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Abstract   The flow field, velocity and pressure coefficient distribution of some 2-D ideal flows are 
presented. Conformal mapping is used to simulate two-dimensional ideal flow for a variety of 
complex internal and external configurations, based on the numerical integration of Schwarz-
Christoffel transformation. The advantages of this method are simplicity and high accuracy. The 
method presented in this paper has been applied to flow problems for which established experimental 
results are available in the literature. The close agreement between the predictions of simulation 
program and experimental results shows that the present method is applicable to any 2-D ideal flow 
regardless of the system of coordinates.    
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   در اين مقاله ميدان جريان، مولفه های سرعت و ضريب فشار بعضی جريان های ايده آل با اسـتفاده از                      چکيده

اين روش همچنين برای شبيه سـازی انـواع جريـان هـای ايـده آل داخلـی و                   . نگاشت همديس بدست می آيند    
 مبتنی بر انتگـرال گيـری       روش نگاشت همديس  . خارجی پيچيده در حالت دوبعدی مورد استفاده قرار می گيرد         

روش ارائه شـده    . مزايای اين روش عبارتند از سادگی و دقت زياد        . کريستوفل می باشد  -عددی از تبديل شوارتز   
. در اين مقاله در مورد مسائلی که نتايج تجربی منتشر شده در مقالات معتبر علمی دارند بکار گرفته شـده اسـت                     

 شبيه سازی و نتايج تجربی نشان می دهد کـه روش حاضـر در مـورد                 مطابقت نزديک بين پيش بينی های برنامه      
  . تمام جريان های ايده آل دوبعدی بدون درنظر گرفتن هندسه جريان قابل استفاده است

 
 
 

1. INTRODUCTION 
 

The solution of two-dimensional ideal flow over 
arbitrary boundaries can be obtained solving 
Laplace’s equation by numerical methods (FDM or 
FEM). These methods are carried out in four 
stages: (1) specification of the domain, (2) 
generation of the boundary-conforming grid, (3) 
discretization of the differential equation to form a 
set of algebraic equations and (4) solution of the 
set of algebraic equations. Discretization processes 
introduce truncation error. The round-off error is 
introduced due to numerical calculation, which may 

lead to substantial error in the solution [1,2]. 
     The linearized potential equation is solved 
efficiently by the panel method and is accurate for 
subsonic flow. However, using panel method, a 
solution for the body pressure distribution can be 
obtained without solving the flow field throughout the 
domain. In this case, the problem is reduced to the 
solution of a system of algebraic equations for source, 
doublet, or vortex strengths on the boundaries. Panel 
methods require the solution of a large system of 
algebraic equations. However, the number and 
position of surface panels is essential in obtaining a 
good solution for the body surface pressure [3]. 



406 - Vol. 17, No. 4, November 2004 IJE Transactions A: Basics 

     Traditionally, conformal mapping has been 
used to obtain potential flow solution about 
relatively complicated shapes by knowing the flow 
behavior about simple shapes, such as a circle with 
unit radius [4]. Conformal mapping is used as a 
grid generation technique with no restriction on the 
type of flow [5-7]. In practice, the generated grid 
lines may be chosen to coincide with the 
streamlines of an equivalent potential flow 
problem. This feature is often in favor of stability 
of the computational method used to solve more 
general problems. Mansouri et al. [8] used simple 
mappings for generating orthogonal grid over a 
variety of shapes in external flows. They also 
applied Schwarz-Christoffel transformation as a 
powerful tool for generating two-dimensional 
boundary-conforming grid [9]. 
     In this paper, conformal mapping techniques 
based on Schwarz-Christoffel transformation are 
presented to solve two-dimensional ideal flow over 
arbitrary boundary shapes. In this method, the 
components of the velocity (u,v) and the pressure 
coefficient , Cp , are obtained as analytical 
functions of ideal flow parameters (φ,ψ) over the 
whole domain. Hence, there is no truncation error 
as compared with traditional numerical methods. 
Since the pressure distribution of ideal flow and 
boundary layer flow coincide, the pressure 
distribution obtained from this method for the ideal 
flow, can be incorporated into the boundary layer 
momentum equation. The data obtained for 
velocity and pressure distribution can be used as 
the elementary solution for iterating methods to 
solve two-dimensional viscous flow. This 
technique is accurately applicable for simply-
connected or symmetrical multiply-connected 
regions in external and internal flows. 

 
 
 

2. PROBLEM FORMULATION 
 

2.1 External Flow   Schwarz-Christoffel 
transformation for external flow geometries can be 
described as mapping of a polygon in z(x,y)−plane 
onto the upper half of  w(φ,ψ)−plane (see Figure 
1). Boundary of the polygon will correspond to 
real axis of w-plane. The structure of the Schwarz-
Christoffel transformation for external flows is as 

follows: 
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where N is the number of polygon apices and αn is 
the angle of counterclockwise rotation at each 
apex. The points  φn are unknown positions on the 
real axis in w-plane, where each of them 
corresponds to an apex of the polygon in z-plane. A 
is a complex constant which depends on the 
geometry of physical domain. Correct selection of 
points nφ  involves an iterative numerical 
procedure. According to Riemann theorem [4], the 
positions of three points of nφ  are arbitrary. It is 
possible to use Equation 1 for a polygon with N+1 
sides in z-plane where its N+1th apex is at ∞± , 
and the values of ∞±φ  corresponding to ∞±z ,  are 
removed from Equation 1. 
     The mapping function of z(w) may be obtained, 
integrating Equation 1 as follows : 
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where w0 is a point on the upper half of w-plane , 
and B is a complex constant. Correct selection of 
points φn involves an iterative procedure [9]. This 
procedure is based on two consecutive mappings, 
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Figure 1. Mapping of a polygon in z(x,y)−plane onto the 
upper half of  w(φ,ψ)−plane. 
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as follows: 
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One can assume the following initial values for φn: 
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where superscript c shows  the convergence value. 

1
nφ  can be normalized by the following 

transformation : 
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Due to singular nature of Equation 3 at points 

w=φn , the integration path can be located at 
w+iε in the w-plane, where ε has a very small 
value (e.g. 1010−  ). In order to speed up the 
integration process of Equation 3, the following 
procedure is used for determining sm

υ: 
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where υ is the iteration index.  Henceforth, to 
correct the position of polygon apieces on z-plane, 
in each iteration, the following procedure is used: 
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where the superscript c denotes the exact value. Nθ  
is the angle between the last side of polygon 
with horizon.  Aυ  is a scale ratio between z-

plane to s-plane and B maps the point u1 onto the 
point υ

1z . The structure of Schwarz-Christoffel 
transformation is such that it will preserve the 
polygon apex angles at each iteration. Hence, the 
location of polygon apieces should be corrected by 
an iteration procedure. The error criterion for all 
points is the difference between zm

υ and c
mz  that is: 
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where ε  is a small value. The iteration process 
will be continued until the above criterion is 
satisfied. To correct the difference between the 
points φn

υ+1   for next iteration, the following 
procedure will be used: 
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and 1

n
+υφ can be normalized by the following 

transformation: 
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Then, referring to Equation 7, the whole process 
should be repeated to converge. 
 
2.2 Internal Flow   Internal flow geometries can 
be described as a polygon with N+1 sides on the 
physical plane, where M sides locate on the lower 
part of the boundary and P sides locate on the 
upper part of the boundary ( PM1N +=+ ), 
such that the two apieces are at ±∞ . This polygon 
will be mapped onto the real axis of s-plane such 
that the vertex 1Mz + being mapped onto the points 

1M +σ  and the apex at 1Nz +  being mapped to the 
points ±∞=+1Nσ  at the real axis of s-plane. 
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where, 
 

wews =)(  (14) 
 
N is the number of polygon apices and nα  is the 
angle of counterclockwise rotation at each apex 
(see Figure 2). The points σn are unknown 
positions on the real axis in s-plane and A is a 
complex constant. 

The mapping function z(s) may be obtained by 
integrating Equation 13 as follows: 
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where 0s  is an arbitrary point in the upper part of 
s-plane , and B is a complex constant. As for 
external flows, correct selection of points σn 
involves an iterative numerical procedure. 
     Like external flows, Equation 15 must be 
integrated by an initial assumption for the 
distribution of σn on the real axis of s-plane. 

Knowing the location of convergence points ( c
nz ) 

on the physical plane, the following initial values 
for 1

nσ  can be used: 
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and corrected by; 
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However, there is a problem at point ∞→+11Nz . 
This problem may be solved by taking an arbitrary 
value for 11 +Nz . Since the value of 11 +Nz  will only 
be used to guess a value for nσ , it may be assumed 
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To obtain the points υ

mz  corresponding to υσ m , 
Equation 15 should be integrated numerically. In 
order to speed up the integration process, the 
following procedure will be used for determining 

υ
mz  : 
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and 
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where h is the distance between lower and upper 
walls of a conduit. Since, the value of υ

1+Mz will 
only be used to correct the value of 1+υσ n , the 
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Figure 2. Mapping of a polygon in z(x,y)−plane and 
w(φ,ψ)−plane onto the upper half of  s(φ,ψ)−plane. 
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following relation can be used for each iteration: 
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The error criterion is: 
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To correct the distance between the points 1

n
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for next iterations, the following relations are used: 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
−

−
+

=

=
−

−

−+
−

+

)(

1

1
1

11
1

1

1
υυ

υυ
υ

υ

υ

σσσ

σ

σ
nn

nn

c
n

c
n

n
n

zz

zz

nif

 

 )23(  
 
corrected by 
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Henceforth, referring to Equation 19, the whole 
processes should be repeated to converge. 

 
 
 

3. CALCULATION OF IDEAL FLOW 
SPECIFICATIONS 

 
Let complex variable z = x+iy indicates the 
coordinates of the solution domain (physical plane) 
and w(z) = φ(x,y) +iψ(x,y) is the complex potential 
function of ideal flow. φ and ψ are potential and 
stream functions respectively, so that 
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where u and v are the horizontal and vertical 
components of velocity in x and y directions, 
respectively. Then, 
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where V is the magnitude of flow velocity. 

Since ivudzdw −= , from Equation 26 we have: 
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Using Bernoulie equation, the pressure coefficient 
Cp becomes, 
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where V∞ is the upstream velocity, its magnitude is 
equal to unity. Substituting Equation 27 into 
Equation 29 we have, 
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3.1 External Flow   The components of velocity 
will be determined by Substituting Equation 1 into 
Equation 28 as follows: 
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The pressure coefficient can be determined by 
substituting Equation 1 into Equation 30 as 
follows: 
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where subscript e indicates the external flow. 
 
3.2 Internal Flow   From Equations 13 and 14, 
the final transformation from w-plane to z-plane is: 
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The components of velocity will be determined by 
substituting Equation 33 into Equation 28 as 
follows: 
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The pressure coefficient can be determined by 
substituting Equation 33 into Equation 30 as 
follows: 
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where subscript i indicates the internal flow. 

4. RESULTS AND DISCUSSION 
 

4.1 External Flow   To check the performance 
and accuracy of the present method to simulate the 
ideal external flows, two test cases are considered. 
Figure 3 shows the distribution of (V/ V∞ )2 for 
NACA0010-66 airfoil. It can be seen that the results 
obtained from the above procedure are in good 
agreement with the experimental results from [10]. In 
Figure 4, a comparison between the present methods 
with experimental results from [10] for another 
standard airfoil is shown. It can be seen that the two 
sets of results are in good agreement. Table 1 shows 
the cpu time to converge, number of iterations and 
the maximum error for two cases. 
     In Figures 5 and 6, velocity vectors, streamlines 
and pressure coefficient contours for ideal flow 
over a car profile corresponding to two different 
domains are shown. As seen, the solution of ideal 
flow by this method is independent of the 
coordinates of solution domain. 
     In Figure 7 the pressure coefficient contours for 
ideal flow over arbitrary smooth curve is shown. 
The distribution of ideal flow characteristics over 
the surface is shown in Figure 8. 
 
4.2 Internal Flow   Figure 9 shows the pressure 

  Present work 
 ___    Ref. [10] 
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Figure 4. Typical chordwise squared velocity ratio for airfoil 
NACA654-021. 
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Figure 3. Typical chordwise squared velocity ratio for airfoil 
NACA0010-66. 
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coefficient contours and velocity vectors for an 
ideal internal flow in a conduit with a NACA652-
015 obstacle. The pressure coefficient distribution 

(a) 

(b) 
 

Figure 5. (a) Cp contours and (b) velocity vectors and 
streamlines for ideal flow over a car profile. 
 
 
 

(a) 
 

(b) 
 
Figure 6. (a) Cp contours and (b) Velocity vectors and 
streamlines for ideal flow over a car profile corresponding to 
an alternative solution domain. 

y x= 0 3 4. / cosh( )

 
 
Figure 7. Cp contours for a smooth curve in external flow. 

 
 
 

v V∞  
Cp

u V∞

 x/c 
 

 
Figure 8. Flow characteristics over the surface of a smooth 
curve in external flow. 
 
 
 
TABLE 1. Number of Iterations and CPU Time to 
Converge and the Maximum Error of Pressure Coefficient 
for Two Cases Shown in Figures 3 and 4. 
 

Case Number of 
 Iterations 

CPU 
 time 
 (s) 

Maximum  
Error 
(%)

NACA0010-66 5 2.75 3.4 

NACA654-021 6 5.94 2.1 
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over the wall and the airfoil surfaces, related to 
Figure 9, are shown in Figure 10. 
     Pressure coefficient distribution and velocity 
vectors for an ideal flow in a smooth diffuser are 
shown in Figure 11. The pressure coefficient 
distribution over the wall and the core surfaces of 
the internal flow in a diffuser, related to Figure 11, 
are shown in Figure 12. 

(a) 
 

(b) 
 

Figure 9. (a) Cp contours and (b) Velocity vectors for an ideal 
internal flow over  NACA652-015. 
 
 

Wall Surface 

Cp  

x

Airfoil Surface 

 
Figure 10. Pressure coefficient distribution over the wall and 
the airfoil surface shown in Figure 9. 

(a) 

(b) 
 
Figure 11. (a) Cp contours and (b) Velocity vectors for an 
ideal internal flow in a smooth diffuser (AR=0.5). 
 

x 

AR=0.5 Core Surface

Wall SurfaceCp 

 
 
Figure 12. Pressure coefficient distribution over the wall and 
the core surface of the nozzle shown in Figure 11. 
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5. CONCLUSION 
 

A new method based on Schwarz-Christoffel 
transformation for complete solution of two-
dimensional ideal external and internal flows over 
arbitrary boundaries is developed. In this method, 
the components of velocity and the pressure 
coefficient are obtained based on the analytical 
functions. 
     The solution is independent of the coordinates 

of solution domain (in contrast to FDM or FEM) 
and is not required at some control points (in 
contrast to panel method). 
     Using this method, a solution for the body 
pressure and velocity distribution can be obtained 
without solving for the flowfield throughout the 
domain (like the panel method). The pressure and 
velocity distribution for some grid points in the 
solution domain can also be obtained (like FDM or 
FEM). 
     A Mathematica package has been developed to  

 
 
 
 
 
 

Calculate the new set of 
nφ  using Eq. (11)  

Assume a set of nφ  in w-plane from 

Normalize nφ  using Eq. (6)

Find the apieces in s-plane

Find the coefficients BA ,υ   

Check the error criterion , Eq. (10) 
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εν <merr  
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Figure 13. The flowchart of program for external ideal flows.

 
 
 
 
 
 
 

Calculate the new set of 
nσ  using Eqs. (23),(24)  

Assume a set of nσ  in s-plane from 

Correct nσ  using Eq. (17)

Calculate c
mz  using Eq. (18) 

Find the apieces of polygon in z-
plane using Eqs. (19) and (20) 

Check the error criterion , Eq. (22) 

Correct ν
1+Mz  using Eq. (21) 
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Find dwdz  from Eq. (33)

Find the velocity components (u,v) 
from Eq. (18) 

Find the pressure coefficient, pC , 
 from Eq. (30) 
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Figure 14. The flowchart of program for internal ideal flows.
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perform numerical calculations for 2-D ideal 
external and internal flow fields with arbitrary 
boundaries [11]. The flowchart of the program for 
external and internal ideal flows is shown in 
Figures 13 and 14. 
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