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Abstract   In this paper, dynamic equations of motion of a 5 DoF robot manipulator including 
mechanical arms with revolute joints and their electrical actuators are considered. The application of 
integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and 
disturbance is studied. The advantage of this control technique is that it imposes the desired properties 
of stability by fixing the candidate Lyapunov functions initially, then by calculating the other 
functions in a recursive way. Simulation results are presented in order to evaluate the tracking 
performance and the global stability of the closed loop system. The validity and usefulness of the 
proposed technique for robot motion control when the system dynamics including both mechanical 
arms and electrical actuators become more complex is obtained from the results. 
 
Key Words   Integrator Backstepping Control, Actuators Dynamics, 5 DoF Robot Manipulator, 
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های دورانی به در اين مقاله، معادلات ديناميکي يک ربات فضايي شامل بازوهای مکانيکی با مفصل   چكيدهچكيدهچكيدهچكيده
اند، اعمال های الکتريکی بررسي شده و در حالتی که پارامترهای اينرسی ربات معلوم فرض شدههمراه محرک

. گرددو دستور کنترل مناسب ارائه ميروش کنترلی گام بعقب انتگرالی بر اين ربات مورد مطالعه قرار گرفته 
مزيت اين روش کنترلی در اين است که خواص مطلوب پايداری را با تعيين تابع لياپانف کانديدا شده اعمال 

نتايج مدلسازی شامل ارزيابی عملکرد . نمايد کرده و سپس ديگر توابع لازم را با يک روش برگشتی محاسبه می
يروی مسير و پايداری مجانبی سراسری سيستم کنترلی مدار بسته بوده و نشان بعقب در پ و کارآيی روش گام

تر شدن ديناميک سيستم که شامل دهد که روش پيشنهادی برای کنترل حرکت ربات با توجه به پيچيدهمی
 .باشدقسمتهای مکانيکی و الکتريکی است، بسيار مناسب مي

 
 

1. INTRODUCTION 
 
Recently robot's actuator dynamics has been explicitly 
included in control schemes. This dynamics becomes 
extremely important during fast robot motion and 
highly varying loads, [1-10]. However, the inclusion 
of actuators in dynamic equations complicates both 
the controller structure and its stability analysis [2]. 
We can avoid increasing the order of dynamic 
equations by considering the arm's dynamics and 
motor's dynamics as two cascade loops [3]. 
     Lyapunov theory has for a long time been an 
important tool in linear as well as nonlinear control 
theory. However, its use within nonlinear control 
programming has been hampered by difficulties to 
find a Lyapunov function for a given system. If 

one can be found, the system is known to be stable, 
but the task of finding such a function has often 
been left to the imagination and experience of the 
designer [11]. Also the more complicated the 
dynamics of the nonlinear system is, the more 
important and sophisticated this task will appear to 
be. 
     Over the past ten years, focus in the areas of 
control theory and control engineering has shifted 
from linear to nonlinear systems providing control 
algorithms for systems that are both more general and 
more realistic. Nonlinear control has, therefore, 
shown strong presence in academic curricula, in 
industry and in conferences during recent years 
[12]. The control community has, therefore, been 
receiving with open arms the invention of 
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constructive tools for nonlinear control design 
based on Lyapunov theory like backstepping 
and forwarding [11]. 
     In this paper, using the integrator backstepping 
method develops the problem of nonlinear position 
control of a 5 DoF robot manipulator. It consists of 
elaborating a control method [13] that guarantees the 
asymptotic stability and the tracking of desired 
position and velocity trajectories. A major 
advantage of this method is its flexibility to build 
the control law by avoiding the cancellation of 
useful non-linearities [8]. Simulation results 
presented in this paper show that the system has 
global stability. 
 
 
 

2. ROBOT DYNAMIC EQUATIONS 
 
The popular second order model of robot manipulators, 
which disregards the actuator dynamics, leads to 
unsatisfactory performance of nonlinear feedback 
controllers [14,15]. Especially, in fast tracking 
problems, with high-speed microprocessors, the 
small electric time constant of the servomotors 
cannot be neglected any more and a more precise 
model is needed [14]. Based on this fact, a third 
order model of robotic system is usually used. To 
avoid the need to measure the accelerations, in this 
paper, the arm's dynamics and motor's dynamics 
are considered as two cascade loops [3]. 
     Consider an n-links manipulator. Let q∈ Rn 
denote the vector of generalized displacements of 
joint space coordinates. Generally, the second order 
dynamic model of the mechanical system can be 
written as [16,17]: 
 

( ) Lm T)q(F)q(Gq).q,q(Cq.J)q(M +++++=τ &&&&&  (1) 
 
where robot parameters are: 
 

)q(M : n×n positive definite manipulator inertia 
matrix, 

mJ : n×n diagonal matrix of motors and gear 
inertias, 

)q,q(C & :n×n diagonal matrix due to Coriolis and 
centrifugal forces, 

)q(G : n×1 vector of joint torques and forces due 
to gravity, 

)q(F & : n×1 vector containing the static and 
dynamic friction terms, 

LT : n×1 vector representing an additive bounded 
joint torque disturbance, 

τ: n×1 vector of joint torques, 
 
Also with DC motors as system actuators, actuator 
dynamics is [1,3,8] 
 

vT.KI.RI.L Ee =+θ++ &&  (2) 
 
where, 
 
L: positive definite constant diagonal n×n matrix 

used to represent the electrical inductance, 
R: n×1 vector used to represent the electrical 

resistance, 
I: n×1 vector of armature current in each joint 

actuator, 
Ke: n×n positive definite constant diagonal 

matrix of back electromotive coefficients, 
θ: n×1 vector of angular positions of the rotors, 
TE: n×1 vector representing an additive bounded 

voltage disturbance, 
v: n×1 input armature voltage vector. 
 
The angular position of the rotors and generalized 
displacement in articulation coordinates are related by 
 

q.A=θ  (3) 
 
where A is an n×n positive definite constant 
diagonal matrix of gear ratios. 
     The relationship between the joint's torques 
vector and the armature current vector is described 
by: 
 

I.K.A
T

=τ  (4) 
 
where KT is n×n positive definite constant diagonal 
matrix of actuator torque coefficients. 
     Substituting Equation 4 in Equation 1, one 
obtains the following equation: 
 ( ) LT)q(F)q(Gq).q,q(Cq.mJ)q(MI.TK.A +++++= &&&&&

 (5) 
 
Also, if we combine Equation 3 with Equation 
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2, dynamic equation of actuators can be written as: 
 

vTq.A.KI.RI.L Ee =+++ &&  (6) 
 
According to Reference 6, we can have a cascaded 
form of the dynamic equations by considering 
Equations 5 and 6 together: 
 

( )




=+++

=+++++

vTq.A.KI.RI.L
I.K.AT)q(F)q(Gq).q,q(Cq.J)q(M

Ee

TLm

&
&

&&&&&  

 (7) 
 
 
 

3. STATE SPACE REPRESENTATION 
 
Let us put the system's dynamics in a state space 
form. With the state vectors chosen as 
 

[ ] q       ,       q      ,    , 2 1
TT

2
T
1 &=x=xxx=x  (8) 

 
and 
 

[ ]I3 =ξ  (9) 
 
then, from Equations 7, 8 and 9, we have: 
 

211 q     q ξ==ξ⇒=ξ &&  (10) 
 

( )
( )3TL21221

1
m12

2

.K.AT)(F)(G).,(C
J)(Mq

      q

ξ+−ξ−ξ−ξξξ−
×+ξ==ξ

⇒=ξ
−&&&

&

 (11) 
 

( )vT.A.K.R.L     I E2e3
1

33 +−ξ−ξ−=ξ⇒=ξ −&  
 (12) 
 

( ) ( )

( )
( )[ ] [ ]vLT.A.K.RL

K.AJ)(M
0

T)(F)(G).,(CJ)(M

1
E2e3

1
3

3
T

1
m1

L21221
1

m1

2

−−

−

−

++ξ+ξ−=ξ

ξ







+ξ

+







+ξ+ξ+ξξξ+ξ−

ξ
=ξ

&

&

 

 (13) 
 
This dynamics can be written in the following 

general form: 
 

v).,(g),(f

).(g)(f   

31313

3

ξξ+ξξ=ξ

ξξ+ξ=ξ
&

&
 (14) 

 
where, n2R∈ξ , n

3 R∈ξ  and nR∈ν . 
 
 
 

4. INTEGRATOR BACKSTEPPING 
TECHNIQUE 

 
Backstepping is a recursive design methodology 
for constructing both feedback control laws and 
associated Lyapunov functions in a systematic 
manner, whose significance for nonlinear control 
can be compared to root locus or Nyquist's method 
for linear systems. Its root is in the theory of 
feedback linearization of the 1980's, [12,18,19]. 
The key idea in backstepping is to let certain states 
act as "virtual controls" of others, [11,19]. The 
same idea can be found in cascade control design 
and singular perturbation theory [20]. 
     In this method, by recursive manner we introduce 
feedback control laws and their Lyapunov functions, 
storage functions and their stabilizing functions, in 
a systematic way [11]. 
     Nonlinear backstepping designs are strongly 
related to feedback linearization. However, while 
feedback linearization method cancels all 
nonlinearities in the system, it will be shown that 
when applying the backstepping design methodology, 
the designer obtains flexibility to exploit "good" 
nonlinearities while "bad" or destabilizing nonlinearities 
are dominated e.g. by adding nonlinear dampings. 
Hence, additional robustness is obtained. This is 
important in industrial control systems since 
cancellation of all nonlinearities require precise models 
which are difficult to obtain in practice [11,18]. 
     The reference [1] applied this procedure in robot 
motion control. Also the references [6,8] used this 
method for the case of uncertainty in combined 
dynamics. But these studies were for planar or low 
DoF robot manipulators. We consider this technique 
to control the whole dynamics of a 5-Dof robot 
manipulator. The proposed technique in this paper 
does not need measuring joint accelerations and 
some difficult calculations are avoided although 
system dynamics is still complex. 
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5. THE BACKSTEPPING CONTROL LAW 
FOR ROBOT TRAJECTORY TRACKING 

 
According to Reference 21, the control law will be 
conceived by applying the backstepping technique. 
To ensure the asymptotic stability of the 
system, the backstepping technique consists of 
considering a given output, fixing a storage function 
and calculating the candidate and stabilizing 
functions valid for each system step. In the present 
case, we have only one step. The objective is to 
find a control law v to stabilize the system of 
Equation 7. System of Equation 13 satisfies all 
requirements of the class of strict-feedback 
systems [21]. 
     Considering the output, 
 

)().(y 0d33 ξαξξβ −−=  (15) 
 
the candidate Lyapunov function, 
 

y.y)(W),(V T
2
1

3 +ξ=ξξ  (16) 
 
and the storage function, 
 

).()(
2
1)(W d11

T
d11 ξ−ξξ−ξ=ξ  (17) 

 
such that the stabilizing function is: 
 

)().()( d22d330 ξ−ξ−ξ−ξβ=ξα  (18) 
 
with selecting β = In×n the identity matrix, and using 
Equations 8 and 9, the time derivatives of )(W ξ , 

),(V 3ξξ  and y are: 
 

).()( ).()(
2
1

).()(
2
1)(W

d22
T

d11d11
T

d11

d11
T

d11

ξ−ξξ−ξ=ξ−ξξ−ξ

+ξ−ξξ−ξ=ξ

&&

&&&

 

 (19) 
 

y.y).()(

 y.yy.y)(W),(V
T

d22
T

d11

T
2
1T

2
1

3

&

&&&&

+ξ−ξξ−ξ

=++ξ=ξξ
 (20) 

 

ξ
ξ∂

ξα∂
−ξ−ξ= &&& .

)(
)(y 0

d33  (21) 

From Equation 18: 
 

( )

[ ] [ ]{ }nnnn

d22d33
0

1,0

 )()(
)(

×× −

=ξ−ξ−ξ−ξ
ξ∂

∂=
ξ∂

ξα∂
 (22) 

 
So, we can rewrite Equation 21 as: 
 

[ ] [ ]{ } 2d33nnnnd33

0
d33

)( .1,0)(

 .)()(y

ξ+ξ−ξ=ξ−−ξ−ξ

=ξ
ξ∂

ξα∂−ξ−ξ=

××
&&&&

&&&
 

 (23) 
 
Substituting Equation 23 into Equation 20, one 
obtains 
 

( )2d33
T

d22
T

d113

)(.y

).()(),(V

ξ+ξ−ξ

+ξ−ξξ−ξ=ξξ
&&

&
 (24) 

 
Now, by replacing ξ&  and 3ξ& in Equation 13, we 
will have 
 

( )(
( ) (
( )))L21221

3T
1

m1

d3
1

E2e3
1T

d22
T

d113

T)(F)(G).,(C
.K.A.J)(M

v.LT.A.K.RL.y 

).()(),(V

+ξ+ξ+ξξξ
−ξ+ξ

+ξ−++ξ+ξ−

+ξ−ξξ−ξ=ξξ

−

−−

&

 

 (25) 
 
By using Lyapunov stability condition, one obtains 
 

y.y),(V T
3 −≤ξξ&  (26) 

 
Then we have 
 

( )(
( ) (

( )))L21221

3T
1

m1d3
1

E2e3
1T

d22
T

d11
T

T)(F)(G).,(C
.K.A.J)(Mv.L

T.A.K.RL.y

 ).()(y.y

+ξ+ξ+ξξξ
−ξ+ξ+ξ−

++ξ+ξ−

+ξ−ξξ−ξ≥−

−−

−

 

 (27) 
 
By rewriting the above equation, one gets 
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( )(
( ) (
( )))L21221

3T
1

m1

d3
1

E2e3
1T

d22
T

d11
T

T)(F)(G).,(C
.K.A.J)(M

v.LT.A.K.RL.y 

).()(y.y

+ξ+ξ+ξξξ
−ξ+ξ

+ξ−++ξ+ξ−

≥ξ−ξξ−ξ−−

−

−−

 

 (28) 
 
In the other hand, combining Equation 15 and Equation 
18 gives, 
 

)(y d22 ξ−ξ=  (29) 
 
Therefore, we obtain from Equation 28: 

( )(
( ) (
( )))L21221

3T
1

m1

d3
1

E2e3
1T

d11
T

T)(F)(G).,(C 
.K.A.J)(M

v.LT.A.K.RL.y

 ))(y.(y

+ξ+ξ+ξξξ−
−ξ+ξ+

ξ−++ξ+ξ−

≥ξ−ξ+−

−

−−

 

 (30) 
 
One sufficient condition for Inequality 30 to be 
satisfied is: 
 

( )(
( ) (

( )))L21221

3T
1

m1

d3
1

E2e3
1

d11

T)(F)(G).,(C
.K.A.J)(M

v.LT.A.K.RL 

))(y(

+ξ+ξ+ξξξ−
−ξ+ξ

+ξ−++ξ+ξ−

≥ξ−ξ+−

−

−−

 

 (31) 
 
The final form of the above equation is, 
 

( )(
( ) (
( )))L21221

3T
1

m1

d3
1

E2e3
1

d11d22

T)(F)(G).,(C
.K.A.J)(M

v.LT.A.K.RL 

))()((

+ξ+ξ+ξξξ
−ξ+ξ+

+ξ−++ξ+ξ−

≥ξ−ξ+ξ−ξ−

−

−−

 

 (32) 
 
Noticing that 
 

0L),(g 31 ≠=ξξ  (33) 
 
where g1 is nonsingular for all values of 1ξ , 2ξ  

and 3ξ , we can present a particular control law of 
the model of Equation 13, 
 

(
( )

( ) (
( )))L21221

3T
1

m1

d3E2e3
1

d11d22

T)(F)(G).,(C     
.K.A.J)(M

T.A.K.RL

))()((. Lv

+ξ+ξ+ξξξ
+ξ−+ξ

+ξ++ξ+ξ

+ξ−ξ+ξ−ξ−=

−

−

 

 (34) 
 
The global stability of the closed loop system is 
ensured by the recursive nature of the backstepping 
technique. If we consider that all the parameters 
are known, in addition to the desired positions, 
velocities and accelerations trajectories, the expression 
of the transformed desired current Id from Equation 
7 can be obtained as follow, 
 

( )









=+++

+

=+++++

vTq.A.KI.RI.L

I~.K.AI.K.A

T)q(F)q(Gq).q,q(Cq.J)q(M

Ee

TdT

Lm

&
&

&&&&&

 

 (35) 
 
where I~ , is the current error and Id is the desired 
current. 
     Then dynamics of the robotic arm can be seen as 
a subsystem, which has a disturbance I~.K.A T  and is 
controlled by A.KT.Id. Thus, by transforming the 
coordinates into state variable vectors, we have 
 

( )(
)ε−+ξ+ξ+

ξξξ+ξ+ξ=ξ −−

.KT)(F)(G

).,(C.J)(MA.K

dL
*
21

*
221

*
2m1

11
Td3

&
 

 (36) 
 
with *

2ξ  and ε defined as follow 
 

).( d11d2
*
2 ξ−ξΛ−ξ=ξ  (37) 

 
*
22d11d22 ).( ξ−ξ=ξ−ξΛ+ξ−ξ=ε  (38) 

 
where ε is the auxiliary error and Λ is an n×n 
positive definite matrix. Vector of desired state 
variables and their errors can be presented as, 
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d333d222d111
~,~,~ ξ−ξ=ξξ−ξ=xx-x=x  (39) 

 
 
 

6. THE ROBOTIC SYSTEM 
 
The considered robotic system is a 5Dof three-
dimensional robot manipulator with revolute joints. 

Its kinematic specifications are given in Table 1 
[16,17]. Schematic of the robot is presented in 
Figure 1. 
     Masses and inertias, link's center of mass vectors 
in corresponding frames and motors specifications 
are considered [22]. 
     The desired trajectory is defined in joint space 
in which the arms start from zero and go to θm,i , 
then pauses for 20 sec at the position and finally 
return to the initial point. In the first part of the 
trajectory, all joints have motions together and in 
the final part, they have separate motions. Table 2 
shows the desired trajectory data in joint space. 
 
 
 

7. SIMULATION RESULTS 
 
The simulation results are for two cases. In first, 
we have simulated the robot for tracking a trajectory 
when there is no uncertainty in the parameters and 
no disturbance exists. In this case, gains of the 
controller are chosen as Λ = 10.I5×5, Kd = 10.I5×5. 
Figs. 2-4 show the controlled voltage commands, 
positions and velocities of links for 100 sec. 
     For the second case, we have simulated the system 
for 5~10% uncertainty in the parameters and the 
existence of voltage disturbances as Vi = 0.1×Sin 
(π.t/4) for i=1… 5. The controller gains are selected as 
Λ = 100.I5×5, Kd = 80.I5×5. Results for this case are 
shown in Figures 5-7. 
 
 
 

8. CONCLUSION 
 
The simulation results show the ability and merit 
of the backstepping technique. The results of both 
cases were fairly good. All control commands are 
admissible and trajectory was tracked with good 
accuracy. 
     The first case of simulation shows high tracking 
accuracy of backstepping when just some parts of 
robot dynamics are used. The second case shows 
the power of the proposed control technique for 
eliminating disturbances and the robot's acceptable 
and accurate tracking of the desired trajectory. 
     The results show the integrator backstepping 
control method is very suitable since it does not 
use all system nonlinearities. It only uses good 

TABLE 1. Kinematic Specifications of The Robot. 
 

αi 
[rad] 

ai 
[mm] 

di 
[mm] 

θi 
[rad] Joint 

2
π−  0 125 θ1 1 

0 200 0 θ2 2 
0 200 0 θ3 3 

2
π−  0 0 θ4 4 

0 0 148 θ5 5 
 
 

TABLE 2. Desired Trajectory Data. 
 

Link 1 2 3 4 5 

θm,i 3
2π−  

2
π  

3
π−  

6
π  π 

 
 

Figure 1. Schematic of the 5 DoF robot. 
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Figure 2. Control commands for the first case. 
 
 

 
Figure 3. Positions in trajectory tracking for the first case. 
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nonlinearities and stabilizing properties of the 
system dynamics. 

 
     Also, it can be seen that the proposed technique 
is robust against  parameter uncertainty and 

 
 

Figure 4. Velocities in trajectory tracking for the first case. 
 
 

 
 

Figure 5. Control commands for the second case. 
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disturbance. Therefore, if we have not complete 
knowledge of the system, we can propose using 

 
this method to improve the system performance 
and to decrease the possibility of controlled system 

 
 

Figure 6. Positions in trajectory tracking for the second case. 
 
 

 
 

Figure 7. Velocities in trajectory tracking for the second case. 
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instability. This is the subject of our continuing 
research. Also, we are testing this method on an 
experimental setup and the results will be reported 
in the near future. 
 
 
 

9. NOMENCLATURE 
 

)(0 ξα : stabilizing function, 
β = In×n  the identity matrix, 
ε : auxilliary error, 
Λ: an n×n positive definite matrix, 
τ : n×1 vector of joint torques, 
θ : n×1 vector of angular positions of the rotors, 
v: n×1 input armature voltage vector, 

[ ]  , TT
2

T
1 ξξ=ξ  [ ]I3 =ξ  state vectors, 

A: an n×n positive definite constant diagonal 
matrix of gear ratios, 

)q,q(C & :  n×n diagonal matrix due to Coriolis and 
centrifugal forces, 

)q(F & : n×1 vector containing the static and dynamic 
friction terms, 

)q(G : n×1 vector of joint torques and forces, due 
to gravity, 

I: n×1 vector of armature current in each 
joint actuator, 

I~ : current error, 
Id : desired current, 

mJ : n×n diagonal matrix of motors and gear 
inertias, 

Ke: n×n positive definite constant diagonal 
matrix of back electromotive coefficients, 

KT : n×n positive definite constant diagonal 
matrix of actuator torque coefficients, 

L: positive definite constant diagonal n×n 
matrix used to represent the electrical 
inductance, 

)q(M : n×n positive definite manipulator inertia 
matrix, 

q ∈ Rn :vector of generalized displacements of 
joint space coordinates, 

q& ∈ Rn :vector of generalized velosities of joint 
space coordinates, 

q && ∈ Rn: vector of generalized accelerations of joint 
space coordinates, 

R:  n×1 vector used to represent the electrical 
resistance, 

LT : n×1 vector representing an additive 
bounded joint torque disturbance, 

t : time 
TE: n×1 vector representing an additive 

bounded voltage disturbance, 
),(V 3ξξ : candidate Lyapunov function, 

Vi: voltage disturbance,  
)(W ξ : storage function, 

y : output vector, 
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