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Abstract  In this paper the equations of motion and corresponding boundary conditions for 
bending vibration of a beam with an open edge crack has been developed by implementing 
the Hamilton principle. A uniform Euler-Bernoulli beam has been used in this research. 
The natural frequencies of this beam have been calculated using the new developed model 
in conjunction with the Galerkin projection method. The crack has been modeled as a 
continuous disturbance function in displacement field which could be obtained from 
fracture mechanics. The results show that the natural frequencies of a cracked beam reduce 
by increasing crack depth. There is an excellent agreement between the theoretically 

calculated natural frequencies and those obtained using the finite element method.  
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در اين مقاله معادلات ديفرانسيل حركت و شرايط مرزي متناظر با آن براي ارتعاشات خمشي يك تير كه داراي      هچكيد
برنولي -تير مورد نظر در اين پژوهش يك تير اويلر. تون استخراج گرديده استايست با بكارگيري اصل هميل يك ترك باز لبه

همچنين فركانسهاي طبيعي متناظر با مدل استخراج شده در اين مقاله با استفاده از روش . يكنواخت فرض شده است
 اين تابع اغتشاش ترك بصورت يك اغتشاش پيوسته در ميدان جابجايي تير مدل شده است كه. گالركين بدست آمده است

دهند كه فركانسهاي طبيعي تير با افزايش  نتايج بدست آمده نشان مي. توان با استفاده از مكانيك شكست تعيين نمود را مي
تطابق بسيار خوبي نيز ميان فركانسهاي طبيعي محاسبه شده از تئوري توسعه يافته در اين . يابند عمق ترك كاهش مي

       .بدست آمده از روش اجزاء محدود وجود داردمقاله و فركانسهاي طبيعي 

 
 

  
  
  
 

1. INTRODUCTION 
 

Dynamic structures subjected to periodic loads 
compose a very important part of industrial 
machineries. One of the major problems in these 
machineries is the fatigue and the cracks initiated 
by the fatigue. These cracks are the most important 
cause of accidents and failures in industrial 
machinery. In addition, existing of the cracks may 

cause vibration in the system. Thus an accurate and 
comprehensive investigation about vibration of 
cracked dynamic structures seems to be necessary. 
On the base of these investigations the cracks can 
be identified well in advance and appropriate 
measures can be taken to prevent more damage to 
the system due to the high vibration level. 
The dynamic behavior of cracked structures has 
been investigated by many researchers. 
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Dimaragonas (1996) presented a review on the 
researches have been done on the issue of vibration 
of cracked structures until 1996 [1]. His review 
contains vibration of cracked rotors, bars, beams, 
plates, pipes, blades and shells. Among all these 
structural elements, the rotors have been focused 
wider because of their applications. Two literature 
reviews are also available on the dynamic behavior 
of cracked rotors by Wauer (1990) and Gasch 
(1993) [2, 3].  
Cracked beam is also one of the structural elements 
which has been studied by researchers. For the fist 
time, Dimaragonas (1983) suggested an analytical 
method for the computation of dynamic response 
of a cracked Euler-Bernoulli beam by modeling the 
cracked region as a local flexibility resulted from 
fracture mechanics [4]. This local flexibility idea 
has been followed by several researchers till now 
[5,6]. In this research the crack is supposed to be a 
rotational spring between two continuous parts of 
the beam. 
Christides and Barr (1986) developed a continuous 
theory for vibration of a uniform Euler-Bernoulli 
beam containing one or more pairs of symmetric 
cracks. A differential equation of motion and 
corresponding boundary conditions are given in 
this paper using the Hu-Washizu variational 
principle [7]. They assumed that the effect of the 
crack can be taken into account by modification in 
the stress field. But in this model different and 
incompatible assumptions has been made for 
displacement field and strain field. Shen and Pierre 
(1990) presented a similar model for bending 
vibration of a cracked beam with symmetric cracks 
[8]. They used a two dimensional finite element 
method to obtain parameters related to the stress 
concentration profile near the tip of the crack. 
They have (1994) developed also a continuous 
model for bending vibration of a cracked Euler-
Bernoulli beam with a single edge crack by 
implementation of the Hu-Washizu variational 
theory [9]. Similar to Christides and Barr research, 
the displacement and strain fields has been chosen 
independently and thus these fields are not 
compatible. Furthermore this model is very similar 
to their previous model except the stress 
disturbance function due to the crack has some 
modifications. This function depends on some 
constants which has been calculated from the finite 
element results. Carneiro and Inman (2001) 

suggested some modifications for the Shen and 
Pierre model [10]. They discussed that the 
differential equation presented by Shen and Pierre 
is not self-adjoint and thus can not have real eigen 
values.  
Chondros et al.(1998) have developed a continuous 
model, differential equation of motion and the 
appropriate boundary conditions for lateral 
vibration of a one dimensional beam with 
rectangular cross section using Hu-Washizu-Barr 
formulation [11]. In their following paper (2001) 
they have extended the work and obtained the first 
natural frequency for a rectangular cross-section 
uniform beam containing a breathing crack [12]. In 
their model, the crack was supposed to be a 
continuous flexibility and its effect was modeled as 
a disturbance in the displacement field of the 
beam. The crack disturbance function was obtained 
using the strain energy density at the cracked area. 
Their model may not be applicable for general 
cases because of some special assumptions. The 
incompatibility between displacement and strain 
fields may also be seen in this work. 
Yang et al. (2001) have presented an energy based 
numerical model to investigate the influence of 
cracks on structural dynamic characteristics during 
the vibration of a beam with open cracks [13]. The 
using model is originally same as Christides and 
Barr model. 
Zheng and Fan (2003) developed a simple tool for 
the vibration and stability analysis of cracked 
hollow-sectional beams. The local flexibility 
approach has been used in this work [14]. 
Lin (2003) presented an analytical transfer matrix 
method to solve the direct and inverse problems of 
simply supported beams with an open crack. The 
crack is modeled as a rotational spring with 
sectional flexibility. By using the Timoshenko 
beam theory on two separate beams respectively 
and applying the compatibility requirements of the 
crack, the characteristic equation for this cracked 
system has been obtained explicitly [15]. 
Zheng and Kessissoglou (2004) calculated the 
natural frequencies and mode shapes of a cracked 
beam using the finite element method. An ‘overall 
additional flexibility matrix’, instead of the ‘local 
additional flexibility matrix’, is added to the 
flexibility matrix of the corresponding intact beam 
element to obtain the total flexibility matrix, and 
therefore the stiffness matrix [16]. 
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The present study is a new approach toward the 
dynamical behavior of cracked beams. In this 
paper a modification in the displacement field of 
the beam similar to the Shen and Pierre model has 
been suggested but the strain field is not assumed 
independently. Instead, the strain field is calculated 
directly from displacement field. Furthermore the 
corresponding constants have been evaluated from 
the fracture mechanics. The equation of motion has 
been obtained from the variation theory and the 
Hamilton Principle. This equation has less 
complexity compared to other models. The validity 
of the obtained results has been confirmed by 
comparison with the finite element results. 
 
 
 

2. EQUATION OF MOTION 
 
A prismatic uniform Euler-Bernoulli beam with an 
open edge crack which is simply supported and 
subjected only to pure bending is shown in  
figure (1). 
 
 
In fig. (1) a, d, L, and xc denote the crack depth, 
half depth of the beam, beam length and the 
position of the crack respectively. If the beam does 
not contain any crack, the Euler-Bernoulli beam 
theory suggests: 
 

( , )( , , ) w x tu x z t z
x

∂
= −

∂
                                      (1) 

In which u(x,z,t) is displacement in the x-direction 
and w(x,t) is the vertical displacement of the 
neutral axis. The normal strain in this beam can be 
obtained as follows: 
 

2

2xx
u wz
x x

ε ∂ ∂
= = −
∂ ∂

    (2)

 
For an Euler-Bernoulli beam with an open edge 
crack one has [9]: 
 

2

2

( , , ) ( ( , ))u x z t wz x z
x x

ϕ∂ ∂
= − +

∂ ∂
 (3)

 
In this equation the function ( , )x zϕ is called the 
crack disturbance function. This function will be 
obtained later in this paper. Now the normal strain 
for this beam can be calculated as follows: 
 

2

2

( , , ) ( ( , ))xx
u x z t wz x z

x x
ε ϕ∂ ∂

= = − +
∂ ∂

 (4)

 
This strain is assumed to be the only non-zero 
strain value in the xz-plane. By implementing the 
Hook’s law it can be written as: 
 

Figure 1. Geometry of a simply support Euler-Bernoulli beam with an open edge crack 
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2

2( ( , ))xx xx
wE E z x z

x
σ ε ϕ ∂

= = − +
∂

 (5)

 
In which, E is the modulus of elasticity. Thus the 
strain energy will be: 
 

1
2 xx xxV dxdydzσ ε= ∫∫∫  (6)

 
Substituting from equations (4) and (5): 
 

2
2 2

2

1 ( ( , )) ( )
2

wV E z x z dxdydz
x

ϕ ∂
= − +

∂∫∫∫  (7)

 
The kinetic energy is also as follows: 
 

21 ( )
2

wT dxdydz
t

ρ ∂
=

∂∫∫∫  (8)

 
Due to the Euler-Bernoulli beam theory the 
rotational moment of inertia has been neglected. 
Using Lagrangian equation one has: 

2
2 2 2

2

1 [ ( ) ( ( , )) ( ) ]
2

w wL T V E z x z dxdydz
t x

ρ ϕ∂ ∂
= − = − − +

∂ ∂∫∫∫  

(9) 
 
If the beam is assumed to be a prismatic beam one 
can conclude that: 
 

2
2 2

20

1 [ ( ) ( )( ) ]
2

L w wL A Ef x dx
t x

ρ ∂ ∂
= −

∂ ∂∫  (10)

 
In this equation A is the cross-sectional area of the 
beam and f(x) can be given by: 
 

2( ) ( ( , ))f x z x z dydzϕ= − +∫∫  (11)

 
From the Hamiltonian principle: 
 

1

0

0
t

t
Ldtδ =∫  (12)

 
By substituting equation (10) into (12) one can 
write: 

1

0

2 2

2 20
[ ( ) ( ) ( )( ) ( )] 0

t L

t
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(13) 
 
After integrating by parts equation (13) can be 
written as: 
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                 (14) 
 
Thus the field equation of motion for the cracked 
Euler-Bernoulli beam is: 
 

2 2 2

2 2 2( ( ) ) ( ) 0w wE f x A
x x t

ρ∂ ∂ ∂
+ =

∂ ∂ ∂
 (15)

 
And the Boundary conditions are: 
 

2

2

2

2

2

2

2

2

( ) 0 0 0

( ) 0 0

( ( ) ) 0 0 0

( ( ) ) 0 0

w wf x or at x
x x
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x x
wf x or w at x

x x
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δ

δ

δ

δ

⎧ ∂ ∂
= = =⎪ ∂ ∂⎪

∂ ∂⎪ = = =⎪⎪ ∂ ∂
⎨
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⎪
∂ ∂⎪ = = =

⎪∂ ∂⎩

 

(16) 
 
It is obvious that for an uncracked beam the 
function f(x) will be equal to I (the moment of 
inertia) and the governing equation of motion (15) 
and its corresponding boundary conditions (16) 
will turn into the ordinary Euler-Bernoulli beam 
equation and boundary conditions. 
 

 
 

3. CRACK DISTURBANCE FUNCTION 
 

The stress and strain distribution in elastic bodies 
has been studied by Irwin [17] and Paris and Shin 
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[18]. They have shown that the normal stress xxσ  
concentrates at the crack tip and decays in inverse 
proportion to the square root of the distance from 
the crack tip. This phenomenon is reproduced here 
using the crack disturbance function ( , )x zϕ . This 
function must be maximum at the crack tip. It is 
also taken to decay exponentially along the length 
of the beam and to vary linearly through the depth 
of uncracked  portion of beam[9]: 
 

( , ) ( ) ( )
2

cx x
dax z z m z u d a z e
α

ϕ
− −⎡ ⎤= − + − −⎢ ⎥⎣ ⎦

 

(17) 
In equation (17), ,cx a  and d  present the crack 
position, the crack length and the half depth of the 
beam as shown in figure 1. The positive non-
dimensional constant α  determines the rate of 
stress decay from the crack tip. The constant m  
represents the slope of the linear stress distribution 
at the cracked section. ( )u d a z− −  is the unit step 
function and can be written as follows: 
 

1
( )

0
z d a

u d a z
z d a
< −⎧

− − = ⎨ ≥ −⎩
 (18)

 
Here, the two constants α  and m  are unknown. 
Before solving the equation (15) for natural 
frequencies, these two parameters of the crack 
disturbance function is required to be determined.  
It is assumed that the beam is loaded only with a 
pure bending moment M. Under general loading 
conditions the additional displacements *** ,, θwu  
will initiate due to the crack. If the beam was 
subjected only to pure bending M, the additional 
rotation *θ  can be obtained from Castigliano’s 
theorem as follows [19]: 
 

M
UT

∂
∂

=*θ  (19)

 
Where, TU  is the strain energy due to the crack. 
This strain energy has the following form: 
 

∫=
CRACK

T dJU αα )(  (20)

This equation is called Paries’ Equation. In fact, 
the integral in equation (20) is an integral over a 
surface as follows [15]: 
 

0
( )

b a

T sb
U J d dyα α

−
= ∫ ∫  (21)

 
In which, a  is the crack depth and sJ  is the strain 
energy density which could be obtained from the 
following equation: 
 

⎥
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⎦
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⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
+⎟
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= ∑∑∑
===
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1
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1
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1

1
i

IIIi
i

IIi
i

Iis KKK
E

J

(22) 
In this equation, if the plane stress assumption was 
used then EE ′=  and if the plane strain 

assumption is used then
ν−

=′
1

EE . In this article 

the plain strain assumption is used. In addition, in 
equation (14), ν+=1m  and IIIiIIiIi KKK ,, are the 
Stress Intensity Factors (SIF) corresponding to 
three fracture modes and for ith loading. In fracture 
mechanics, the values SIF are well known for a 
strip of unit thickness with a transverse crack [13]. 
The stress intensity factor for a single edge cracked 
beam under pure bending is: 
 

0 ( )
2I I
aK a F
d

σ π=     (23)

 
Where: 

0
Md
I

σ =      (24) 

 
And 

2 3 4( ) 1.12 1.4 7.33( ) 13.1( ) 14( )IF α α α α α= − + − +  
(25) 

 

Which has an accuracy of  %2.0±  for 0.6
2
a
d
<  

that is an appropriate accuracy for engineering 
purposes. Since the beam is only subjected to 
bending moment M, the stress intensity factors in 
modes II and III of fracture are zero. Thus it can be 
written: 
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2 2
2 2
0 1

1 ( )
2

I
s

K aJ aF
E E d

ν σ π−
= =

′
 (26)

By substituting equation (26) into equation (21) 
and integrating over the crack surface, the amount 
of additional rotation *θ  from equation (19) can be 
obtained as: 

* ( )
2
a M
d EI

θ = Φ   
(27)

In which: 
 

)106.19976.40811.47

703.33629.20597.9

4045.1263.0)(21(3)(

α+α−α+

α−α+α−

α−αν−π=αΦ dI

 

(28) 
On the other hand, for a healthy simply supported 
beam subjected to a constant moment M at two 
ends one has: 
 

2

2
hd w M

dx EI
=  (29)

 
By integrating from equation (29) and substituting 
the corresponding boundary conditions, one has: 
 

( ) (2 )
2

h
h

dw Mx x l
dx EI

θ = = −  (30)

 
And for beams with a single edge crack from the 
previous section one can write: 
 

2

2 ( )
cd w M

dx Ef x
=  (31)

 
By integrating from this equation and substituting 
the corresponding boundary conditions, one has: 
 

0
( ) ( ) ( )

Lc
c

dw M Mx B x B x dx
dx E El

θ = = − ∫  (32)

 
In which: 

1( )
( )

B x dx
f x

= ∫  (33)

Now, it can be cited that: 

*

*

(0) (0)

( ) ( )
c h

c hL L

θ θ θ

θ θ θ

⎧ − =⎪
⎨

− = −⎪⎩
 (34)

 
In the system of nonlinear equations (34) the only 
unknown parameters are α  and m  which can be 
obtained from the numerical solution of these 

equations for several crack depth ratios 
2
a
d

. 

After evaluating the parameters α  and m , the 
crack disturbance function will define completely 
and the governing equation of motion (15) can be 
solved for natural frequencies. 
 
 
 

4. NATURAL FREQUENCIES 
 

As shown in figure 1, a beam with an open edge 
crack and subjected to pure bending at two ends is 
considered. The equation of motion of this beam is 
given in equation (15). This equation is a self-
adjoint equation and thus it has the real eigen 
values. However the eigen value problem for this 
equation can not be solved explicitly for the natural 
frequencies because of the variable coefficient f(x). 
Thus an approximation method must be used to 
evaluate the natural frequencies. In this paper the 
Galerkin projection method has been used for this 
purpose. 
By separating the variable ( , )w x t  in equation (15) 
one has: 
 

( , ) ( ) ( )w x t X x T t=  (35)

 
Thus the eigenvalue problem for a simply 
supported beam will be as follows: 
 

2 2

2 2

( )( ( ) ) ( )

(0) ( ) 0
(0) ( ) 0

d d X xEf x AX x
dx dx
X X L
X X L

λρ
⎧

=⎪
⎪⎪ = =⎨
⎪ ′′ ′′= =⎪
⎪⎩

 (36)

If a periodic solution does exist then 
1
2

n nω λ=  are 
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the natural frequencies. In the Galerkin method the 
mode shape function ( )X x is assumed to be a 
linear combination of some trial or shape functions 
as follows: 

1
( ) ( )

N

i i
i

X x c S x
=

=∑  (37) 

 
Each shape function must at least satisfy the 
physical boundary conditions of the problem. The 
appropriate shape functions in this case seem to be 
as: 
 

( ) sini
i xS x
L
π

=  (38) 

 
Now, for the steady state periodic response the 
function T(t) can be written as follows: 
 

( ) i teT t ω=  (39) 

 
Substituting equation (39) and (37) into equation 
(15) and multiplying the two sides of this equation 
into ( )mS x  and integrating over the length of the 
beam, the eigenvalue problem will turn into the 
following form: 
 

2det( ) 0K Mω− =  (40) 

 
In which K  is a N N×  stiffness matrix with the 
following elements: 
 

22

2 20

( )( ) ( )
L ji

ij

d S xd S xk Ef x dx
dx dx

= ∫  (41) 

 
And M is a N N×  mass matrix with the 
following elements: 
 

0
( ) ( )

L

ij i jm S x AS x dxρ= ∫  (42) 

 
To verify the convergence of Galerkin’s method, 
several numbers of trial functions has been tested 

in the calculations. Each time the percentage of 
error relative to the previous step has been 
obtained. The results indicate with increasing the 
value of N the approximation accuracy will 
increase. In this paper the value of N  is set to be 
100 for a reasonable approximation.  
 
 
 

5. FINITE ELEMENT ANALYSIS 
 

In this investigation a finite element analysis for a 
rectangular beam with an open edge crack also has 
been performed to verify the analytical results 
obtained in previous section. In this analysis a high 
density mesh is used.  
The most important region in a fracture model is 
the region around the edge of the crack. We will 
refer to the edge of the crack as a crack tip in a 2-D 
model and crack front in a 3-D model. This is 
illustrated in figure (2). 
As mentioned above, in linear elastic problems, it 
has been shown that the displacements near the 
crack tip (or crack front) vary as a function of r , 
where r is the distance from the crack tip. The 
stresses and strains are singular at the crack tip, 

varying as a function of 
1
r

. To pick up the 

singularity in the strain, the crack faces should be 
coincident, and the elements around the crack tip 
(or crack front) should be quadratic, with the 
midside nodes placed at the quarter points. Such 
elements are called singular elements. Figure (3) 
shows such elements in 2D and 3D. 
 
 
 

 
Figure 2. Region around the tip of the crack 
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Figure 3.  Singular elements in 2D and 3D [20] 

 
 

 
Figure 4. A cracked beam after meshing process 

 
 

 
 

The ANSYS software has been used for the finite 
element analysis. In this analysis the singular 
elements are used for meshing process and the 
natural frequencies have been obtained. Figure (4) 
shows a cracked beam model after meshing 
process. 
 
 
 

6. RESULTS AND DISCUSSION 
 
The first four natural frequencies of a cracked 
simply supported beam has been evaluated in this 
paper. It is assumed that the beam has been made 
of steel and has a rectangular cross-section and the 
length of the beam is 24.65 times greater than its 

depth ( 24.65
2
L
d
= ). In the basis of the developed 

theory in section 2 and the Galerkin method 
described in section 4, the first four natural 
frequencies of a cracked beam with several crack-
depth ratio and several positions of crack has been 
obtained. The finite element results are also 
evaluated for these beams.  
Figure (5) shows the first natural frequency of a 
cracked beam divided to the corresponding natural 
frequency of an uncracked beam versus the crack 
depth ratio. As it can be seen in this figure the first 
natural frequency will reduce when the crack depth 
ratio increases. Regarding this figure the finite 
element results have a good agreement with the 
analytical results.  
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Figure (6) shows the second natural frequency for 
a crack beam with several crack poison ratios. It 
can be seen that the natural frequency reduction in 
the second mode is lass than the first mode.  

Figures (6) and (7) show the third and forth natural 
frequency ratio for the mentioned beam 
respectively.  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Crack Depth Ratio(a/2d)

Fr
eq

ue
nc

y 
R

at
io

 (
ω

c / 
ω

h)

 
Figure 5. First natural frequency ratio. 
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 Figure 6. Second natural frequency ratio. 
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element results( ); 0.4Cx L = :analytical results(….) , finite element results( ); 



      - Vol. 18, No. 4, November 2005                                                          International Journal of Engineering 328 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.8

0.85

0.9

0.95

1

1.05

Crack Depth Ratio(a/2d)

Fr
eq

ue
nc

y 
R

at
io

 (
ω

c / 
ω

h)

 
Figure 7. Third natural frequency ratio. 
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Figure 8. Fourth natural frequency ratio. 
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These results show that the natural frequencies 
will reduce due to the crack and by increasing the 
crack depth the natural frequencies will decrease 
more. Furthermore, the coincidence between finite 
element and analytical results can clearly be seen 
in these figures. Therefore the obtained model can 
use as a continuous model for flexural vibrations 
an Euler-Bernoulli beam with an open edge crack. 
The interesting result of this research is the 
relation between the change in natural frequency 
of a crack beam and the crack position. The rate 
of change in first natural frequency of the beam 
increases while the crack moving toward the 
center of the beam (figure 5). But this is not true 
for other natural frequencies. 
Another important result is the low sensitivity of 
the natural frequency of a beam to the crack. A 
crack which reduces the cross section of the beam 
up to 70% only causes a reduction less than 30% 
in first natural frequency and less than 10% in 
second natural frequency (figures 5 and 6). 
 
 
 

7. CONCLUSION 
 
A new continuous model for the bending vibration 
of a cracked beam has been developed in this 
paper. The governing equations of motion and 
corresponding boundary conditions have been 
obtained too. The crack effect is modeled as the 
crack disturbance function which leads to a 
modified displacement field. This function can be 
obtained by the fracture mechanics approach and 
the related parameters can be obtained by 
integration of the strain energy density over the 
cracked area.  
The results show that the natural frequencies of a 
cracked beam reduce by increasing crack depth 
and the reduction rate depends on the crack depth.  
The validity of this model has been investigated 
by comparing the analytical results with finite 
element results and a good coincidence between 
these two approaches has been observed.  
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