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Abstract  In this paper we develop a multi-objective model to optimally control the lead 
time of a multistage assembly system. The multistage assembly system is modeled as an 
open queueing network, whose service stations represent manufacturing or assembly 
operations. The arrival processes of the individual parts of the product, which should be 
assembled to each other in assembly stations, are assumed to be independent Poisson 
processes with equal rates. In each service station, there is one machine with exponentially 
distributed processing time, such that the service rate is controllable. The transport times 
between the service stations are independent random variables with exponential 
distributions. By applying the longest path analysis in queueing networks, we obtain the 
distribution function of time spend by a product in the system or the manufacturing lead 
time. The decision variables of the model are the number of servers in the service stations. 
The problem is formulated as a multi-objective optimal control problem that involves three 
conflicting objective functions. The objective functions are the total operating costs of the 
system per period (to be minimized), the average lead time (min), and the probability that 
the manufacturing lead time does not exceed a certain threshold (max). The goal 
programming method is used to solve a discrete-time approximation of the original 
problem. 
 
Keywords Queueing networks; Optimal control; Production; Multiple objective 
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  چند هدفه براي كنترل بهينه زمان پيشبرد يـك سيـستم مونتـاژ چنـد مرحلـه اي توسـعه            در اين مقاله ما مدلي         هچكيد
سيستم مونتاژ چند مرحله اي به عنوان يك شبكه صف باز مدل بندي مي شود كه در آن ايستگاه هاي سـرويس                      . مي دهيم 

هاي ورودي قطعات انفرادي محـصول، كـه بايـد در ايـستگاههاي             فرض شود كه فرايند   . بيانگر عمليات مونتاز يا ساخت است     
 يـك ماشـين     در هـر ايـستگاه سـرويس،      . ن مستقل با نرخ هاي برابر هستند      وسامونتاژ به يكديگر مونتاژ شوند، فرايندهاي پو      

ا بـين   زمانهـاي انتقـال م ـ    .  كه توزيع پردازش آن نمايي است، به گونه اي كه نـرخ سـرويس قابـل كنتـرل اسـت                    وجود دارد 
با كاربرد تجزيه و تحليـل طـولاني تـرين مـسير در         . با توزيع نمايي هستند   ايستگاههاي سرويس متغيرهاي تصادفي مستقل      

شبكه هاي صف، ما تابع توزيع زماني كه يك محصول در سيستم صرف مي كند يا زمان پيشبرد ساخت را بدسـت خـواهيم                        
مسئله به صـورت يـك مـسئله        . در ايستگاه هاي سرويس خواهند بود     متغيرهاي تصميم مدل، تعداد خدمت دهندگان       . آورد

توابـع هـدف، كـل هزينـه هـاي          . كنترل بهينه جند هدفه فرمول بندي مي شود كه سه تابع هدف معارض را دربر مي گيرد                
سـاخت از   ، و احتمال اينكه زمان پيشبرد       )حداقل(، متوسط زمان پيشبر     )كه بايد حداقل شود   (عملكرد سيستم در هر پريود      

روش برنامه ريزي آرماني به كار گرفته مـي شـود تـا يـك تقريـب زمـاني         . ، خواهند بود  )حداكثر(يك حد معين تجاوز نكند      
  .گسسته از مسئله اصلي را حل نمايد
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1. INTRODUCTION 
 

Over the last decade, manufacturing strategies 
have focused on speed of response to customer as 
much as cost and quality for competitive 
advantage. This means reducing both the length 
and the variability of the manufacturing lead times. 
Short lead times are critical to win customer orders 
for engineer-to-order and make-to-order companies 
supplying capital goods. These products are often 
complex assemblies with many stages of 
manufacture and assembly. Providing competitive 
delivery lead times and managing to achieve a 
reliable delivery performance are typically as 
important as competitive prices.  
Each dynamic production system can be modeled 
as an open queueing network, in which each 
service station settled in a node of the network 
represents a manufacturing or assembly operation. 
It is assumed that one type of product is produced 
by the system. Each individual part of the product 
enters the production system according to a 
Poisson process and goes to the first service station 
in its routing sequence of manufacturing 
operations.  
In each service station, there is one machine with 
exponential distribution of processing time. 
Therefore, the queueing network only contains 
M/M/1 queueing systems. The queueing network is 
assumed to be in the steady-state and the service 
rates are controllable. 
After completing the manufacturing operations of 
the individual parts, they are assembled to each 
other and after passing some other manufacturing 
and assembly operations, the final product leaves 
the system in its finished form.  
All inter-station buffers are infinite. An implicit 
hypothesis in the literature is that transit time in 
buffers is null, i.e., a part which leaves a machine 
is supposed to be instantaneously available for the 
next machine. The time needed to cross the inter-
section buffers may be much greater than the 
service time and there is no reason to claim that its 
effect on the system will be negligible. Therefore, 
the transport times between the service stations are 
assumed to be independent random variables with 
exponential distributions.  
The time spent in a service station would be equal 
to the processing time plus waiting in the queue in 
front of the service station. Therefore, the time 

spend by a finished product in the system would be 
equal to the length of the longest path of the 
queueing network whose arc lengths are the 
transport times between the service stations. We 
can analytically obtain the distribution function of 
the manufacturing lead time by computing the 
distribution function of longest path in the 
queueing network. 
There are many papers about the longest path 
analysis in stochastic networks, but not queueing 
networks. Charnes et. al. [3] developed a chance-
constrained programming. They assumed 
exponential activity durations. For polynomial 
activity durations, Martin [15] provided a 
systematic way of analyzing the problem through 
series-parallel reductions. Kulkarni and Adlakha 
[13] developed an analytical procedure for PERT 
networks with independent and exponentially 
distributed activity durations. They modeled such 
networks as finite-state, absorbing continuous-time 
Markov chains with upper triangular generator 
matrices. Then, they proved the time until 
absorption into this absorbing state is equal to the 
length of the longest path in the original network 
provided it starts from the initial state.  
Elmaghraby et. al. [5] studied the effect of 
interactions of different paths on the completion 
time. Yano [27] considered stochastic lead time in 
a simple two level assembly system with different 
processing time distributions including Poisson 
and negative binomial. Cheng and Gupta [4] and 
Soroush [24] commented that most analytical 
studies are limited to small problems. Song et. al. 
[23] developed an approximate method to obtain 
the distribution of product completion time by 
decomposing the complex product structures of 
multistage assemblies into two-stage subsystem.  
The analytical methods above consider the 
manufacturing and assembly processing times as 
independent random variables and ignore their 
dependence on the arrival and service rates of jobs 
at various stages in the manufacturing process. The 
time spent in a queue will be longer for congested 
service stations than for little used stations. 
Therefore, the time spent waiting in queues in front 
of service stations should be considered in order to 
compute the manufacturing lead time. 
The open queueing networks are widely used for 
modeling manufacturing systems, see 
Papadopoulos and Heavey [16]. The lead time 
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analysis in dynamic job shops by modelling those 
as the open queueing networks was studied by 
Kapadia and Hsi [11], Shanthikumar and Sumita 
[21], Haskose et. al. [8] and Vandaele et. al. [26]. 
However, these did not include assembly 
processes.     
Harrison [7] in a primarily theoretical study, 
introduced a queueing theoretical model of an 
assembly operation. He established stability 
conditions for an assembly queue with renewal and 
mutually independent arrival streams and a single 
server. Hemachandra and Eedupuganti [9] 
considered a model of a system with two finite 
capacity assembly lines and a single join operation 
and presented an approach for computing the 
performance measures in the system. Gold [6] 
considered a model corresponds to an assembly-
like queue with two input streams, in which the 
assembly is instantaneous, and focused on the state 
probabilities and expectation of minimum and 
maximum of the two input queues. Ramachandran 
and Delen [17] analyzed the kitting process (a kit 
is a set of parts which are all needed to perform the 
assembly) as of a stochastic assembly system by 
treating it as an assembly-like queue. Specially, 
they investigated the dynamics involved in a 
simple kitting process where two independent 
input streams feed into an assembly process. 
This paper not only considers the manufacturing 
and assembly processing times as the functions of 
the arrival and service rates of the various stages of 
the manufacturing process, but also considers the 
role of transport times between the service stations, 
which may be much greater than the processing 
times, in the manufacturing lead time. 
The operator of a plant with service facilities may be 
regarded as a controller of resources usable in 
performing services. In fact, we may increase the 
service rates of the manufacturing and assembly 
stations by increasing the number of servers. In that 
case, the average manufacturing lead time will be 
decreased. However, clearly it causes the total 
operating costs of the system per period to be 
increased, accordingly. Consequently, an appropriate 
trade-off between lead time and cost is required. 
To achieve the above-mentioned goals, we develop 
a multi-objective problem to determine the 
optimum number of servers of the service stations, 
such that three objectives are sought 
simultaneously, average lead time (to be 

minimized), the probability that the manufacturing 
lead time does not exceed a certain threshold 
(max), and also the total operating costs of the 
assembly system per period (min). 
For solving this problem, we do the discretization 
of time and convert the optimal control problem 
into an equivalent nonlinear optimization problem. 
Finally, the goal programming method is used to 
solve this multi-objective problem. 
The optimization problems associated with the 
queueing networks are computationally complex. 
In the literature, we encounter several optimization 
problems associated with queueing network, see 
Smith and Daskalaki [22]. Routing in production 
and manufacturing settings, throughput, sojourn 
time, and average number of customer in the 
system have been objectives of interest. Schechner 
and Yao [18] considered the control of the service 
rate at each node of a closed Jackson network. 
They assumed that for each node, there is a holding 
cost and an operating cost. It was also assumed that 
both costs to be arbitrary functions of the number 
of jobs at the node. The objective is to minimize 
the time-average expected total costs. Tseng and 
Hsiao [25] analyzed the optimal control of arrival 
to a two-station queueing network for the objective 
of maximum system throuput under a system time-
delay constraint optimality criterion. Kerbache and 
Smith [12] examined the optimal routing in layout 
and location problems from a network optimization 
perspective where manufacturing facilities are 
modeled as open finite queueing networks with a 
multi-objective set of performance measures. 
Azaron and Fatemi Ghomi [1] developed a new 
model for the optimal control of service rates and 
also the arrival rates to the service stations in a 
class of Jackson networks, in which the expected 
shortest length of the network and also the total 
operating costs of the network per period are 
minimized. However, these papers did not consider 
the lead time control for multistage assemblies. 
The remainder of this paper is organized in the 
following way. In section 2, we explain about the 
structure of dynamic multistage assembly systems. 
In section 3, the longest path analysis in queueing 
networks is presented.  In section 4, we present the 
multi-objective lead time control problem. In 
section 5, the method is illustrated through solving 
a numerical example, and finally, we draw the 
conclusion of the paper in section 6. 
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2. DYNAMIC MULTISTAGE ASSEMBLY 
SYSTEMS 

 
Each dynamic multistage assembly system can be 
modeled as an open queueing network, in which 
each service station settled in a node of the 
network represents a manufacturing or assembly 
operation. The following assumptions will be 
made. 
1. Each individual part of the product enters the 

production system according to a Poisson 
process with rate λ  (the demand rate for the 
final product). 

2. Only one type of product is produced. 
3. Each service station with only one incoming arc 

indicates a manufacturing station. 
4. Each service station with more than one 

incoming arcs indicates an assembly station.       
5. After an individual part arrives in the system, it 

goes directly to a manufacturing station for its 
first manufacturing operation. If there are parts 
for being processed, it queues up. 

6. After completion of processing at a 
manufacturing station, it goes to another 
manufacturing station to be processed in its 
routing sequence of manufacturing operations. 

7. After completing the manufacturing operations 
of each part, it is assembled to some other parts 
in an assembly station.  

8. The product leaves the system in its finished 
form from the sink node of the queueing 
network. 

9. Each part has characteristics, which are 
statistically independent of other parts. 

10. Each service station consists of one machine. 
11. Processing times of manufacturing and 

assembly operations are exponentially 
distributed (including set up times on the 
service station). 

12. The processing time at each service station is 
independent of preceding processing times. 

13. There are no interruptions due to breakdowns, 
maintenance, or other such cases. 

14. Service discipline is based on FIFO. 
15. All inter-station buffers are infinite. 
16. The transport times between the service stations 

are independent random variables with 
exponential distributions. 

17. The queueing network is in the steady-state. 
18. The service rates are controllable. 

19. Operating cost of each service station per 
period is an increasing function of its service 
rate. 

20. Total number of service stations settled in the 
nodes of the queueing network is equal to n. 

It is clear that the arrival process to the 
manufacturing stations prior to an assembly station 
is the Poisson process with the rate of λ . Each 
assembly station has more than one arrival stream, 
but each assembly operation can begin if and only 
if the manufacturing operations of all 
corresponding individual parts, which should be 
assembled to each other, have been finished. 
Therefore, it is reasonable to approximate the 
arrival process to an assembly station, for each set 
of individual parts available for the assembly 
operation, as a Poisson process with the rate of λ .  
The arc lengths of the network indicate the 
transport times between the service stations, which 
are assumed to be independent random variables 
with exponential distributions. Consequently, the 
time spend by a finished product in the system or 
the manufacturing lead time would be equal to the 
length of the longest path of the queueing network, 
in which the length of each node which contains a 
service station is equal to the time spent in this 
station. 
Every two nodes of the queueing network 
associated with a dynamic multistage assembly 
system are connected by at most one directed path, 
i.e., the network is a tree, and consequently the 
waiting times in the service stations are 
independent, see Lemoine [14].   
The service rates of the service stations are 
controllable. The type of service rate control 
considered here is such that the exponentially 
distributed processing time, corresponding with the 
ith service station, increases from a given average 
rate iμ , when only one server works, to an 
average rate of iik μ , according to whenever  
servers are employed in this service station, in 
order to minimize the total operating costs of the 
system per period, minimize the average lead time, 
and maximize the probability that the 
manufacturing lead time does not exceed a certain 
threshold. 

ik

In section 3, we present an analytical method to 
obtain the distribution function of manufacturing 
lead time in dynamic complex assembly systems. 
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3. LONGEST PATH ANALYSIS IN 
QUEUEING NETWORKS 

 
In our proposed method, each queueing network is 
transformed into an equivalent stochastic network 
with independent and exponentially distributed arc 
lengths. Then, we determine the distribution 
function of longest path from the source node to 
the sink node of this stochastic network by 
generalizing the method developed by Kulkarni 
and Adlakha [13]. 
The main steps of our proposed method are as 
follows: 
Step1. Determine the density function of the time 
spent in the service stations. The distribution of 
waiting time (processing time plus waiting time in 
queue) in the ith M/M/1 queueing system, 
i=1,2,…,n, is 
 

tk
iii

iiektw )()()( λμλμ −−−= ,    t>0                    (1) 
 
where λ and iik μ  are the arrival rate and the 
service rate of this queueing system, respectively. 
Therefore, the distribution of waiting time in the 
ith service station would be exponential with 
parameter ( iik μ -λ ). 
Step 2. Transform the queueing network into an 
equivalent stochastic network by replacing each 
node that contains a service station with a 
stochastic arc whose length is equal to the time 
spent in the service station.  
Let’s explain how to replace node k in the network 
of queues, which contains a queueing system, with 
a stochastic arc. Assume that b1,b2,…,bn are the 
incoming arcs to this node and d1,d2,…,dm are the 
outgoing arcs from it. Then, we substitute this node 
by arc  (k', k"), whose length is equal to the waiting 
time in system for the particular queueing system. 
Furthermore, all arcs bi for i=1,…,n  end up with k'  
while all arcs dj for j=1,…,m start from node k". 
The indicated process is opposite of the absorption 
the edge e in the graph G in graph theory (G.e), see 
Azaron and Modarres [2] for more details. After 
transforming all such nodes to the stochastic arcs, 
the queueing network is transformed into an 
equivalent stochastic network with exponentially 
distributed arc lengths.  
Step 3. Obtain the distribution function of longest 
path in the stochastic network obtained in step 2, 

using the method of Kulkarni and Adlakha [13].  
Let G=(V,A) be a directed stochastic network, in 
which V represents the set of nodes and A 
represents the set of arcs or the operations of the 
production system after the transformation. The 
source and sink nodes are denoted by s and t, 
respectively. Length of arc  is an 
exponentially distributed random variable with 
parameter 

Aa∈

aγ .  For , let Aa∈ )(aα  be the 
starting node of arc a, and )(aβ  be the ending 
node of arc a. Moreover, I(v) and O(v) are the sets 
of arcs ending and starting at node v, respectively, 
which are defined as follows: 
 

{ }vaAavI =∈= )(:)( β ,                   (2) )( Vv∈
{ }vaAavO =∈= )(:)( α ,              (3) )( Vv∈

 
Let S denote the set of all admissible 2-partition 
cuts of the network, and )}.,{( φφ∪= SS  It is 
proven that {X(t),t 0} is a continuous-time 
Markov process with state space 

≥
S . The elements 

of the infinitesimal generator matrix 
)}]','(),,{([ FEFEqQ = , (E,F) and 

)','( FE S∈ , are calculated as follows (refer to 
Kulkarni and Adlakha [13] for details):           
 

{ }

{ }
{ } { }

{ }
{ }

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

==∑ γ−

β∪−=

∪⊄β∈γ

∪=−=

∪⊄β∈γ

=

)7(0

)','(),,(

)6(;','

)5())(()('

,))((,

)4(;','

,))((,

otherwise

FEFEq

FFEEifa

aOaEE

aFaIEaifa

aFFaEE

aFaIEaifa

 
 
{X(t),t≥ 0} is a finite-state absorbing continuous-
time Markov process and since 

,0)},(),,{( =φφφφq  it can be concluded that this 
state is an absorbing one and obviously the other 
states are transient. Furthermore, we number the 
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states in S  such this Q matrix be an upper 
triangular one. We assume that the states are 
numbered 1,2,…,N= S . State 1 is the initial state, 

namely )),(( φsO , and state N is the absorbing 
state, namely ),( φφ . 
Let T represent the length of the longest path in the 
network, or the manufacturing lead time. It is clear 
that T=min {t>0: X(t)=N/X(0)=1}. Thus T is the 
time until {X(t),t≥ 0} gets absorbed in the final 
state starting from state 1.  
Chapman-Kolmogorov backward equations is 
applied to compute F(t)=P{T t} or the 
distribution function of manufacturing lead time. If 
we define: 

≤

 
Pi(t)=P{X(t)=N/X(0)=i,}, i=1,2,…,N                  (8)  
 
Then, F(t)=P1(t). 
The system of differential equations for the vector 
P(t)=[P1(t),P2(t),…,PN(t)]T is given by 
•

P (t)=Q.P(t) 
 P(0)=[0,0,…,1]T                                                 (9)                                                                                                                                                 

where 
•

P (t) represents the derivation of the state 
vector P(t) and Q is the infinitesimal generator 
matrix of the stochastic process {X(t),t≥ 0}.  
 
 
 

4. MULTI-OBJECTIVE LEAD TIME 
CONTROL PROBLEM 

 
In this section we develop a multi-objective model 
to determine the optimum number of servers in 
each service station of a multistage assembly 
system. In fact, we may increase the service rates 
of the manufacturing and assembly stations by 
increasing the number of servers. In that case, the 
average manufacturing lead time will be decreased. 
However, clearly it causes the total operating costs 
of the system per period to be increased, 
accordingly. Consequently, an appropriate trade-
off between lead time and cost is required. 
To achieve the above-mentioned goals, we develop 
a multi-objective problem, in which three 
objectives are sought simultaneously, minimizing 
average lead time, maximizing the probability that 
the manufacturing lead time does not exceed a 

certain threshold, and also minimizing the total 
operating costs of the system per period. 
The operating cost of the ith service station per 
period is assumed to be an increasing function 

)( iii kC μ  of its service rate, iik μ  ( iμ  is a given 
value and  is the integer decision variable). 
Therefore, C or the total operating costs of the 
system per period can be computed as follows: 

ik

 

∑
=

=
n

i
iii kCC

1
)( μ                                               (10) 

 

The average lead time and the probability that the 
manufacturing lead time does not exceed a given 
threshold u are given by 
 

ALT=                                         (11) ∫
∞

−
0 1 ))(1( dttP

PR=                                                          (12)                     )(1 uP
 
Taking into account the above assumptions, the 
infinitesimal generator matrix Q is a function of 
the control vector [ ]Tnkkkk ,...,, 21= . Therefore, 
the dynamic model is 

               
•

P (t)=Q(k).P(t) 
Pi(0)=0     i=1,2,…,N-1 
                PN(t)=1                                               (13) 
 
The relations (14) should be satisfied to exist the 
response in the steady-state. 
 

iik μ >λ , i=1,2,…,n                                       (14) 
 
We do not have such constraints in the 
mathematical programming. Therefore, we use the 
constraints (15) instead of the above constraints in 
the final multi-objective problem. 
 

ik ≥ ε
μ
λ
+

i

, i=1,2,…,n                                    (15) 

Assuming  as the available number of servers to 
be allocated to the ith service station, the following 
set of constraints should also be included in the 
optimal control problem. 

iU

ii Uk ≤ ,     i=1,2,…,n                                       (16) 
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The appropriate multi-objective lead time control 
problem would be 
 

Min   ∑
=

=
n

i
iii kCC

1

)( μ

Min  ALT=                                                                                                         ∫
∞

−
0 1 ))(1( dttP

Max  PR=  )(1 uP
 
s.t: 

      
•

P (t)=Q(k).P(t) 

      Pi(0)=0                   i=1,2,…,N-1 

      PN(t)=1                                                                                                                             

      ii
i

Uk ≤≤+ ε
μ
λ

     i=1,2,…,n                                                                                   

      k                                  Integer                      (17)  
 
We try to solve problem (17), optimally, using the 
Maximum Principle, see Sethi and Thompson [20] 
for the details. For simplicity, we consider only 
one objective function, for example: 

 ALT= , in the model.  ∫
∞

−
0 1 ))(1( dttP

 
Considering S as the set of allowable controls, 
which consists of the last set of constraints of 
problem (17) ( ), and n-vector Sk ∈ )(tλ  as the 
adjoint vector function, the Hamiltonian function 
would be 
 

)(1)()()()),(),(( 1 tPtPkQtktPtH T −+= λλ  
(18) 

 
Then, we write the adjoint equations and terminal 
conditions, which are 

               (19) 
.,0)(

],0,...,0,1[)()()(
∞→=

−+=−
•

TT
kQtt

T

TT

λ

λλ

 
If we could compute )(tλ  from (19), we could 
minimize the Hamiltonian function subject to 

 in order to get the optimal control , and 
solve the problem optimally. Unfortunately, the 

adjoint equations (19) are dependent on the 
unknown control vector, k, and therefore they 
cannot be solved directly.  

Sk ∈ *k

If we could also minimize the Hamiltonian 
function (18), subject to , for an optimal 
control function in closed form as 

, then we could substitute 

this into the state equations, 

Sk ∈

))(),(( *** ttPfk λ=
•

P (t)=Q(k).P(t), 
, and adjoint equations (19) to 

get a set of differential equations, which is a two-
point boundary value problem. Unfortunately, we 
cannot obtain  by differentiating H respect to k, 
because k is a discrete vector, and consequently  
cannot be obtained in closed form.  

TP ]1,...,0,0[)0( =

*k
*k

According to the two mentioned points, it is 
impossible to solve the optimal control problem 
(17), optimally, even in the case of single objective 
problem. Relatively few optimal control problems 
can be solved optimally. Therefore, we try to solve 
this problem, numerically. To do that, we do the 
discretization of time and convert the multi-
objective discrete optimal control problem into an 
equivalent multi-objective mixed integer nonlinear 
programming one. In other words, we transform 
the differential equations to the equivalent 
difference equations as well as transform the 
integral terms into equivalent summation terms. To 
follow this approach, the time interval is divided 
into L equal portions with the length of tΔ . If tΔ  
is sufficiently small, it can be assumed that P(t) 
varies only in times 0, tΔ ,…,(L-1) . Considering 
P(l

tΔ
tΔ ) as P(l), the continuous-time system 

•

P (t)=Q(k)P(t) is approximated as the following 
discrete-time system: 
 
P(l+1)=P(l)+Q(k).P(l) tΔ      l=0,1,…,L-1        (20) 
 
Similarly, ALT is approximated as:  
 

(∑
=

Δ−=
L

l
a tlPALT

0
1 )(1 )                                   (21) 

 

Since each Pi(l), for i=1,2,…,N-1, l=1,2,…,L is a 
distribution function, then we should also consider 
the following constraints in the discrete-time 
approximation problem. 
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1)( ≤lPi , i=1,2,…,N-1, l=1,2,…,L                   (22) 
 
4.1. Goal programming method 
 
Let b1, b2, and b3 represent the goals for the total 
operating costs, average lead time, and also 
probability that the manufacturing lead time does 
not exceed u, respectively. E1, E2, and E3 represent 
the deviations from the first, second and third 
goals, respectively. Since E1, E2, and E3 are free 
variables, then we substitute them with the 
difference of two nonnegative variables, i.e. Ej= 

, j=1,2,3.  Let w−+ − jj EE 1, w2, and w3 represent the 
importance weights of the deviations from the first, 
second and third goals, respectively. 

Considering ⎥⎦
⎤

⎢⎣
⎡
Δt
u

 as the integer part of 
t

u
Δ

, the 

appropriate goal programming formulation of the 
discrete-time approximation of the lead time 
control problem leads to: 
             

MinZ= ( ) ( ) ( )[ ] 1,
1

332211 ≥++ +−− pEwEwEw pppp
 

 
 s.t: 

       ∑  
=

−+ =−+
n

i
iii bEEkC

1
111)( μ

                                      ( )∑
=

−+ =−+Δ−
L

l
bEEtlP

0
2221 )(1                                

      3331 )( bEE
t

uP =−+
Δ

−+  

      P(l+1)=P(l)+Q(k)P(l)           l=0,1,…,L-1 tΔ
      Pi(0)=0                                       i=1,2,…,N-1 
     PN(l)=1                                       l=0,1,…,L 
                          i=1,2,…,N-1, l=1,2,…,L 1)( ≤lPi

     ii
i

Uk ≤≤+ ε
μ
λ

                          i=1,2,…,n                                                         

      : (Integer)                                    i=1,2,…,n ik
(23)                    

 
Lemma 1. For , if  is an optimal 
solution to the optimization problem (23), then  
is non-dominated.  

∞≤≤ p1 *k
*k

If we consider the initial and terminal state 

conditions for P(l) implicitly, and substitute each 
Pi(0) and PN(l) with zero and one, respectively, 
nonlinear optimization (23) would have 2L(N-
1)+2n+3 constraints, L(N-1)+6 continuous 
variables and n integer variables. 
For estimating the length of the time interval, we 

consider ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
= i

i
i Uk

μ
ελ5.0  for i=1,2,…,n.  

 
Then, we solve the system of differential equations 
(13), analytically, to obtain P1(t). A good 
estimation for the length of the time interval is 
given by T̂ , where P1( T̂ ) should approach one 
( ).  tLT Δ= .ˆ
A feasible solution, for the discrete-time 
approximation model, should posses this property 
that ε−≥ 1)(1 LP . If a solution does not have the 
mentioned property, the value of  is increased 
in order to satisfy this necessary condition. 

tΔ

 
 
 

5. NUMERICAL EXAMPLE 
 
Consider the dynamic assembly system depicted in 
Figure 1. This system produces chairs. The final 
chair consists of two separate parts: wooden and 
leather. In each node, except node 4, there is a 
manufacturing station with one machine. Node 4 
contains an assembly station with one machine. 
Table 1 shows the characteristics of the service 
stations (cost unit is in dollar and time unit is in 
day). We are interested in the optimum number of 
servers. The other assumptions are as follows: 
1. The demand rate for the chair, λ , is equal to 
10 per day. 
2. The transport times between the service 
stations settled in the nodes 1 and 4, and also 
between those settled in the nodes 3 and 4 are 
independent exponentially distributed random 
variables with the parameters 1)4,1( =λ  and 

2)4,3( =λ . The transport times between the other 
service stations are zero. 
3. 1=iμ  for i=1,2,…,n. In other words, the 
average rate, when only one server works in each 
service station is equal to one operation per day. 
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Figure 1. The dynamic assembly system 

 
 
 

Table 1. Characteristics of the service stations 
 

Service station Number of servers )( iii kC μ  

1 1k  410 11 +μk  

2 2k  34 22 +μk  

3 3k  75 33 +μk  

4 4k  2)( 2
44 +μk  

5 5k  52 55 +μk  
 
 
 

Now, we transform the queueing network into the 
equivalent stochastic network with independent 
and exponentially distributed arc lengths, shown 
in Figure 2. In this network, the arcs 1, 2 and 4 
indicate the waiting times in the M/M/1 queueing 
systems settled in the nodes 1, 2 and 3 of the 
queueing network with the parameters ( iik μ -10), 
for i=1,2,3. The arcs 3 and 5 indicate the transport 
times between the service stations settled in the 
nodes 1 and 4 with the parameter 1, and also 
between the service stations settled in the nodes 3 
and 4 of the queueing network with the parameter 
2. The arcs 6 and 7 indicate the waiting times in 
the M/M/1 queueing systems settled in the nodes 4 
and 5 of the queueing network with the 
parameters ( iik μ -10), for i=4,5.   

The stochastic process {X(t),t 0} related to the 
longest path analysis of this stochastic network 
has 14 states. Table 2 shows matrix Q(

≥

μ ), 
considering 1=iμ  for i=1,2,…,n. 

The length of the time interval is approximated as 
. Then, we formulate the appropriate multi-

objective lead time control problem according to 
(23). The threshold value, u, is assumed to be 
equal 3. We set the goals for the total operating 
costs of the system per day, the average lead time 
and the probability that the manufacturing lead 
time does not exceed u as b

5ˆ =T

1=350 dollars, b2=1.8 
days and b3=0.9. Since one day deviation from the 
average lead time is known to be 100 and 1 times 
as important as one dollar deviation from the total 
operating costs of the system per day and one unit 
deviation from the probability, respectively, then 
w1=0.004, w2=w3=0.498. The values of other 
parameters are: p=1, L=30, =0.17, tΔ ε =0.05 
and 15=iU  for i=1,2,…,5.  
Finally, we solve the corresponding problem, 
using LINGO. Table 3 shows the optimum 
number of servers in the manufacturing and 
assembly stations, or  for i=1,2,…,5. This 
solution is a feasible solution, because 
F(L)=  approaches one 
(

*
ik

)(1 LP
986.0)30( ==LF ). Figure 3 shows the 

distribution function of lead time F(l) versus 
l=0,1,…,L=30. 
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Figure 2. The stochastic network 

 
 

Table 2. Matrix Q(k) corresponding to the numerical example 
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Figure 3. F(l) versus l 

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
20-

( + ) 1k 2k 2k -10 0 0 1k -10 0 0 0 0 0 0 0 0 0 

2 0 
20-

( + ) 1k 3k 3k 1k-10 0 0 0 -10 0 0 0 0 0 0 0 

3 0 0 8-  1k 2 0 0 0 0 1k -10 0 0 0 0 0 

4 0 0 0 10- k  1 1k0 0 0 0 0 0 -10 0 0 0 

5 0 0 0 0 9- 2k 1 2k -10 0 0 0 0 0 0 0 

6 0 0 0 0 0 10- 2k 2k0 -10 0 0 0 0 0 0 

7 0 0 0 0 0 0 9- 3k 1 3k -10 0 0 0 0 0 

8 0 0 0 0 0 0 0 10- 3k 3k0 -10 0 0 0 0 
9 0 0 0 0 0 0 0 0 -3 1 2 0 0 0 

10 0 0 0 0 0 0 0 0 0 -2 0 2 0 0 
11 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 10-  4k 4k -10 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 10- k5 5k -10
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 3.   for i=1,2,…,5 *
ik

 

i 1 2 3 4 5 

*
ik  13 15 13 12 15 

 
 
The total operating costs of the production system 
per day, the approximated average manufacturing 
lead time and the approximated probability that 
the manufacturing lead time does not exceed the 
given threshold, according to  for i=1,2,…,5, 
are obtained as follows: 

*
ik

C=450, ALTa=2.2501, PRa=0.8471 
 

 
 

6. CONCLUSION 
 
In this paper we developed a new multi-objective 
model to determine the optimum number of 
servers to be allocated in the manufacturing and 
the assembly stations of a dynamic multistage 
assembly system. 
Not only the manufacturing and assembly 
processing times were considered as the functions 
of the arrival and service rates of the various 
stages of the manufacturing process, but also we 
considered the role of transport times between the 
service stations in the manufacturing lead time. 
The corresponding continuous-time problem was 
so complicated to solve analytically. Therefore, 
we solved a discrete-time approximation of the 
original optimal control problem. 
To solve the relevant multi-objective problem, we 
used the goal programming method. This method 
has some disadvantages; namely, the preferred 
solution is sensitive to the goal vector and the 
weighting vector given by the decision maker. 
However, the goal programming method has 
fewer variables to work with, so it will be 
computationally faster. Moreover, according to 
Lemma 1, for any p greater than or equal 1, the 
optimal solution of the goal attainment 
formulation (23) would be a non-dominated or 
Pareto-optimal solution, refer to Hwang and 
Masud [10] for the details about multi-objective 
decision making. Therefore, GP is a good method 

to solve our problem, which is complicated to 
solve even with the presented numerical method. 
We could also numerically obtain the distribution 
function of the manufacturing lead time by 
computing the distribution function of longest 
path in the queueing network. Seidmann and 
Smith [19] have developed procedures to assign 
due-dates for jobs in a job shop environment 
assuming that the probability distribution of the 
lead time is known. Therefore, our results 
complement theirs. Together one may now assign 
due dates for the final product in a dynamic 
multistage assembly system. 
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