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Abstract   In a hydroelectric power plant or in a pumping station in order to avoid sudden large 
increase of pressure due to instantaneous valve closure sometimes a surge tank is installed. The height 
of surge tank is designed by the highest possible water level during the operation. The theoretical 
treatment of oscillation in a surge tank is difficult because of the non-linearity of friction term in the 
governing differential equation of the system. The present study attempts to find a general solution for 
the surge oscillation in a simple surge tank in terms of non-dimensional parameters.  Equations for the 
highest and the lowest water level in the tank, which are very important in the design of a surge tank 
have been found.   
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منظور اجتناب از افزايش فشار بعلت بسته شدن ناگهاني دريچه گاهي اوقات ه    در نيروگاههاي آبي بچكيده
علت غير خطي ه ررسي تئوري نوسان سطح آب در اين تانكها بب. گردد تانكهاي موجگير كاهش فشار نصب مي

در اين تحقيق سعي گرديده كه يك راه حل . باشد بودن قسمت اصطكاكي در معادله اصلي سيستم مشكل مي
همچنين . كلي براي نوسان موج در يك تانك موجگير ساده با استفاده از پارامترهاي بدون بعد پيدا شود

باشند ارائه  ن و پايين ترين سطح آب در تانك كه در طراحي پارامترهاي بسيار مهمي ميمعادلاتي براي بالاتري
  .گرديده است

 

 
 

1. INTRODUCTION 
 
When the valve in a hydroelectric power plant is 
suddenly completely closed, because of its small 
inertia the water in the penstock stops almost at 
once [1,3]. The water in the pipeline, with large 
inertia retards slowly. The difference in flows 
between pipeline and penstock causes a rise in the 
water level in the surge tank. The water level rises 
above the static level of the reservoir water, 
producing a counter-pressure so that water in the 
pipeline flows towards the reservoir and the level 
of water in the surge tank drops [4]. 
     In the absence of damping, oscillation would 
continue indefinitely with the same amplitude. The 
extent of damping is governed by roughness condition, 
restricted orifice, and so on. The flow into the surge 
tank and water level in the tank at any time during the 
oscillation depends on the dimension of the pipeline 
and tank and on the type of valve movement. The 

main functions of a surge tank are [5]: 
1. It reduces the amplitude of pressure fluctuations 
by reflecting the incoming pressure waves; 
2. It improves the regulation characteristic of a 
hydraulic turbine. 
Depending upon its configuration, a surge tank may be 
classified as simple, orifice, differential, or closed. A 
simple surge tank is defined as a tank or shaft of 
constant horizontal cross sectional area that connects 
the conduit of a hydroelectric power plant for 
preventing the pressure surges entering into it (Figure 
1). The maximum amplitude of water level (maximum 
surge) can be observed when a full load is suddenly 
rejected [6]. 
 
 
 
2. MAIN CONSIDERATIONS IN THE DESIGN 

OF A SURGE TANK 
 
In order to accomplish its mission most effectively, 
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the surge tank dimensions and location are based 
on the following considerations [6], [7]: 
1. The surge tank should be located as close to the 
power or pumping plant as possible; 
2. The surge tank should be of sufficient height to 
prevent overflow for all conditions of operation; 
3. The bottom of surge tank should be low enough 
that during its operation the tank is drained out and 
admit air into the turbine penstock or pumping 
discharge line; and 
4. The surge tank must have sufficient cross 
sectional area to ensure stability. 
     The height of a surge tank is governed by the 
highest possible water level that can be anticipated 
during its operation. All available methods are 
based on a linearized resistance relationship, since 
the resistance law flow varies as Reynolds number 
and relation roughness [2]. These equations describe 
approximate values of peaks and downsurges. 
 
 
 

3. ANALYSIS OF SURGES IN SIMPLE  
SURGE TANK 

 
In a simple surge tank, there is very little head loss 

between the surge tank and the pipeline, also the 
reservoir is considered so large that its level 
remains constant [8]. 
 
3.1. Derivation of Governing Equation   To 
simplify the derivation of dynamic and continuity 
equations that describe the oscillations of the water 
level in the tank, it has been assumed that  
(i) the conduit walls are rigid; 
(ii) the water is incompressible; and 
(iii) the effect of entrance loss in comparison 
with the friction loss has been neglected. 
The equation of motion is written as [9], [12] : 
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Integration (1.b) with respect to x between the limits 
x=0, x=L (see Figure 1) and simplifying, one gets 
 

0gygh
dt
dVL f =++  (2) 

Figure 1. Simple surge tank system. 
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From continuity condition between tank and pipe, 
it can be shown that  
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That with use of 3 in 2 the following equation can 
be found: 
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With initial condition at t=0 
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Equation 4 is the governing differential equation 
for surge oscillation in a simple surge tank. 
 
3.2. Adopted Methods for the Solution   Depending 
on the nature of friction loss, the following 
particular cases arise: 
 
3.2.1. Frictionless Flow   In this case hf = -hf0 = 0. 
Thus Equation 4 changes to  
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Solving 6 for the initial condition 5.a, 5.b one gets 
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Equation 7 describes sinusoidal oscillations[10]. 
 
3.2.2. Laminar and Turbulent Flow   In this 
case head loss is expressed by Darcy-Weisbach 
equation 
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Combining 3 and 8 one gets 
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With the change of flow direction, the direction of 

friction also changes. Hence 
2
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⎟
⎠
⎞

⎜
⎝
⎛ occurring in 

9.a should be split to
dt
dy

dt
dy
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In which 8[11] 
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Substituting 10 in 4 one gets 
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The initial conditions prescribed on 12 are at t=0 
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In order to reduce the number of parameters, the 
following dimensionless groups are formed: 
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The conduit velocity may be expressed as  
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Substituting 15 in 11 one gets 
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in which R0 is the initial Reynolds number 
defined as using non-dimensional variables 12 
reduces to: 
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The initial conditions for sudden valve closure at 
t=0 
 

1
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and the initial conditions for sudden valve 
opening are 
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Being non-linear it will be very difficult to find a 
closed form solution of 18. A numerical solution, 
using a fourth order Runga Kutta method, can be 
attempted. From this numerical solution one can 
see that the various properties of the solution like 

yp1*, tp1*, yt1*, and tt1* are functions of R0, 
PD
ε

, and 

hf0*. 

     With varying 02.0
D

0
P

≤
ε

≤  the following 

empirical formula for finding the mentioned values 
has been suggested: 
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In which the values of S, C, k1, k2, k3 can be found 
from the Table 1. 
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TABLE 1. Coefficients of Equation 20. 
 

S. No S C k1 k2 k3 Max.Error   % 

1 yp1* 1 (20.a) (20.b) (20.c) 4 

2 tp1* 2π  (20.d) (20.e) 0.587 3 

3 yt1* -1 (20.f) (20.g) (20.h) 5 

4 tt1* 23π  1.9 1.49 0.653 4.2 

5 yt01* -1 (20.1) 0.914 -0.946 4.4 

6 tp2* 25π  3.0 1.362 0.7 4.6 
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Figure 2 shows a typical plot of surge oscillation 
for sudden valve closure obtained by solution 
Equation 18 using fourth order Runga Kutta 
method. Analysis of a large number of surge 
oscillation curves suggest the following empirical 
equation for 5.1h *0f < : 
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Figure 2. Surge Oscillation in Simple Surge Tank. 
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Putting *1p* tt =  in Equation 21.a and equating it 

to *1py  one gets: 
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Also by putting *1t* tt = in Equation 21.a and 
equating it to *1ty one gets: 
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The quantities of α  and β  can be obtained by 
solving Equations 22 and 23, simultaneously [1]. 
Figure 2 shows the result obtained by solving 
Equation 21.a and compares it with the result 
obtained by numerical solution of differential 
Equation 18 by Runga Kutta method. The *y  
versus *t  curve can be converted to a y versus t 
curve via using Equations 14.a and 14.b. 
 
 
 

4. CONCLUSION 
 
In the present study a general solution for surge 
oscillation in a simple surge tank and an optimal 
design of system has been discussed. The main 
conclusions are as follows: 
 
1. Equations for maximum surge height and 

corresponding time of occurrence have been 
obtained. 

2. Equations for minimum downsurge and the 
corresponding time of occurrence have been 
developed. 

3. An equation for the occurrence of a second 
peak of the surge oscillation has been 
obtained. 

4. An equation for surge oscillation has been 
obtained. 

5. NOTATIONS 
 
DP Diameter of Conduit 
DP0 Minmum Conduit Diameter  
DT Diameter of Simple Surge Tank 
DTS Stable Diameter of Tank 
f Friction Factor 
f0 Friction Factor for Initial Velocity 
g Gravitational Acceleration 
h1 Free Board in Tank 
h2 Cushion Level in Tank 
hf Head Loss 
hf0 Initial Head Loss 
h f0* Non-Dimensional Initial Head Loss 
H0 Desired Head 
HT Height of Tank 
KP Cost Parameter for Conduit 
KT Cost of Tank per Unit Area 
L Length of Conduit 
m  Cost Parameter for Conduit 
P0 Desired Power 
Q0 Initial Discharge 
R Reynolds Number 
R0 Initial Reynolds Number 
t  time 
t* Non-Dimensional Time Parameter 
tp1 The Occurrence Time of First Peak 
t p1* Non-Dimensional Time of Occurrence 

First Peak 
t p2* Non-Dimensional Time of Occurrence 

Second Peak 
tt1 The Occurrence Time of First Downsurge 
t t1* Non-Dimensional Time of First Downsurge 
V Velocity 
V0 Initial Velocity 
y  Height of Surge 
y* Non-Dimensional Height of Surge 
yp1 Height of First Peak 
y p1* Non-Dimensional Height of First Peak 
yt1 Height of First Downsurge 
y t1* Non-Dimensional Height of First Downsurge 
ZL Bottom Level of Tank 
Z0 Level of Reservoir 
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ε  Roughness of Conduit 

0η  Steady State Efficiency 

µ  Viscosity of Water 
ν  Kinematic Viscosity of Water 
ρ  Mass Density of Water 
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