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Abstract   One of the most important issues that we face in controlling delayed systems and non-
minimum phase systems is to fulfill objective orientations simultaneously and in the best way 
possible. In this paper proposing a new method, an objective orientation is presented for controlling 
multi-objective systems. The principles of this method is based an emotional temporal difference 
learning, and has a neuro-fuzzy structure. The proposal method, regarding the present conditions, the 
system action in the part and the controlling aims, can control the system in a way that these 
objectives are attain in the least amount of time and the best way. To clarify the issue and verify the 
proposed the method, three well known control examples which are hard to handle through classic 
methods are handled by means of the proposed method. 
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نيمم فاز وجود دارد برآورده  هاي تأخيردار و غير مي يكي از مهمترين مشكلاتي كه در كنترل سيستم   چكيده
رويكردي با ارائه يك شيوه جديد ر اين مقاله د. .باشد سازي اهداف چندگانه بطور همزمان و بهترين شرايط مي

 اصول اين روش بر مبناي يادگيري تفاوت .هاي با اهداف چندگانه ارائه شده است عاملگرا براي كنترل سيستم
تواند با در نظر  روش پيشنهادي، مي.  فازي دارد-زماني استوار شده است، و ساختاري از نوع شبكه عصبي 

گرفتن شرايط كنوني، عملكرد سيستم در هر بخش و اهداف كنترلي، به طريقي سيستم را كنترل نمايد كه اين 
تر مسئله و اثبات عملكرد مناسب  براي بيان واضح .رين زمان حاصل گردنداهداف به بهترين وجه و در كمت

سازي اهداف گوناگون آن به بهترين وجه در  روش پيشنهادي فوق سه مسئله معروف در علم كنترل كه برآورده
  .سازي گرديده است باشد، با اين روش براحتي پياده هاي كنترلي ديگر بسيار مشكل مي كمترين زمان با روش

 
 

1. INTRODUCTION 
 
It is widely believed that decision making, even in 
the case of human agents, should be based on full 
rationality and emotional cues should be suppressed 

in order not to influence the logic of arriving at 
proper decisions. The assumption of full rationality, 
however, has sometimes been abandoned in favor 
of satisficing or bounded rationality models [1], 
and in recent years, the positive and important role 
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of emotions has been emphasized not only in 
psychology, but also in AI and robotics [2]-[4]. 
Very briefly, emotional cues can provide an 
approximate method for selecting good actions 
when uncertainties and limitations of computational 
resources render fully rational decision-making 
based on Bellman-Jacobi recursions impractical. 
     In past researches [5-9], a very simple 
cognitive/emotional state designated as stress has 
been successfully utilized in various control 
applications. This approach is actually a special 
case of the popular intelligent control technique, 
i.e. reinforcement learning. We should emphasize 
that here emotion merely refers to stress cue, and 
use of other, and perhaps higher emotional cues are 
left for future research. 
     In the last decade, the intelligent control 
community has paid great attention to the topic of 
neurofuzzy control, combining the decision-
making property of fuzzy controllers and learning 
ability of neural networks [10] [11]. Hence we 
have chosen a neurofuzzy system as the controller 
in our methodology. 
     In the present paper, the idea of applying 
emotional learning [8] is applied to the dynamic 
control systems by means of the agent concept is 
addressed and combining this approach with 
temporal difference learning [31][32][33][34]. In 
general, control scheme consists of a set of agents 
whose tasks are to provide appropriate control 
signals for their corresponding system’s input. 
Each agent consists of a neurofuzzy controller and 
a number of critics, which evaluate the outputs’ 
behavior of the plant and provide the appropriate 
signals for the tuning of the controllers. Simulation 
results for the control of the Gas Turbine system 
(multi-agent multi-critic approach), a strongly 
coupled plant with uncertainty and a highly 
nonlinear chemical process (multi-agent multi-
critic approach) and the highly nonlinear and non-
minimum phase problem of Inverted Pendulum on 
a moving cart (multi agent multi critic approach) 
are provided to show the effectiveness of the 
proposed methodology. 
     The organization of this paper is as follows: 
The focus of Section 2 is on the emotional learning 
and how it can be applied in the control scheme. A 
brief review of agent concepts and how they could 
be used in control applications is brought up. The 
focus of Section 3 is on the review of temporal 

difference rule and using that in the make of new 
critic with using the prediction specification [35]. 
The structure of the proposed controller and its 
adaptation law are developed in sections 4 and 5, 
simulation results are provided to clarify the matter 
further with the final conclusions to be brought in 
section 6. 
 
 
 

2. EMOTIONAL LEARNING AND AGENT 
 
According to psychological theories, some of the 
main factors of human beings’ learning are 
emotional elements such as satisfaction and stress. 
Emotions can be defined as states elicited by 
instrumental reinforcing stimuli, which if their 
occurrence, termination or omission is made 
contingent upon the making of a response, alter the 
course of future emission of that response [13]. 
     Emotions can be accounted for, as a result of 
the operation of a number of factors, including the 
following [13]: 
 
    1. The reinforcement contingency; 
    2. The intensity of reinforcement; 
 
     It should be mentioned that in this paper, 
emotion merely refers to stress cue and other 
emotions are not considered here. 
     In our proposed approach, which in a way is a 
cognitive restatement of reinforcement learning 
[14] in a more complex continual case where 
reinforcement is also no longer a binary signal, 
there exists an element in the control system called 
fuzzy critic whose task is to assess the present 
situation which has resulted from the applied 
control action in terms of satisfactory achievement 
of the control goals and to provide the so called 
emotional signal. The controller should modify its 
characteristics so that the critic’s stress is 
decreased. This is the primary goal of the proposed 
control scheme, which is similar to the learning 
process in the real world because in the real world, 
we also search for a way to lower our stress with 
respect to our environment [15-16]. 
     As seen, emotional learning is very close to 
reinforcement learning, but there is one important 
difference between them. In classical reinforcement 
learning, there exists a reinforcement signal (R), 
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which usually accepts binary values. 
     The resulting analog reinforcement signal 
constitutes the stress cue, which has been interpreted 
as cognitive/emotional state [17]. 
     We define an agent as referring to a component 
of software/hardware, which is capable of acting 
exactingly in order to acomplish tasks on behalf of 
its user. By reviewing Jennings and Wooldridge’s 
work [18] the following set of characteristics can 
be considered for agents: 
 
Autonomy: This refers to the principle that agents 

can operate on their own without the need for 
human guidance. 

 
Deliberativeness: Deliberative agents derive from 

the deliberative thinking paradigm which holds 
that agents engage in planning and negotiation 
with other agents in order to achieve their goals 

 
Reactivity: Reactive agents act using a stimulus/ 

response type of behavior by responding to the 
present state of the environment in which they 
are embedded. 

 
Social ability: Agents are able to communicate 

and exchange information with other entities. 
 
Reasoning: An agent can possess the ability to 

infer and extrapolate based on current 
knowledge and experiences in a rational and 
reproducible way. 

 
Planning: An agent can synthesize and choose 

between different courses of action intended to 
achieve its goals. 

 
Learning: An agent may be able to accommodate 

the knowledge and learn about the environment. 
 
Adaptability: The agents may be adaptable in its 

behavior in response to new situations. 
 
Multi-agent systems (MASs) are systems where 
there is no central control: the agents receive their 
inputs from the system and use these inputs to 
apply the appropriate actions. The global behavior 
of a MAS depends on the local behavior of each 
agent and the interactions between them [19]. The 
most important reason to use a MAS when 
designing a system is that some domains require it. 
Other aspects include: 

Parallelism: Having multiple agents could speed 
up the system’s operation, providing a method 
for parallel computation.  

 
Robustness: If the tasks are sufficiently shared 

among different agents, the system can 
tolerate failure by one or more of the agents.  

 
Scalability: Since they are inherently modular, it is 

much easier to add new agents to a multi agent 
system than it is to add new capabilities to a 
monolithic system.  

 
Simple Design: From designer’s perspective the 

modularity of multi agent systems can lead to 
simpler programming. Rather that tackling the 
whole task with a centralized agent, designers 
can identify assign control of those subtasks to 
different agents.  

 
     Based on these concepts, we have proposed an 
emotion-based approach for the control of dynamic 
systems, which will be discussed in the 4 section. 
 
 
 

3. REVIEW OF TD LEARNING RULE AND 
INTRODUCE THE NEW CRITIC 

 
3.1 Temporal Difference versus Traditional 
Approaches to Prediction   Suppose that we 
attempt to predict on each day of the week whether 
it will rain the following Monday. A traditional, 
supervised, approach would compare the 
prediction of each day to the actual outcome, while 
a TD approach would compare each day’s 
prediction to the following day’s prediction. 
Finally, the network’s last prediction would be 
compared to the actual outcome. This forces two 
constraints upon the neural net: 1) it must learn a 
prediction function that is consistent or smooth 
from day-to-day and 2) That function must 
eventually agree with the actual outcome. The first 
is accomplished by forcing each prediction to be 
similar to the prediction following it, while the 
second is accomplished by forcing the last 
prediction to be consistent with the actual outcome. 
      The correct answer is propagated from the final 
prediction to the first [37]. 
     This approach assumes that the state of the 
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environment is somewhat continuous and does not 
radically change from one point in time to the next. 
In other words, the environment is predictable and 
stable. If we accept this assumption, the TD 
approach has three immediate advantages: 
 

1. It is incremental and, presumably, easier to 
compute. 
2. It is able to make better use of its 
experience. 
3. It is closer to the actual learning behavior of 
humans. 

 
     The first point is a practical as well as 
theoretical one. In the weather prediction example, 
the TD algorithms can update each day’s 
prediction on the following day while traditional 
algorithms would wait until Monday and make all 
the changes at once. These algorithms would have 
to do more computing at once and require more 
storage during the week. This is an important 
consideration in more complex and data-intensive 
tasks.  
     The second and third advantages are related to 
the notion of single-step versus multi-step 
problems. Any prediction problem can be cast into 
the supervised learning paradigm by forming 
input-output pairs made up of the data upon which 
the prediction is to be made and the final outcome. 
For the weather example, we could form a pair 
with the data at each day of the week and the 
actual outcome on Monday. This pair wise 
approach, though widely used, ignores the 
sequential nature of the task. It makes the 
simplifying assumption that its tasks are single step 
problems: all information about the correctness of 
each prediction is available all at once. On the 
other hand, a multi-step problem is one where the 
correctness of a prediction is not available for 
several steps after the prediction is made, but 
partial information about a prediction’s correctness 
is revealed at each step. The weather prediction 
problem is a multi-step problem; new information 
becomes available on each day that is relevant to 
the previous prediction. A supervised-learning 
approach cannot take advantage of this new 
information in an incremental way. 
     This is a serious drawback. Not only are many, 
perhaps most, real-world problems actually multi-
step problems, but it is clear that humans use a 

multi step approach to learn. In the course of 
moving to grasp an object, for example, humans 
constantly update their prediction of where their 
hands will come to rest. 
     Even in simple pattern-recognition tasks, such 
as speech recognition “a traditional domain of 
supervised learning methods” humans are not 
faced with simple pattern-classification pairs, but a 
series of patterns that all contribute to the same 
classification. 
 
3.2 The General Learning Rule   We consider 
the multi-step prediction problem to consist of a 
series of observation-outcome sequences of the 
form z,x,...,x,x,x m321 . Each tx  is a vector 
representing an observation at time t  while z is the 
actual outcome of the sequence. Although z is 
often assumed to be a real-valued scalar, z is not 
prevented from being a vector. For each 
observation in the sequence, tx  the network 
produces a corresponding output or prediction, tP . 
These predictions are estimates of z. 
     As noted in the first chapter, learning 
algorithms update adjustable parameters of a 
network. We will refer to these parameters as the 
vector w . For each observation, a change to the 
parameters, w∆ , is determined. At the end of each 
observation-outcome sequence, w  is changed by 
the sum of the observation increments:  
 

∑
=
∆+=

n

1t
www  

 
     This leaves us with the question of how to 
determine w∆ . One way to treat the problem 
is as a series of observation-outcome pairs, 
( ) ( ) ( )z,x,...,z,x,z,x n21 , and use the backpropagation 
learning rule: 
 

twtt P)Pz(w ∇−α=∆  
 
where α  is a positive value affecting the rate of 
learning; twP∇  is the vector of partial derivatives 
of tP with respect to w ; and )Pz( t−  represents a 
measure of the error or difference between the 
predicted outcome and the actual outcome. This 
learning rule is a generalization of the delta or 
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Widrow-Hoff rule. 
     We using in this method for prediction. 
     In our paper we present a new block diagram 
for critic, and we assigned the ETDLC (Emotional 
Temporal Difference Learning Critics) for it. (See 
Figure 1 for the schematic of the presented internal 
ETDLC) [36]. 

5. AN EMOTION TEMPORAL DIFFERENCE 
BASED APPROACH TO THE CONTROL OF 

DYNAMIC SYSTEMS USING AGENT 
CONCEPT 

 
In this section we design an intelligent controller 
based on the concepts considered in the previous 
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Figure 1. Schematic of the presented internal ETDLC. 
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Figure 2. Structure of an agent in the proposed methodology. 
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sections. Figure 2 shows the proposed agent’s 
components and their relation with each other 
based on the idea presented in [20]. As it can be 
seen, the agent is composed of five components. It 
perceives the states of the system through its 
sensors and also receives some information 
provided by other agents, then influences the 
system by providing a control signal through its 
actuator. The emotional critics with temporal 
difference learning assess the behavior of the 
control system (i.e. criticize it) and provide the 
emotional signals for the controller and that 
assigned the credit for the prior data for avoiding 
the curse of dimensionality. According to these 
emotional signals, the controller produces the 
control signal with the help of the Learning 
element, which is adaptive emotional temporal 
difference learning. Inputs of this learning element 
are the emotional signals provided by both the 
agent’s critics and other critics and also some 
knowledge provided by the controller. 
     The numbers of the agents assigned here are 
determined based on the numbers of the inputs of 
the system. The numbers of the outputs of the 
system are effective in determining the 
number/structure of the system’s critics, which 
their role is to assess the status of the outputs. (See 

Figure 3 for the schematic of the presented 
approach when applied to a 2input – 2output 
control system). 
     We now develop the controller structure for the 
multivariable systems, in general. 
     In the general case of multivariable systems, 
each agent consists of a neurofuzzy controller, 
which has an identical structure to other 
controllers, i.e. four layers for each one. The first 
layer’s task is the assignment of inputs’ scaling 
factors in order to map them to the range of [-1, 
+1] (the inputs are chosen as the error and the 
change of the error in the response of the 
corresponding output). In the Second layer, the 
fuzzification is performed for each input assigning 
five labels for each one. For decision-making, 
max-product law is used in layer 3. Finally, in the 
last layer, the crisp output is calculated using 
Takagi- Sugeno formula [21], 

 

)n,,2,1ifor(             

u

)cxbxa(u
y p

1l
il

il

p
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++
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∑

∑

=

=

 (1) 

 
where 1ix  and 2ix  are inputs to the controller, i, n, 
uil, p, and yi are the index of the controller, number 
of controllers, l’th input of the last layer, number 
of rules in the third layer and output of the 
controller, respectively and ail’s, bil’s and cil’s are 
parameters to be determined via learning. 
     For each output, a critic is assigned whose task 
is to assess the control situation of the output and 
to provide the appropriate emotional signal. The 
role of these critics is very crucial here as the 
eliminating of the unwanted cross-coupled effects 
of the multivariable control systems is very much 
dependent on the correct operation of these critics. 
Here, all the critics have the same structure as of a 
PD fuzzy controller with 5 labels for each input 
and 7 labels for the output. Inputs of the critic are 
error of the output and its derivative and its output 
is the corresponding emotional signal. Deduction is 
performed by max-product  law and for 
defuzzification, the centroid law is used. 

Multivariable
System

Agent
1

1u 2u1o 2o
Agent

2

 
Figure 3. Schematic of multi-agent based approach to 
multivariable control. 
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     To put it in a nutshell, the relationship between 
agent, neuro-fuzzy, PD fuzzy, MELI controller and 
critic can be started as follows: 
     The complex formed by critic and MELIC is 
called Agent, characteristics of which are desired 
in detail. However, the basis of implementing 
MELIC is a neuro-fuzzy system with the previously 
specified characteristics; the implementation basis 
of critic, on the other hand, is a PD fuzzy system. 
     The emotional signals provided by these critics 
contribute collaboratively for updating output 
layer’s learning parameters of each controller. The 
aim of the control system is the minimization of 
the sum of squared emotional signals. 
     In order to achieve control goals, first, a proper 
error function should be defined so that it counts 
for the line conditions in the outputs. Another thing 
to be taken into consideration is that its sensitivity 
to the error decreases in the outputs might not be 
equal. Therefore, it is better to reflect this 
sensitivity in the output function by assigning 
different weights in defining these factors, two 
things should be noted. 
     First, the factors must be chosen in a way that 
the convergence algorithm doesn’t pose any 
problem. Second, a change in each of the factors 
will change the value of the respective output 
variable. Formulae 2 to 9 deal with the above 
mentioned facts. 
     Accordingly, first we describe the error function 
E as follows, 
 

)r(KE 2
j2

1
j

m

1j
∑
=

=  (2) 

 
where jr  is the output signal of j’s critic, Kj is the 
corresponding output weights and m is the total 
number of outputs (for the special case of SISO 
systems, Kj =1 and m=1) 
     For the adjustment of controllers’ weights the 
steepest descent method is used, 
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∂
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where iη  the learning rate of the corresponding 
neurofuzzy controller and n is is the total number 
of controllers. 
     In order to calculate the RHS of (3), the chain 

rule is used, 
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     From (2), we have, 
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also, 
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where jij  is the element located at the ith column 
and jth row of the Jacobian matrix. 
     Assuming: 
 

m,...,2,1j          yye jrefjj =−=  (7) 

 
where je  is the error produced in the tracking of 
jth output and refjy  is the reference input (in case 
number of outputs is greater than the number of 
inputs, some of refjy ’s are taken as zero as it will 
be cleared by the inverted pendulum example). 
Now we have, 
 

j

j

j

j

e
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∂
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     Since with the incrimination of error, r will also 
be incremented and on the other hand, on-line 

calculation of 
j

j

e
r

∂

∂
 is accompanied with 

measurement errors, thus producing unreliable 
results, only the sign of it (+1) is used in our 
calculations. 
     From (2) to (8), iω∆ will be calculated as 
follows, 
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∑
= ω∂

∂
η=ω∆

m

1j i

i
jijjii

u.J.r.K  

( )m,,2,1jandn,,2,1i KK ==  (9) 
 
     Equation 9 is used for updating the learning 
parameters ail’s, bil’s and cil’s in (1), which is 
straightforward.  
 
 
 
 

5. SIMULATION RESULTS 
 
In this section, the proposed method is applied for 
the control of two dynamical systems. The first one 
is the controller is applied a to a multivariable 
linear control plant with strongly coupling (Gas 
Turbine). Control of a nonlinear chemical reaction 
is our second example, and control for highly 
nonlinear and non-minimum phase problem of 
Inverted Pendulum on a moving cart. 
 
Example 1. ETDL Control of a Gas Turbine   
One of the famous examples in multivariable 
control which has a high coupling is that of the Gas 
Turbine system. The inputs to the system are the 
fuel pump excitation in mAmps and nozzle 

actuator excitation in volts. The outputs of the 
system are the gas generator speed and the inter-
turbine temperature. Applying Laplace transform 
to the linearized nonlinear differential equation 
system, the transfer function matrix of the system 
at 80% gas generator speed and 85% power turbine 
speed is given as [30]. 
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     The block diagram of the control system is 
shown in Figure 4. 
     This system is unstable and has a great deal of 
coupling. The aim is achieving step response in all 
of the outputs with a rise time less than 0.3 s in the 
first output and less than 1.5 s in the second output. 
Hence, the input filters are selected as follows: 
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Figure 4. The ETDLC block diagram for MIMO plant. 
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     To show gas turbine coupling, Gershgorin 
bands are manipulated. Gershgorin circles of the 
transform functions 11G  to 22G  are illustrated in 
Figures 5 to 6 respectively. 
     The step inputs of the system are applied at the 
times t = 0 and t = 0, respectively. Results are 
plotted in Figure 5.  
     The simulation results of step responses for the 
system rate of 1 rpm and the temperature of 1 
degree Kelvin is illustrated in Figure 5(a) and 
counts for achieving a proper step response and an 
excellent attenuation in coupling which is much 
better than the results presented in references like 
[30]. Furthermore, control effort signals, emotional 
signals and error signals are illustrated in Figure 
5(b), 5(c) and 5(d) respectively. The Implementing 
Inverse Nyquist Array suggests that control signal 
in emotional methods is much less than the one in 
this classic method. 
 
Example 2. ETDL Control of a Chemical 
Process   Our second example is focused on the 
control of an isothermal continuous-stirred tank 
reactor (CSTR). It’s a highly interactive nonlinear 
system with the following reactions [24]: 
 

AB

CBA
2

31

k

kk

⎯→⎯

⎯→⎯⎯→⎯  (13) 

 

where the reaction rates are given by: 
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     In Equation 14, CA and CB are outlet 
concentrations of A and B. 
     The process can be represented by the following 
differential equations: 
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     In Equations 15 and 16, u1 and u2 represent the 
dimensionless quantities of the feed concentrations 
of A and B, and v1 and v2 respectively represent the 
dimensionless quantities of the outlet concentrations 
of A and B respectively. Assuming Da1=2, Da2=1 
and Da3=2, our goal is to control the outlet 
concentrations of A and B by adjusting the feed 
concentrations of A and B. 

     It is desired to achieve responses with no 
overshoots while outputs have rise times no more 
than 1 and 1.5 seconds, respectively. Hence, the 
transfer functions of the pre-filters are chosen as 
follows: 
 

16s8s
16)s(H 21

++
=  (17)  
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=  (18) 

 
     The step inputs of the system are applied at the 
times t = 0 and t = 4, respectively. The system 
inputs are applied to the system at t=0 s and t=3 s 
to test it in different input times. Results are plotted 
in Figures 6(a) and 6(b). 
     According to the simulation results, it can be 
deduced that with the proposed scheme, 
nonlinearities are also handled as easily as 
disturbance rejection and dealing with uncertainties. 
     As observed, the input and output lines coincide 
perfectly. 
 
Example 3: ETDL Control of an Inverted 
Pendulum   The cart with an inverted pendulum, 
shown in Figure 7, is "bumped" with an impulse 
force, F. Determine the dynamic equations of 
motion for the system, and linearize about the 
pendulum's angle, theta = Pi (in other words, 
assume that pendulum does not move more than a 
few degrees away from the vertical, chosen to be at 
an angle of Pi).  
     For this example and simulation, let's assume 
that: 
 

cm  mass of the cart  0.5 kg  

m  mass of the pendulum  0.5 kg  

b  friction of the cart  
0.1 

secmN   

L  length to pendulum center of 
mass  0.3 m  

I  inertia of the pendulum  
0.006 

2mkg ×  

F  force applied to the cart   
x  cart position coordinate   
theta pendulum angle from vertical  10 deg. 
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Figure 5. Gershgorin band 11G ; (a) Output of Gas Turbine signals, (b) Control Effort and Error Signals, 

(c) Emotional Signals 11r , 12r , 21r and 22r , (d) Emotional Signals 1r and 2r . 
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     The problem of balancing an inverted pendulum 
on a moving cart is a good example of a 
challenging multivariable situation, due to its 
highly nonlinear equations, non-minimum phase 
characteristics and the problem of handling two 

outputs with only one control input [25] (the 
position of cart is sometimes ignored by the 
researchers [26]). Here, the dynamics of the 
inverted pendulum are characterized by four 
variables: θ (angle of the pole with respect to the 
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Figure 6. Gershgorin band 22G . Simulation results of Example 2: (a) Output Signals and (b) Control Signals. 
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vertical axis), θ&  (angular velocity of the pole), z 
(position of the cart on the track), and z&  (velocity 
of the cart). The behavior of these state variables is 
governed by the following two second-order 
differential equations [21]: 
 

)
mm

Cos*m(*l

)
mm

Sin**l*mF(*CosSing

c

2

3
4

c

2.

+
θ

−

+
θθ−−

θ+θ∗
=θ

⋅⋅
 (20) 
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..

+
θθ−θθ+

=  (21) 

 
where g (acceleration due to gravity) is 9.8 2s

m , 

mc (mass of cart) is 1.0 kg, l (half-length of pole) is 
0.5 m, and F is the applied force in Newton. Our 
control goal is to balance the cart, yet keep the z 
not further than 2.5 meters from its original 
position. We use a single agent here, which 
provides the force F to the system and applies two 
emotional critics to assess the output. The first one 
criticizes the situation of the pole and the second 
one does the same for the cart’s velocity. Both 
critics are satisfied when inputs to them are zero 
(i.e. the pendulum is balanced and the cart has no 
velocity). The results of simulation for initial 
condition 0θ = 10 deg. are presented in Figure 8. 

This shows that after nearly six seconds the pole is 
balanced and the cart is stopped successfully 
around 1.4 meters from original position. 
     Which means that when the value of 0=θ  and 
position=1.4 meters the system under control by 
means of MELIC and Critic based on temporal 
difference learning, was able to achieve balance 
1.4 meters away from its base position whit  a lot 
of effort. 
     This is because the inverted pendulum has 
reached 0=θ degree and is completely stable on 
the cart. 
 
 
 

6. CONCLUSIONS 
 
In this paper, the emotional learning based 
intelligent control scheme was applied to dynamic 
plants. Also the performance of the proposed 
algorithm was investigated by several benchmark 

 

 
Figure 8. Responses of variables of example (From left to 
right: pole’s angle and cart’s position). 
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Figure 7. The cart with an inverted pendulum. 
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examples. The main contribution of the proposed 
generalization is to provide the easy to implement 
emotional temporal difference learning technique 
for dealing with dynamic (especially multivariable) 
control systems where the use of other control 
methodologies (especially intelligent control 
methods) is sometimes problematic [27][31].  
On the negative side, it should be pointed out that 
only a very simple learning algorithm has been 
used throughout this paper. Although this stresses 
the simplicity and generality of the proposed 
technique, more complex learning algorithms 
involving time credit assignments [28] and 
temporal difference [29][32][35] or similar 
methods might be called for when processes 
involve unknown delays. 
     Considering the achievements of emotional 
control, this paper seeks to answer more, complex 
issues and fulfill more objectives. To do this, 
capability of the learning module of Emotional 
temporal difference controllers have been 
dynamically increased for credit assignment by 
means of temporal difference learning. In addition, 
multi objective controls, which have been 
gathered, using the defined emotional signal, pass 
the critic so that the assigned controller can select 
the desirable characterization. For showing the 
practicality of the applied system, we have 
employed it for developing Gas Turbine control. A 
gas turbine is a multi variable system with strongly 
coupling, for which it is difficult to design a good 
controller, even in a model-oriented form. The 
results of applying the suggested controller that in 
addition to the parameters like error and control 
effort signal being criticized the output has a 
desired speed and least maximum over shoot in 
tracking the input. 
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