
International Journal of Engineering                                                            Vol. 18, No. 4, November 2005 -1 

UNSTEADY FREE CONVECTION FROM A SPHERE IN A 
POROUS MEDIUM WITH VARIABLE SURFACE 

TEMPERATURE  
  
 
 
 
 

 A. Baradaran Rahimi, Taleb Jalali  
Faculty of Engineering, Ferdowsi University of Mashhad,  Mashhad, Iran. 

 rahimiab@yahoo.com 
 
 

(Received:December 31, 2004  ) 

Abstract  In this paper a transient free convection flow around a sphere with variable 
surface temperature and embedded in a porous medium has been considered. The 
temperature of the sphere is suddenly raised and subsequently maintained at values that 
varies with position on surface. The method of asymptotic expansions is applied for small 
Rayleigh numbers and then a finite-difference scheme is used to solve the problem 
numerically for finite values of Rayleigh numbers. Transient and steady-state flow and 
temperature patterns around the sphere are discussed in details and a comparison between 
numerical and analytical results has been presented.  
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درجه حرارت سطح متغير كه در داخل يك محيط متخلخل ا در اين مقاله جابجايي آزاد گذرا در اطراف يك كره ب  هچكيد
تعاقبا در مقادير درجه درجه حرارت سطح اين كره دفعتاً افزايش داده شده و م. قرار گرفته مورد بررسي قرار مي گيرد

روش بسط مجانبي براي اعداد رايلي كوچك به كار . حرارتي نگه داشته مي شود كه با موقعيت سطح كره تغيير مي كند
ي تفاضل محدود به صورت گرفته شده و سپس براي مقادير معين ديگري از اين عدد، مسئله با استفاده از تكنيك ها

يان و درجه حرارت حالت پايدار و گذار در اطراف كره به صورت مفصل بحث شده و الگوهاي جر. محاسباتي حل مي شود
 .مقايسه اي بين حل عددي و نتايج تحليلي ارائه مي شود

 
      
   

  
 

1. INTRODUCTION 
 

Studies on natural convection around a sphere in 
fluid-saturated porous media are of interest in 
many engineering processes, such as thermal 
insulation systems, nuclear waste management, the 
storage of grain, in petroleum reservoirs and 
catalytic reactors.   Yamamoto [1] was the first to 

consider the problem of steady  natural convection 
around an isothermal  sphere in porous medium. 
He obtained asymptotic solutions for  small 
Rayleigh numbers. Subsequently, Merkin [2], 
Cheng [3],  Nakayama and Koyama [4], and Pop 
and Ingham [5] considered high Rayleigh number 

)(Ra  steady natural convection around a sphere 
with both an isothermal and non-isothermal  
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surface. Sano and Okihara [6] and Sano [7] have 
studied the transient natural convection from a 
sphere in a porous medium using asymptotic 
solutions in terms of small Ra. Nguyen and Paik 
[8] have investigated the unsteady mixed 
convection from a sphere in a porous medium 
saturated with water numerically using a 
Chebyshev-Legeure spectral method. Yan et al. [9] 
  performed a numerical study of unsteady free 
convection from a sphere embedded in a fluid-
saturated porous medium when its surface is 
impulsively changing to a constant temperature or 
constant heat flux.  Other studies about heat 
convection on a sphere with constant temperature 
have been done by Nazar and Pop [10], Kucaba-
Pietal [11], and Alassar, badr and Marromatis [12]. 
All  works on natural convection around a sphere 
in porous media, except [4] and [8],  have been 
conducted only for  constant temperature or 
constant heat flux on its surface.  In this paper, we 
consider the problem of unsteady convection 
around a sphere in a porous medium when the 
temperature of its surface is changing with 
position. This situation is specially encountered 
when nuclear wastes, for example, are burried in 
earth.  Initially the temperature of the surface is at 
a certain value and then it suddenly changes with 
location on the surface. First, we use perturbation 
analysis at small Rayleigh numbers. Then, by 
using a finite-difference method, the problem is 
solved numerically for finite values of Rayleigh 
numbers.  The results obtained by perturbation 
analysis are compared with those obtained by  
numerical method for small Rayleigh numbers. For 
higher Rayleigh numbers,  the results obtained by 
numerical methods are compared with those 
obtained by Yan et.al. [9] for constant surface 
temperature. 
 

 
 

2. GOVERNING EQUATIONS 
 

Consider a sphere of radius 0r  immersed in a fluid-
saturated porous medium which is at a constant 
temperature. Suppose initially, that the sphere is in 
the same temperature as the porous medium and at 
time τ ′  it is suddenly heated and subsequently its 
surface  temperature changes with position. 

A spherical polar coordinate system ),,r( φθ′  with 
the origin at the center of the sphere is chosen with 

0=θ  vertically upwards, as shown in Figure 1. 
 
 
 
 
 
 
 

 
 

Figure 1. Polar coordinate system 
 

 
 
Both the flow and temperature are assumed to be 
axially symmetric and hence independent of the 
azimuthal coordinate φ . The fluid motion is 
described by radial and transversal velocity 
component )v,u( ′′  in a plane through the axis of 
symmetry. The velocity component are expressed 
in terms of a dimensionless stream function 

),r( θψ  as,  
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If the physical properties of the fluid are assumed 
constant and the Darcy-Boussinesq approximation 
holds, then the non-dimensional governing 
equations in terms of the stream function ψ and 
temperature T can be written as  
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The dimensionless variables are defined as, 
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where K is the permeability of the thermal porous 
medium, β the coefficient of thermal expansion, 
ν the kinematic viscosity of the fluid, g the 
acceleration due to gravity, rU the characteristic 

velocity, Ra  the Rayleigh number and mα the 
effective thermal diffusivity of the fluid-saturated 
porous medium .  
Since the flow experiences larger gradients near 
the surface of the sphere, we introduce the 
following transformation to be  used in numerical 
method, 
 

1
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where α  is a constant which, to some extent, can 
be used to control the mesh density when we set up 
the finite-difference scheme.  Equations (2) and (3)  
in terms of the new variable ),x( θ , become 
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At initial instant, 0t ≤ , we have  
 

πθψ ≤≤≤≤== 0,1x0,0T,0                              
(9a)                     

 
For t > 0, we have  
 

)(fT,0 θψ == , x = 0 (r = 1)                        (9b) 
 

θψ 22 sinr
2
1

→ ,    0T → ,         x = 1  

)r( ∞→                                                            (9c) 
 
or for numerical method, 
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Finally, the symmetrical boundary conditions are: 
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x
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3. ASYMPTOTIC SOLUTION FOR SMALL 
RA NUMBERS 

 
 We shall now proceed to obtain asymptotic 
solutions of Equations (2) and (3) for small Ra  
using the method of matched asymptotic 
expansions.  First, we solve these equations for  
steady-state condition  and then we obtain solution 
of the transient condition .  
 
3-1. Steady-state solution 
We now assume that the Rayleigh number Ra  is 
small and that the solutions may be expanded as, 
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The equations for iψ and iT  with ,...2,1,0i =  can 
be found by substituting these expansions into (2) 
and (3) and collecting the terms containing the 
same power of Ra .  The equation for 0T  is the 
pure heat conduction, and is as follows,  
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By setting )(G).r(F),r(T0 θθ =  and using 
boundary conditions (9b) and (9c) , we  obtain  
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where )(cosPn θ  is the Legendre function of order 
n . 

By using a good approximation we can retain only 
two leading terms of Equation (13), therefore we 
have, 
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The equation for 0ψ  is obtained from (2) in 

combination with 0T  obtained above and may be 
written as,  
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By setting 
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 the required solution of (16) is found to be, 
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We can easily show that the effects of second 
terms in Equations (15) and (17) are negligible and 
so, we use only their first terms to obtain 

2211 ,,, ψψ TT .  The method for determining 

2211 ,,, ψψ andTT  is straightforward, and we only 
show  the final results below, 
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The local Nusselt number is defined as 

1rr
TNu =∂
∂

−=  ,  so from (18) one obtaines: 
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Also from (18), the average Nusselt number may 
be calculated as  
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3-2) Transient solution 
In the small-time domain, where )1(ORa = , the 
solutions of Equations (2) and (3) are expanded as, 
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respectively. These expansions are uniformly valid 
for ∞≤≤ r1 , since the temperature layer is 
confined to the inner region near the surface where 
r =O(1) and the convective term is of minor 
importance compared to the conduction and 
unsteady terms.  Inserting Equations (22) and (23) 
into Equations (2) and (3), we obtain the following 

equations for 00 ,t ψ , 
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The solutions of Equations (24) and (25) satisfying 
the corresponding boundary and initial conditions 
may easily be obtained as,  
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respectively, where, 
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 We can show that these solutions approach the 
corresponding steady-state solutions as ∞→τ , 
suggesting that they are uniformly valid for 

∞≤≤τ0 . We can also show, as described by 
Sano and Makizono [13], that the second terms in 
Equations (24) and (25), namely 1t  and 1ψ , do not 
approach their corresponding steady-state 
solutions.  This suggests that  Equation (24) and  
(25) are invalid for large τ . This is due to the fact 
that as τ  increases the temperature layer diffuses 
into the outer region far from the sphere, where 

)Ra(or 1−= and convection effects are not 
negligible even when 0→Ra . This fact suggests 
that the temperature field (and therefore the 
velocity field) for large τ  have a two-region 
structure in r, namely, a large-time inner region 
and a large-time outer region and that we must 
construct two expansions forψ  and t which are 
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valid in these two large-time regions.  A time 
variable appropriate for largeτ  is, 
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 In the large-time inner region, where r = O(1) and 
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written as, 
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Solutions of Equations (30) and (31) are assumed 
to be of the form (large-time inner expansions), 
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respectively. The following outer variables are 
introduced in the large-time outer region far from 
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ρ∇  is the same operator as 2∇ , but with r 

replaced by ρ . The solutions of these equations are 
assumed to be of the form (large-time outer 
expansions), 
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The boundary conditions on the surface are 
imposed on the inner expansions, Equations (33) 
and (34), and the one at infinity on the outer 
expansions, Equations (39) and (40). The matching 
conditions between the inner and outer expansions 
are, 
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small-time expansion, Equation (22), 
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that  described in Sano [14],  only  the  final results 
are presented below, 
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In order to complete the present analysis, it is 
desirable to obtain the second terms 1ψ  and 1t  in 
the small-time expansions, since the large-time 
inner solutions have been obtained up to the term 
of O(Pe). Unfortunately, however, it is very 
difficult to obtain these terms so here we only 
show the asymptotic solutions for small τ  instead, 
as obtained by Sano[14].  These results are, 
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(57) 
n is an integer number . 
 
 
 

4. NUMERICAL SOLUTION 
 
Equations (6) and (7) are now solved numerically 
using a finite-difference scheme  subject to 
boundary conditions (9a)-(9e).  We use central-
difference and fully explicit schemes to Equations 
(6) and (7), respectively.  The discretized stream 
equation and energy equation are solved by using a 
line by line  TDMA  
(Tri Diagonal-Matrix Algorithm). In each iteration, 
first, Equation (6) is solved by using a point 
relaxation and in the iteration process for  ψ , the 
most updated values for ψ  and T on the adjacent 
lines are used. Then   Equation (7) is solved and 
the same procedure is applied.  The convergence 
criterion for iterations is chosen as follows, 
 

{ }∑ <−+− −− εψψ )1m()m()1m()m( TT                                                                                     

(58) 
 
where ε  is the prescribed tolerance and the 
summation takes place over all the mesh points.  
For the steady state solution, the above procedure 
is carried out until τ  is sufficiently large so that 
the solutions for two successive time steps are 
almost identical. 
 
 
 

5. RESULTS AND DISCUSSIONS 
 
Analytical, as well as numerical results were 
obtained for unsteady free convection from a 
sphere with variable surface temperature in a 
porous medium for 50Ra1.0 ≤≤ .  The mesh 
sizes and the value of the constant  parameter α  
for the calculations presented in this paper vary 

with Rayleigh number and are shown in table 1. 
 

 
 
 
 

Table 1. The magnitudes of parameters used in 
numerical solution 

 

 
 
 
 
It is found that numerical results are more sensitive 
to the mesh sizes in x-direction than to that in the  
θ -direction.  For small Rayleigh numbers, we 
compare results obtained by numerical methods 
with those obtained by analytical methods. Since 
there are no results for variable temperature in 
large Rayleigh numbers, we compare numerical 
results obtained in this work with those presented 
in [9] for constant temperature case. We have 
evaluated many functions for variation of 
temperature on surface of sphere and in this paper, 
for brevity the main results for function 

θcos1.00.1)( +=sT  are shown. 
Figure (2) shows the instantaneous streamlines for 
Ra=50 at time τ = 1, 15 and 50 for special case of 
constant surface temperature.  These results  
compare very well with those obtained by  Yan 
et.al. [9] which have been shown here following 
this figure scanned from this reference, (Fig. 2, 
page 898).  
The instantaneous streamlines for Ra = 0.4 and 10 
at time =τ 1, 10, and 50 are shown in Figures (3) 
and (4) for surface temperature function 

θcos1.00.1)( +=sT .  As it is seen from the 
figures, fluid is entrained towards the hot sphere 
and an upward flow is generated along the sphere 
surface.  In the early stages, the fluid motion is 
mainly confined to the vicinity of the sphere whilst  

ε  α  t∆  θ∆  x∆  Ra 

10 5−  1 .01 1/60 1/60 .1-5 

10 5−  1.5 .01 1/80 1/120 5-10 

10 5−  3 .05 1/80 1/140 10-
30 

10 5−  5 .05 1/90 1/160 30-
50 
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                         (a)                                              (b)                                                    (c) 
 

Figure 2. The instantaneous streamlines for Ra = 50 and constant temperature at different times : 
(a) τ = 1 , (b) τ = 15 , (c) τ = 50 
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Figure 3. The instantaneous streamlines for Ra = .4 at 

different times :  (a) τ = 1 , (b) τ = 10 , (c) τ = 50 

 

 
(a) 

 

 
(b) 

 

 
(c)  

 
Figure4. The instantaneous streamlines for Ra = 10 at 

different times :  (a) τ = 1 , (b) τ = 10 , (c) τ = 50 
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at later times, due to convection from sphere, the 
flow motion spreads outwards and upwards.  It is 
also seen that a vortex ring surrounded by the main 
flow appears which surrounds the sphere.  For 
small Ra numbers, because of weakness of 
convection effects, the streamlines are symmetrical 
with respect to plane o90=θ  but as Ra number 
increases the core of this vortex ring moves up due 
to convection effect becoming stronger.  From 
about 10=τ , the flow pattern very close to sphere 
does not change very much but variation of 
streamlines with respect to time increases in far 
away distances from the sphere.  Reaching steady 
state conditions may not become possible but the 
flow near the sphere will approach to steady state 
situation after a relatively long time. 
The temperature contours for 4.0=Ra  and 10 at 

10,1=τ are depicted in Figures (5) and (6), 
respectively.  For 4.0=Ra , the isothermal lines 
are nearly circular and as Ra  increases convection 
effects become stronger and for 10=Ra  and at 

50=τ  a very clear cap of a plum is observed 
which moves upwards as the convection process 
continues. It is also noted that as Ra  increases, the 
thermal boundary layer thickness decreases at the 
bottom of the sphere and increases at the top of it.  
Figures (7) and (8) show the steady-state 
distribution of radial and tangential velocity for 

1.0=Ra  and 0.4 for different values of θ   which 
were obtained using  numerical and analytical 
methods.  As evident from these figures, there is a 
very good agreement between the two methods. 
Figure (9) shows the unsteady distribution of radial 
velocity in terms of radial distance r  for 

4.0=Ra  and 10 at 0=θ  and for various time 
values.  It is seen that the value of radial velocity 
increases from zero to a maximum value on the 
surface of the sphere and then decreases to zero as 
this radial distance increases. Also, for a certain 
Ra  number as τ  increases, the value of radial 
velocity increases due to convection effects 
becoming stronger. 
Figure (10) shows  variation of radial velocity for 

10,1=Ra  and 10=τ  in terms θ .  It is seen that 
for a certain Ra  number as θ increases, the value 
of radial velocity decreases and near the plane 

090=θ  tends to zero.  After this plane as θ  
increases, the value of radial velocity increases in 

opposite direction and this process continues until 
o180=θ .  This means that velocity has only 

radial component at 00=θ  and 0180 , and only 
tangential component at 090=θ .  Also for 

10=Ra  the value of radial velocity at 00=θ  is 
greater than its corresponding value for 1=Ra  but 
at 0180=θ  this situation is reverse.  To explain 
this, consider Figures (3) and (4).  It is evident that 
because of upward movement of vortex ring for 
greater Ra  numbers like 10=Ra  and at 00=θ  
the streamlines are very close to each other but at 

0180=θ  the distance of the streamlines with 
respect to corresponding values for smaller Ra  
numbers are greater and this causes smaller radial 
velocities for greater Ra  numbers.   
Figure (11) shows the distribution of transient 
tangential velocity for 4.0=Ra  and 10 in 
different time values and at 090=θ .  As from the 
figures, the maximum value of tangential velocity 
is on the surface of the sphere and as the radial 
distance increases these maximum values tend to 
zero gradually.  For greater Ra  numbers like 

10=Ra  and at the vicinity of the sphere at 
090=θ  the magnitude of tangential velocity is 

greater than the corresponding value for smaller 
Ra  numbers like 4.0=Ra  but far away from the 
sphere these values are smaller for smaller Ra  
numbers.  This is due to the fact that the center of 
the vortex ring moves upward with increasing Ra  
number but for small Ra  numbers like 4.0=Ra  
this center is approximately located on plane  

090=θ .  Therefore for smaller Ra  numbers the 
streamlines are closer to each other. 
Figure (12) shows the variation of transient 
tangential velocity in terms of different values of 
θ  for 10,4.0=Ra  at τ =1.  It is observed that for 

10=Ra  the values of tangential velocity close to 
the plane 090=θ  and near the surface of the 
sphere are higher than the corresponding values for 
other angles, but outside this region the values of 
tangential velocities in plane 030=θ  is greater 
than the corresponding values for other angles.  It 
is also observed that for 4.0=Ra  the values of 
tangential velocities in plane 090=θ  along the 
radial distance are greater than the corresponding  
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(a)                                                                   (b)                                                                           (c) 
 

Figure 5. The instantaneous isotherm lines for Ra = .4 at different times :  (a) τ = 1 , (b) τ = 10 , (c) τ = 50 
 
 
 
 
 

                                                                             
 

(a)                                                                     (b)                                                                  (c) 
 

Figure 6. The instantaneous isotherm lines for Ra = 10 at different times :  (a) τ = 1 , (b) τ = 10 , (c) τ = 50 
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(a)               (b)  
          Figure 7. Steady state radial velocity distribution at θ = 0 and 180 : (a) Ra = .1 , (b) Ra = .4 

 
 

(a)                  (b)  
Figure 8. Steady state tangential velocity distribution θ = 90  :  Ra = .1 , (b) Ra = .4 

 

(a)         (b)  
Figure 9. Transient  radial velocity distribution at θ = 0  in different times :  (a) Ra = .4 , (b) Ra = 10 
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(a)              (b)   
Figure 10. Transient  radial velocity distribution at τ = 10 and different anglesθ :  (a) Ra = 1 , (b) Ra = 10 

 

(a)           (b) 
Figure 11. Transient  tangential velocity distribution at θ = 90  in different times :  (a) Ra = .4 , (b) Ra = 10 

 

(a)             (b)  
Figure 12. Transient tangential velocity distribution atτ = 1 and different anglesθ :  (a) Ra = .4 , (b) Ra = 10   
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values for other angles.  All this is because of the 
way the streamlines vary, as mentioned before.  
Differentiating Equation (20) with respect toθ  we 
have, 

θ
θ

sin)Ra
4
aa2(Nu 0

1 +−=
∂
∂

                          (59) 

 

setting 0Nu
=

∂
∂
θ

 , for steady-state condition 

yields, 

0

1
crit a

a8)Ra = , crit10crit )Raa4776.a)Nu +=                                                               

(60) 
 
If for example, 1.,1 10 == aa , then 

0382.1),8.0) == critcrit NuandRa .  This means 
that the local Nusselt number for this value of Ra  
number and in steady-state condition is 
independent of θ  and this suggests that the 
buoyancy effects on the local Nusselt number at 
the top and bottom of the sphere cancel each other. 
Figures (13) and (14) show the variation of steady-
state local Nusselt number with respect to θ for 

4.0,1.0=Ra  and for different functions of sphere 
surface temperature:  
 

]cos1.00.1)(
,022.01.0)2.0(1.00.1)(

,0289.014.0015.2.2)([
32

32

θ+=
θ+θ−θ−=

θ+θ−θ−=

sT
ExpsT

sT
 

 
As from these figures, there is a good agreement 
between results of analytical and numerical 
solutions.  The main reason for differences are 
because in analytical solution all the surface 
temperature functions are approximated as a cosine 
function. 
In Figure (15), the distribution of transient local 
Nusselt number in terms of θ  for sphere surface 
temperature θcos1.00.1)( +=sT  and for 

1.0=Ra  at τ =3 and 10 are shown.  Again we see 
that there is a very good agreement between 
numerical and analytical results and the differences 
are because in analytical solutions all the surface 
temperature functions are approximated as a cosine 
function. 

Figure (16a) shows the value of steady-state local 
Nusselt number obtained  analytically for 

,8.0,4.0,1.0=Ra  and 0.1 .  It is clear that for 
lower Ra  numbers like 0.1 and 0.4 variation of 
local Nusselt number is different than for greater 
Ra  numbers like 0.8 and 1.0.  For the former Ra  
numbers, the local Nusselt number decreases from 
its maximum value at 0=θ  and reaches to its 
minimum value at 180=θ .  For Ra=0.8 variation 
of local Nusselt number is independent of θ  and 
for 0.1=Ra  its variation changes completely so 
that at 0=θ its value is a minimum and at 

180=θ  is a maximum.  Also it is evident from 
the figures that around 0=θ this quantity 
decreases with increasing Ra number.  This is 
because both the convection and the surface 
temperature function affect the local Nusselt 
number.  The function θcos1.00.1)( +=sT  is 
such that temperature is a maximum at the top of 
the sphere ( 0=θ ) and minimum value at the 
bottom ( 180=θ ).  Therefore, at initial moments 
and relative to constant temperature function 

0.1)( =sT  the temperature difference between top 
surface and its near flow and its local Nusselt 
number is greater than that at the bottom of the 
sphere.  But as time passes and as the effect of 
convection gets stronger, the fluid temperature 
around the sphere warms up and heat moves 
upwards.  This is why at the same time that local 
Nusselt number decreases with respect to time the 
difference between Nusselt number at the top and 
bottom of the sphere decreases and at 8.0=Ra  
becomes equal and that is why the local Nusselt 
number is independent of θ .  As Ra  increases, 
the convection effect is so large that at the initial 
stages the local Nusselt number at the top of the 
sphere is smaller than the bottom.  In this state this 
quantity at 0=θ is a minimum and at 180=θ  is 
a maximum.  Also the thickness of thermal 
boundary layer at the top of the sphere and for 
large Ra  numbers increases considerably.  If we 
go back to Figures (5) and (6), we notice that 
because of the variation of surface temperature 
with respect to θ  some of the isotherm lines 
initiate from the sphere surface.  For small Ra  
numbers like 0.4, since the convection effects are 
weak and thermal conduction effects are stronger  
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(a)      (b)           
 
 

       Figure 13.  Steady-state distribution of local Nusselt number for numerical and analytical solutions and various    
        functions of temperature on surface of sphere and for Ra = .1 , τ =1  (a) T(s) = 1-.1exp(.2 θ )-   

        .1 2θ +.022 3θ  (b) T(s) = 2.2-.015 θ -.14 2θ +.0289 3θ  
 
 
 
 
 

(a)      (b)  
 
 

Figure 14. Steady state distribution of local Nusselt number for numerical and analytical solutions and 
T(s) = 1+.1 cosθ : (a) Ra = .1  (b) Ra = .4 
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(a)                                                                                  (b) 

 
Figure 15. Transient distribution of local Nusselt number for numerical and analytical solutions and 

Ra = .1 and T(s) = 1+.1 cosθ : (a) τ = 3 (b) τ = 10 
 
 
 
 
 

and therefore the effects of surface temperature 
variation causes a greater local Nusselt number at 
the top relative to the bottom of the sphere.  But for 

0.10=Ra  the convection effects are dominant 
and a hot region is created at the top of the sphere 
and isotherm lines expand upwards.  Also, the 
thermal boundary layer at the bottom of the sphere 
becomes very small and that is why the local 
Nusselt number at the bottom is greater than its 
corresponding value at the top.   
Figure (16b) shows the transient local Nusselt 
number for 0.1,4.0,1.0=Ra  and 5.0 with respect 
to θ  and at time =τ  3.  We can clearly see, the 
changing direction of the  variation of local Nusselt 
number between small Ra numbers such as 

1.0=Ra  and 0.4 and higher Ra  numbers such as 
Ra = 1.0 and 5.0.   Also, for example, if we 
consider the curve lines  for Ra = 0.1 and its 
intersection with other curves for other Ra  
numbers, we see that as Ra  number increases, this 
intersection point moves to the left at the top of the 
sphere, 0=θ .  This is because of upward 
movement of the center of the vortex ring  for 
higher Ra  numbers and suggests that in this 
region the thickness of thermal boundary layer for 
higher Ra  numbers becomes thinner.  

In Figure (17), the results obtained for variable 
temperature case are compared with those for 
constant temperature case, for 10=Ra  and at =τ  
1.  It is observed that the magnitudes of radial 
velocities for variable temperature case and at θ  = 
0 are higher and at θ = 180 are smaller than those 
for constant temperature on surface of sphere.  
This is due to the fact that for variable temperature 
function θcos1.00.1)( +=sT , the temperature 
difference in top and bottom of the surface of 
sphere is higher and smaller than those for constant 
temperature case, respectively.  Because of this, at 
the top of the sphere and for temperature variable 
case, the activity of flow field is more and 
therefore the center of ring moves upward.  It is 
seen that the magnitudes of tangential velocities at 
θ = 90 are almost equal for both cases.  If we 
consider the variation of local Nusselt number, it is 
found that these values up to about θ = 110 are 
higher for variable temperature case in comparison 
with constant case and after this point become 
smaller.  This is because that in top and bottom of 
the sphere temperature difference is higher and 
smaller than those for constant temperature case 
and this causes higher and smaller values for 
variable temperature case in top and bottom of the  
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(a)     (b)  
 

Figure 16. Distribution of local Nusselt number for different Ra number : (a) Analytical solutions and 
Steady state condition  (b) Numerical solutions and at time τ = 3 

 

(a) (b)  
 

(c)     (d)  
 

Figure 17. Comparison between results obtained for variable and   constant  temperature cases for  Ra = 10 and 
time τ = 1 : (a) radial velocity at θ = 0  (b) radial velocityθ = 180  (c) tangential velocity at θ = 90  

(d) local Nusselt number 
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Figure 18. Average Nusselt number for different cases 

Of constant temperature and different Ra numbers 
 
 
sphere, respectively.  But at 090=θ , even with 
surface temperature being equal for both cases, we 
observe that the Nusselt number is not the same 
and it is greater for variable surface temperature 
case.  This is because, in variable temperature case 
the activity in top of the sphere becomes stronger 
and thus more hot particles are drawn toward the 
top and this causes, at this point, thickness of 
thermal layer to be smaller than the case of sphere 
with constant surface temperature. 
Figure (18) shows the effect of Rayleigh number 
on average Nusselt number for different cases of 
constant temperature.  As it is expected, the 
Nusselt number increases by increasing Rayleigh 
number.  
  
 
          

6. CONCLUSIONS 
 
Transient free convection heat transfer from a 
sphere with variable surface temperature in a 
porous medium has been studied for small an finite 
values of Ra  numbers by numerical and analytical 
methods.  
The results obtained by numerical method are in 
excellent agreement with those obtained by 
analytical method for small Ra  numbers and with 
those presented in [9] for finite values of Ra 

numbers and constant temperature on surface of 
sphere.   For high Ra numbers, such as 

0.10=Ra and 50, a buoyancy plume with a 
mushroom-shaped front is formed above the 
sphere.  
A vortex ring is formed that moves up as 
Ra number increases.  This causes higher values 
of radial velocities  above the sphere and smaller 
values around its bottom  for higher values of  
Ra number .    For θcos1.00.1)( +=sT , the 
magnitudes of steady-state local Nusselt number 
for 1.0=Ra and 0.4 decrease from maximum 
value at θ = 0 to a minimum value at θ  = 180.   
For 8.0=Ra , the local Nusselt Number is 
independent of θ and for higher Ra  numbers, this 
variation of local Nusselt number is changed . 
 It is also seen that for sphere surface temperature, 

θcos1.00.1)( +=sT , the values of local Nusselt 
number are higher than those for constant 
temperature case, up to approximately θ = 110 and 
after that, these values become smaller than those 
for constant temperature case.  In this case the 
vortex ring moves upper and the radial velocities at 

0180,0.0=θ  become higher and smaller for 
variable temperature case, than those obtained for 
constant temperature case, respectively. 
 
 
 

7. NOMENCLATURE 
 

)(ηerf          erf  function 
)(),( θGrF    functions 

 g                   acceleration due to gravity 
 k                   permeability of porous med. 
 n                   integer 
 Nu                Nusselt number 

)(cosθnP       Legender function 
r                     non-dim. Radial coord. 

or                   sphere radius 
φθ ,,r ′            spherical coord. System 

Ra                  Rayleigh number 
T           non-dim. Temperature 

iT            expansions of temp. 

∞T            surrounding temp. 



    - Vol. 18, No. 4, November 2005                                                            International Journal of Engineering 20 

wT            surface temp. 
u,v           non-dim. Velocity comp. 
u ′            radial velocity comp. 

rU            charact. Velocity 
v′            transversal velocity comp. 
X           new variable 

 
Greek 

 
α           constant 

mα                effective thermal diffusivity 
β           coefficient of thermal exp. 
ε           tolerance 
η           variable 
ρ           outer variable 
τ           non-dim. Time 
τ ′           time 
ψ           non-dim. Stream function 
ψ ′    stream function 

iψ                 expansions of stream function 
υ           kinematic viscosity 
∇           del  operator 
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