantages 
 
• The method has a simple algorithm so that it is 

will be very convenient for programming. 
• The formulation is explicit. Therefore, the 

required memory is less than other techniques. 
• This method has a high ability in intense 

nonlinear behaviors. 
 
Disadvantages 
 
• In general, the method is unstable and needs 

some additional conditions to guarantee 
numerical stability. 

• Iterations of the method are done in constant 
load. This causes some issues in limit points. 

• In nonlinear analysis, with gentle stiffening, the 
number of iterations is much more in 
comparison with the Newton methods. 

 
 
 

4. FORMULATION 
 
In this section, the theoretical basis for the DR 
algorithm is presented. Generally, the equations 
governing the structural behavior are assumed to 
have been derived from the finite difference or 
finite element method. The equation of motion 
governing the structural dynamic response is the 
appropriate one for developing the DR method for 
structural analysis. This is because the DR 
technique is equivalent to a second order time 



IJE Transactions B: Applications Vol. 19, No. 1, December 2006 - 13 

dependant equation. In other words, in the dynamic 
relaxation method, a static system is transferred to 
the artificial dynamic space by adding artificial 
inertia and damping forces as follow: 
 

} ) t( P{} x ]{K [}x{]C[}x{]M[ n nnn =++ &&&  (1) 
 
In this equation, [M], [C] and [K] are mass, 
damping, and stiffness matrix, respectively. Also, 
{x} is the displacement vector and n}x{&  and n}x{ &&  
are its first and second rank derivatives which are 
regarded as velocity and acceleration. Using the 
finite difference method, the velocity and 
acceleration vectors can be written as follows: 
 

h
}x{}x{}x{

2
1

2
1 nn

n
−+ −

=
&&

&&  (2) 

 

h
{x}{x}}x{

1-nn
-n 2

1 −
=&  (3) 

 
In these equations, h is the artificial time step. The 
velocity can also be derived by the following 
average value: 
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By substituting Equations 2 and 4 into 1, an 

iterative equation for velocity in the )
2
1(n + , th 

step will be obtained. Also, the displacement in the 
next step, (n + 1) th, will be achieved. These 
relations are as follows: 
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In order to have explicit iterative equations, the 
artificial mass should be considered as a diagonal 
matrix. Also, the damping matrix will be dependent 
on the mass matrix in the following form: 
 

]M[c]C[ =  (7) 

c is the damping coefficient. Substituting Equation 
7 into 5, leads to the following iterative relations 
[9]: 
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Here, n{R}  is the residual force vector defined as 
follow: 
 

[K]{x}{P}{R} nn −=  (11) 
 
The solution can be achieved by applying 
Equation 9 and 10 and some other appropriate 
assumptions for coefficient c, the time increment h, 
and the mass matrix [M]. It is recommended to 

choose the zero vector for {x}0 and { } 2
1

x −&  at the 
beginning of the dynamic relaxation procedure. In 
this way, the velocity at mid-step will be calculated 
from 9. Then, the displacement vector in the first 
step will be found using 10. Subsequently, this 
procedure will continue until the solution 
converges on the steady state response. In each 
step, the displacement and velocity vectors are 
modified. It is important to choose the artificial 
mass, damping and time step so that the stability 
and the fastest convergence rate are obtained. Note 
that only internal and external forces may represent 
the physical problem. 
 
 
 

5. REQUIRED FACTORS 
 
As mentioned before, in the dynamic relaxation 
method a static problem must be transferred to a 
virtual dynamic space in order to find the steady 
state response. This transference enters some 
required factors to the problem which is necessary 
to begin the DR procedure. On the other hand, the 
dynamic relaxation iterations are generally 
unstable. Therefore, the required factors must be 
determined so that the numerical stability 
guarantees convergence of the procedure. The 
required factors are as follows: 
• Mass matrix 
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• Damping coefficient 
• Time step 
• The initial displacement vector 
 
Several strategies have been put forward to specify 
these factors appropriately and also with the aim of 
accelerating the convergence rate. In the following, 
some of these strategies will be expounded briefly. 
It should be noted that all of these factors are 
fictitious. 
 
5.1. Mass   The first step in the dynamic 
relaxation process is determination the mass matrix. 
It must be pointed out that the DR method is a 
technique to solve the system of equations. In 
order to preserve the explicit characteristic of the 
method and avoid extra calculation for inversing 
the mass matrix, a diagonal mass matrix is 
considered. Some suggested schemes for the mass 
matrix are as follows: 
 
5.1.1. Unit matrix   In this technique, the mass 
matrix is considered as the following unit matrix 
[9]. 
 
[ ] [ ]IαM =  (12) 
 
In this equation, α is a real number. Therefore, the 
mass matrix has the same value with a different 
degree of freedom. Because of shortcomings, there 
is not enough accuracy. This escalates the number 
of iterations. It is not, therefore, usually used. 
 
5.1.2. Mass proportioned with stiffness 
matrix   Here, diagonal entries of the mass matrix 
are proportional to the stiffness matrix as follows 
[9]: 
 
[ ] [ ]KαM =  (13) 
 
Here again, α is a real number. It is common to 
consider α = 1. This method has an efficient 
application in comparison with the unit matrix 
because the mass matrix has different value in each 
degree of freedom. For the change of mass value in 
each iteration according to the stiffness matrix, this 
approach is very common in nonlinear analysis. It 
should be noted that this technique does not have a 
mathematical basis. 

5.1.3. The absolute squared value   In this 
scheme, each diagonal element of the mass matrix 
is formed by summing the absolute squared values 
of all the entries in the corresponding row of the 
stiffness matrix [10]. 
 

∑
=

=
q
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Where, q demonstrates the number of the degree of 
freedom. This method increases the calculation 
operations and requires more memory. However, 
the mass values almost ensure the stability and 
convergence acceleration during the procedure of 
nonlinear analysis. The reason is that each degree 
of freedom has its own value which is not similar 
to the others. It must be pointed out that there is no 
mathematical basis for this scheme too. 
 
5.1.4. Gerschgorin’s theorem   Having the 
mathematical basis, this scheme is the most 
efficient and applicable one to determine the mass 
matrix, and has proved its validity to guarantee the 
stability of the process. The ability of this approach 
is more obvious in solving nonlinear problems. 
Physically, this theorem is equivalent to assume 
the highest eigenvalue vector, that is a subsequence 
of 1, -1, 1, -1, …. This technique gives the 
following general expression for the mass values 
[15]: 
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5.2. Damping Factor   Another important factor 
to guarantee the convergence and stability of the 
analysis procedure is damping. The most effective 
way employs the critical damping. Many 
researches have been conducted to find the 
appropriate value for this parameter and among 
them; Rayleigh’s theory is the most common way. 
In the following lines, some prominent techniques 
are covered. 
 
5.2.1. The smallest value of natural period   In 
this scheme, the damping factor is estimated by 
using the lowest frequency of the system. At first, 
the dynamic relaxation process starts after 
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determining the mass and assuming a zero value 
for damping. Then, displacements are found 
through the iterations. Afterwards, the 
displacement - time curve will be drawn for this 
system. Having this diagram, it would be possible 
to calculate the lowest period of the system [9]. 
Finally, the damping factor is found from the 
following relationship: 
 

o2ωc =  (16) 

 
5.2.2. Underwood suggestion   In this scheme, the 
damping factor is corrected by new - found data 
which are obtained throughout the procedure. Here 
again, Rayleigh’s theory is utilized. Note that the 
damping factor is fixed during the iterations. This 
value can be calculated as below [11]: 
 

{ } { }

{ } [ ]{ }

2
1

xMTx

xnKTx
2nc

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
⎥⎦
⎤

⎢⎣
⎡

=  (17) 

 
Where, the mass matrix is formed by 

Gerschgorin’s theorem. Note that ]
__

nK[  is a 
diagonal matrix and its entries are calculated 
by: 
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In this equation, Fi shows the internal force of the 
ith degree of freedom. The value from Equation 17 
is an estimate of the critical damping factor which 
is formed by the tangent stiffness matrix in the last 
position of the structure. This method has a high 
ability in nonlinear analysis. 
 
5.2.3. The Zhang suggestion   In this approach, 
the critical damping factor is calculated as follow 
[12]: 
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Here, Rayleigh’s theory is the basis of the 

methodology. The advantages of this method are 
low calculations and low required memory. It is 
worth mentioning that the damping factor is 
constant for all degrees of freedom. 
 
5.2.4. The Qiang suggestion   In this scheme, the 
damping factor is obtained by minimizing the 
displacement error and Rayleigh’s theory. Qiang 
suggested this parameter as follows [13]: 
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Where, ωo is the lowest natural period of the 
system in free vibration and will be calculated 
by: 
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In this technique, ⎥⎦
⎤

⎢⎣
⎡ T

nK  demonstrates the tangent 

stiffness matrix in the nth step, and the mass matrix 
is calculated by Gerschgorin’s theorem. 
 
5.2.5. Crisfield suggestion   Crisfield presented 
another scheme for estimating this factor based on 
Rayleigh’s theory [14]: 
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In this expression, Δ illustrates the variation from 
the previous step and [K]diag is a stiffness matrix 
that is composed of only diagonal entries. 
 
5.3. Time Step   Another parameter that has a 
great effect on the numerical stability and the 
convergence rate of dynamic relaxation procedure 
is the time step. As dynamic of structures is a time-
dependent procedure, transferring a static problem 
into an artificial dynamic space which is performed 
by a fictitious time step. This factor should be 
determined so that the numerical stability is 
preserved and the convergence rate is optimized. 
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Some proposed schemes suggested by different 
researchers are as follows: 
 
5.3.1. Constant time step   Using a fixed and 
constant time increment during the entire iterations 
is more usual than other ways. In fact, this method 
is very useful when the aim is the comparison of 
other factors such as mass and damping. Several 
approaches have been presented to determine this 
value. For instance, the equation below gives a 
suitable time step [11]: 
 

maxω
2h ≤  (23) 

 
Where, ωmax is the greatest value of the natural 
period of structure. In addition to Equation 23, 
Underwood has suggested that the value of 1 and 
1.1 for the time step. Actually, using a constant 
slightly greater than 1 can ensure the stability and 
convergence. 
 
5.3.2. Qiang suggestion   In this method, the time 
step has been calculated using Rayleigh’s and 
Gerschgorin’s theoreom. Qiang proposed the time 
increment as follows [13]: 
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Here, ωo is the lowest natural period of the 
structure. This method has an effective application 
in nonlinear problems, as the time increment varies 
within iterations. 
 
5.4. The Initial Displacement Vector   Another 
factor that can influence the convergence rate is the 
initial displacement vector. In other words, 
selecting an appropriate value closer to the answer 
causes the process to converge on the solution with 
less iteration. It must be pointed out that the 
dynamic relaxation procedure usually achieves the 
solution with any initial displacement vector. The 
zero and unit vector are the most common and 
convenient amount for this item. Moreover, they 
could be guessed experimentally if the behavior of 
structure is predictable. 

6. ANALYSIS STEPS 
 
In the DR method, Equations 9 and 10 are used to 
obtain the static answer for a structure. Selecting 
the required parameters (mass, damping and time 
increment) the procedure can be started. These 
parameters are necessary at the beginning of the 
analysis. 
     The residual force and kinematic energy can 
usually control the iterations. To do so, first a 
value must be specified for allowable error. Then, 
during the analysis procedure, the error is 
continuously compared with its allowable amount. 
The calculation is finished when the criterion 
reaches its allowable level. The Kinematic energy 
is computed as follow: 
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When the velocity approaches zero, the variation 
of displacement will also be zero too. In the 
following lines, the dynamic relaxation algorithm 
is presented [9]. Here, the unbalanced force (Rn) is 
selected as a stopping criterion.  
 
• Determine mass, damping, time increment, 

an allowable value for error and set n = 0 
• Assume { } 2

1
x −&  as a zero vector. 

• Calculate {x}0 or assume zero for it. 
• Calculate unbalanced force by 

}x{]K[}P{}R{ nn −=  . 
• If Rn < e go to 8, otherwise continue. 
• Calculate the displacement and velocity 

using Equations 9 and 10, respectively. 
• Increase the number of step (n = n + 1) and 

return to 4 
• Print the results.  
• stop  
 
 
 

7. SUGGESTED FORMULATION 
 
In the common DR algorithm, which is formulated 
by the finite difference method, the error rank is 
two. As the stability and the convergence rate are 
extremely affected by the error rank, it would be 
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productive to have a higher order of error in the 
DR formulation. In this way, the accuracy of the 
procedure will increase. Subsequently, the solution 
will be obtained with less iteration. In this 
paper, a new approach is introduced to formulate 
the DR process, with the purpose of improving 
computational time and effort. In this formulation, 
the first three terms of the Taylor series will be 
used to raise the error rank. Utilizing the Taylor 
series, the below expression states displacement 
vector for the (n + 1) step: 
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Equation 26 can be written in the following form: 
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On the other hand, the governing equation for 
dynamic systems can be written as follow: 
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Substituting 27 into 29 leads to the following 
relationship: 
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Equation 30 can be written: 
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Finally, by simplifying Equation 31 and using 28, 
the following relation is achieved as a substitute 
for the previous finite difference formulation. 
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Applying Equation 32 and also using initial values 
for the displacement and the velocity, the dynamic 
relaxation procedure can be started. Afterwards, 
displacement and velocity vectors are determined 
through the current step. There are two ways to 
specify the velocity vector. The most common and 
efficient way utilizes the definition of velocity in 
which it is obtained by the variation of displacements 
in that step. 
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The merits of this scheme are fewer requirements 
for both computational effort and memory. It also 
has more capability in nonlinear analysis. The 
second approach applies the Taylor series in 
dynamic equation of structure. In this way, the 
velocity is computed by: 
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In which, the second and third derivatives of 
displacement are calculated as follows: 
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It should be noted that Equation 35 is obtained by 
re - organizing the dynamic equation with respect 
to the acceleration. Afterwards, deriving this 
relationship will lead to the Equation 36. 
     Comparing these two schemes shows more 
ability in the first one. The advantages are fewer in 
both computational effort and required memory. 
As the numerical results shows, this method has 
more capability in nonlinear analysis. Thus, the 
first technique is selected and will be used in the 
following. 
     At the beginning of analysis, it is essential to 
select the required factors. In the suggested 
formulation, they will be determined by a 
combination of previous methods so that the most 
appropriate and efficient blend is obtained. For 
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more effective comparison, the time increment is 
considered constant throughout the analysis. 
Moreover, the mass matrix is constructed by using 
three techniques: the Gerschgorin’s theorem, the 
mass proportioned to stiffness matrix, and the 
absolute squared value. Also, the damping factor in 
this approach is calculated by Underwood, Zhang, 
Qiang and Crisfield’s methods. In this paper, there 
is no room to mention the complete details of the 
investigative process for the best combination of 
the required factors. The selected combination, 
which is named P2, consists of the mass 
proportioned to the stiffness matrix, Qiang 
damping factor and the constant time increment of 
1. On the other hand, Zhang’s scheme (called ZA) 
is selected as the strongest methods for comparison. 
It must be pointed out that in the Zhang’s 
approach, the mass is estimated by Gerschgorin’s 
method and the time increment is considered 1. 
 
 
 

8. NUMERICAL EXAMPLES 
 
In this section, a variety of truss structures are 
analyzed in order to assess the validity of the 
suggested formulation and compare it with the 
previous techniques. Examples are composed of 
different types, planer and space trusses. In these 
examples, each joint has two or three degrees of 
freedom according to its types. Having the stiffness 
matrix in global axes, it is possible to establish the 
governing equation system for structures. By 
solving this system of equations, the displacements 
and internal forces will be achieved. 
     In the suggested scheme, the required factors are 
obtained from the previous methods. The results 
shows that the best selection of these factors are the 
mass proportioned to diagonal entries of the stiffness 
matrix, with the damping factor presented by Qiang 
and the time - step equal to 1. In this study, the zero 
vectors have been used for the initial displacement 
and velocity. In each case, the convergence rate will 
be compared to the previous methods. For this 
purpose, Zhang’s method is used for comparison 
which is the most productive method among the 
previous ones [9]. This procedure is demonstrated by 
ZA in the tables. Also, P2 shows the author’s 
suggested scheme. In all examples, D indicates the 
reference degree of freedom. 

8.1. Two Member Truss   A two dimensional 
truss shown in Figure 1 has been analyzed to 
assess the ability of the new approach. In this 
example, the area cross section of members is 
96.77 cm2 and the modulus of elasticity is 703000 
Kg/cm2 [15]. In Figure 2, the load - displacement 
diagram has been plotted. The number of 
converged iterations has been given in Table 1 
using different schemes. 
 
8.2. Nine Member Truss   Figure 3 shows a 
three dimensional truss. The cross sectional area of 
members is 1 and the modulus of elasticity is 10 
[3]. The load - displacement diagram has been 
drawn in Figure 4. In Table 2 the number of 
convergence iterations has been given. 
 
8.3. Truss with 12 Members   A three 
dimensional truss illustrating in Figure 5 has been 
examined. The area cross section of members is 1 
and the modulus of elasticity is 10 [16]. The load - 
displacement diagram has been plotted in Figure 6. 
Table 3 shows the number of converged iterations 
for different schemes. 
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Figure 1. Truss with two members. 
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Figure 2. Static path for truss with two members. 
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TABLE 1. Number of Iterations for Analysis of Two Member Truss. 
 

10 9 8 7 6 5 4 3 2 1 Load step 
Number of Iterations Method 

152 152 152 152 152 153 153 153 154 162 ZA 
21 21 21 21 21 21 21 21 21 21 P2 

 

8.4. Truss with 24 Members   In order to 
assess the ability of new formulation efficiently, a 
larger system of equations should be solved. Now 
a truss with a larger degree of freedom is analyzed. 
This space truss has 24 members as shown in 
Figure 7. In this example, the member’s area cross 
sections are 3.17 cm2 and the modulus of elasticity 
is 303000 N/cm2 [17]. The load - displacement 
diagram and the number of iterations are shown in 
Figure 8 and Table 4, respectively. 
 
8.5. Truss with 22 Members   A planer truss 
with 22 members is analyzed in constant load. This 

truss is shown in Figure 9. In this example, the 
member’s area cross sections are 20 and 40 in2 for 
diagonal and other members, respectively. The 
modulus of elasticity is 30000 kips/in2 [18]. The 
load - displacement diagram is illustrated in Figure 
10 and the number of converged iterations is listed 
in Table 5. 
 
8.6. Truss with 168 Members   Figure 11 
shows a truss with 168 members. Analysis of this 
example is performed under constant load. The 
area cross section of the members is 100 mm2 and 
the modulus of elasticity is 1000 N/mm2 [19]. The 
load - displacement diagram is illustrated in Figure 
12. The number of iterations is given in Table 6. 
 
 
 

9. CONCLUSIONS 
 
In this paper, a new formulation for the DR method 
was suggested. Some planer and space trusses were 
also analyzed for numerical verification. The 
numerical results clarify that the new formulation 
increases the convergence rate as compare to the 
previous ones. As the applied mass in the 
suggested method is the one proportional to the 
stiffness matrix, different coefficients were 
investigated in this research. The results clearly 
establish that the coefficients less than 1 improve 
the convergence rate. By solving a variety of 
examples, this value was chosen 0.6 for all the 
structures. 
     On the other hand, not being able to trace the 
limitation points, like snap through in the static 
path, is the shortcoming of the new scheme as it is 
similar to the other DR methods. This 
characteristic is distinguishable in some examples 
such as example 2 that shows a big jump between 
the 6th and 7th step. This behavior raises the 
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Figure 3. Truss with nine members. 
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Figure 4. Static path for nine member truss. 
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TABLE 2. Number of Iterations for Analysis of Nine Member Truss. 
 

10 9 8 7 6 5 4 3 2 1 Load step 
Number of Iterations Method 

150 149 149 148 265 80 92 102 113 133 ZA 
21 21 21 142 29 25 24 23 23 22 P2 

 
 
 

TABLE 3. Number of Iterations for Analysis of Truss with 12 Members. 
 

10 9 8 7 6 5 4 3 2 1 Load step 
Number of Iterations Method 

28 29 91 219 129 20 22 29 36 50 ZA 
11 11 95 171 155 13 12 11 11 11 P2 

 
 
 

TABLE 4. Number of Iterations for Analysis of Truss with 24 Members. 
 

10 9 8 7 6 5 4 3 2 1 Load step 
Number of Iterations Method 

133 134 135 136 138 200 79 64 59 56 ZA 
50 49 49 48 48 274 36 32 31 28 P2 

 
 
 

TABLE 5. Number of Iterations for Analysis of Truss with 22 Members. 
 

10 9 8 7 6 5 5 3 2 1 Load step 
Number of Iterations Method 

1286 1304 1142 3557 2436 1503 1052 783 633 577 ZA 
1030 1054 993 3006 2285 1415 999 737 581 519 P2 

 
 
 

TABLE 6. Number of Iterations for Analysis of Truss with 168 Members. 
 

10 9 8 7 6 5 4 3 2 1 Load step 
Number of Iterations Method 

768 774 780 787 795 1192 173 185 199 212 ZA 
506 509 513 516 521 1016 119 116 150 171 P2 

 

required number of iterations to find the next point 
on the static path. 
     Investigating the tables of converged iterations, 
a remarkable point is recognizable. There is an 
upsurge in the number of iterations by approaching 
the limit points of loads and displacements. In 

other words, the dynamic relaxation method needs 
more iteration while nearing these zones. 
Moreover, in these areas, the load - displacement 
diagram demonstrates the jumps to the other 
ascending branch. Finally, it must be mentioned as 
the most prominent feature of the proposed method  
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Figure 5. Truss of 12 members. 
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Figure 6. Static path for truss with 12 members. 
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Figure 7. Truss with 24 members. 
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Figure 8. Static path for truss with 24 members. 
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Figure 9. Truss with 22 members. 
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Figure 10. Static path for truss with 22 members. 
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Figure 11. Truss with 168 members. 
 
 
 

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

D

LO
A

D

 

Figure 12. Static path for truss with 168 members. 
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that contrary to the implicit scheme, there is no 
divergence when facing the limitation points. 
 
 
 

10. NOTATION 
 
[M] Mass matrix 
[C] Damping matrix 
[K] Stiffness matrix 
{x} Displacement vector  

n}x{&  Velocity vector in nth increment  
n}x{ &&  Acceleration vector in nth increment 

{Fi} Internal force of the ith degree of 
freedom 

{R}n Residual force 
c Damp coefficient 
e Allowable error 
h Time increment 
mij Diagonal entry of mass matrix 
n Number of step  
KE Kinematic energy  
α A real number 
ωo The lowest natural period of the system 
 
 
 

11. REFERENCES 
 
1. Park, K. C., “A Famiy of Solution Algorithms for Non - 

linear Structural Analysis Based on the Relaxation 
Equations”, Int. J. Numer. Meth. Engng., 18, (1984), 
1337-1347. 

2. Zienkiewicz, O. C. and Lohner, R., “Accelerated 
Relaxation or Direct Solution Future Prospects for 
FEM”, Int. J. Num. Meth. Eng., Vol. 21, (1985), 1-11. 

3. Rechardson, L. F., “The Approximate Arithmetical 
Solution by Finite Difference of Physical Problems 
Involving Differential Equations, with an Application to 
the Stresses in a Masonary Dam”, R. Soc. London Phil. 
Trans. A 210, (1911), 307-357. 

4. Casstell et al., “Cylindrical Shell Analysis by Dynamic 
Relaxation”, Proc. Inst. Civ. Engrs., 39, (Jan. 1968), 

          75-84. 
5. Welsh, A. K., “Discusstion on Dynamic Relaxation”, 

Proc. Inst. Civ. Engrs., 37, (Aug. 1967), 723-750. 
6. Rushton, K. R., “Large Deflection of Variable - 

Thickness Plates”, Int. J. Mech. Sci., 10, (1968), 723-
735. 

7. Wood, W. L., “Comparison of Dynamic Relaxation 
with Three Other Iterative Methods”, Engineer, 224, 
(1967), 683-687. 

8. Felippa, C. A., “Dynamic Relaxation and Quasi-Newton 
Method”, Numerical Pineridge Press, Sawnsea, UK, 
(1984). 

9. Zhang, L. C., Kadkhodayan, M. and Mai, Y. W., 
“Development of the maDR Method”, Comput. Struc., 
Vol. 52, No. 1, (1994), 1-8. 

10. Brew, J. S. and Brotton, M., “Non - Linear Sturctural 
Analysis by Dynamic Ralaxation”, Int. J. Num. Meth. 
Eng., Vol. 3, (1971), 463-483. 

11. Underwood, P., “Dynamic Relaxation, in 
Computational Method for Transient Analysis”, Chapter 
5, Elsevier, Amesterdam, (1983), 245-256. 

12. Zhang, L. C. and Yu, T. X., “Modified Adaptive 
Dynamic Relaxation Method and Its Application to 
Elastic - Plastic Bending and Wrikling of Circular 
Plates”, Comput. Struc., Vol. 34, No. 2, (1989), 609-
614. 

13. Shizhong, Q., “An Adaptive Dynamic Relaxation 
Method for Non - Linear Problems”, Comput. Struc., 
Vol. 30, No. 4, (1988), 855-859. 

14. Crisfield, M. A., “Nonlinear Finite Element Analysis of 
Solids and Structures”, Advanced Topics, John Wiley 
and Sons Ltd., Vol. 2, (1997). 

15. Ramesh, G. and Krishnamoorthy, C. S., “Inelastic Post - 
Buckling Analysis of Truss Structures by Dynamic 
Relaxation”, Int. Num. Meth. Eng., Vol. 37, (1994), 
3633-3657. 

16. Krenk, S. and Hededal, O., “A Dual Ortogonality 
Procedure for Non - linear Finite Element Equations”, 
Comput. Meth. Appl. Mech. Eng., Vol. 123, (1975), 
95-107. 

17. Ramesh, G. and Krishnamoorthy, C. S., “Post - 
Buckling Analysis of Structures by Dynamic 
Relaxation”, Int. Num. Meth. Eng., Vol. 36, (1993), 
1339-1364. 

18. Norris, C. H., Wilber, J. B. and Utku, S., “Elementary 
Structural Analysis”, Third edition, McGraw Hill, NY, 
USA, (1976). 

19. Forde, B. W. R. and Stiemer, S. F., “Improved Arc 
Length Orthogonality Methods for Non - Linear Finite 
Element Analysis”, Comput. Struc., Vol. 27, No. 5, 
(1987), 625-630. 

 


