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Abstract In this paper, dynamic equations of motion of a 5 DoF robot manipulator including
mechanical arms with revolute joints and their electrical actuators are considered. The application of
integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and
disturbance is studied. The advantage of this control technique isthat it imposes the desired properties
of stability by fixing the candidate Lyapunov functions initialy, then by calculating the other
functions in a recursive way. Simulation results are presented in order to evaluate the tracking
performance and the global stability of the closed loop system. The validity and usefulness of the
proposed technique for robot motion control when the system dynamics including both mechanical
arms and electrical actuators become more complex is obtained from the results.

Key Words Integrator Backstepping Control, Actuators Dynamics, 5 DoF Robot Manipulator,
Robot Control
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1. INTRODUCTION

Recently robot's actuator dynamics has been explicitly
included in control schemes. This dynamics becomes
extremely important during fast robot motion and
highly varying loads, [1-10]. However, the inclusion
of actuators in dynamic equations complicates both
the controller structure and its stability analysis[2].
We can avoid increasing the order of dynamic
equations by considering the arm's dynamics and
motor's dynamics as two cascade loops[3].
Lyapunov theory has for a long time been an
important tool in linear as well as nonlinear control
theory. However, its use within nonlinear control
programming has been hampered by difficulties to
find a Lyapunov function for a given system. If
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one can be found, the system is known to be stable,
but the task of finding such a function has often
been left to the imagination and experience of the
designer [11]. Also the more complicated the
dynamics of the nonlinear system is, the more
important and sophisticated this task will appear to
be.

Over the past ten years, focus in the areas of
control theory and control engineering has shifted
from linear to nonlinear systems providing control
agorithmsfor systemsthat are both more general and
more redlisic. Nonlinear control has, therefore,
shown strong presence in academic curricula, in
industry and in conferences during recent years
[12]. The control community has, therefore, been
receiving with open arms the invention of
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congtructive tools for nonlinear control design
based on Lyapunov theory like backstepping
and forwarding [11].

In this paper, using the integrator backstepping
method devel ops the problem of nonlinear position
control of a5 DoF robot manipulator. It consists of
elaborating a control method [13] that guarantees the
asymptotic stability and the tracking of desired
position and velocity trajectories. A major
advantage of this method is its flexibility to build
the control law by avoiding the cancellation of
useful non-linearities [8]. Simulation results
presented in this paper show that the system has
global stability.

2. ROBOT DYNAMIC EQUATIONS

The popular second order modd of robot manipulators,
which disregards the actuator dynamics, leads to
unsatisfactory performance of nonlinear feedback
controllers [14,15]. Especidly, in fast tracking
problems, with high-speed microprocessors, the
small electric time constant of the servomotors
cannot be neglected any more and a more precise
model is needed [14]. Based on this fact, a third
order model of robotic system is usually used. To
avoid the need to measure the accelerations, in this
paper, the arm’'s dynamics and motor's dynamics
are considered as two cascade |oops [3].

Consider an n-links manipulator. Let gOJR"
denote the vector of generalized displacements of
joint space coordinates. Generally, the second order
dynamic model of the mechanical system can be
written as[16,17]:

T=(M(@)+J,)a+C@,q)a+G@+Fe+T, (1)
where robot parameters are:

» ., . NXn positive definite manipulator inertia
matrix,
nxn diagonal matrix of motors and gear
inertias,
C(q, ) :nxn diagonal matrix due to Coriolis and

centrifugal forces,
« ., . nx1 vector of joint torques and forces due

to gravity,

J .

m:*
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F(g): nx1 vector containing the static and
dynamic friction terms,

TL:  nx1 vector representing an additive bounded
joint torque disturbance,

T nx1 vector of joint torques,

Also with DC motors as system actuators, actuator
dynamicsis[1,3,8]

Li+RI+K_8+T.=v (2)

where,

L: positive definite congtant diagonal nxn matrix
used to represent the ectrical inductance,

R: nx1 vector used to represent the electrical
resistance,

I nx1 vector of amature current in each joint
actuator,

Ke: nxn positive definite constant diagonal
matrix of back electromotive coefficients,

: nx1 vector of angular positions of the rotors,

Te: nx1 vector representing an additive bounded
voltage disturbance,
Vv nx1 input armature voltage vector.

The angular position of the rotors and generalized
displacement in articulation coordinates are related by

0=Aq A3)

where A is an nxn postive definite constant
diagonal matrix of gear ratios.

The relationship between the joint's torques
vector and the armature current vector is described
by:

T=AK | 4
where K1 is nxn positive definite constant diagonal
matrix of actuator torque coefficients.

Substituting Equation 4 in Equation 1, one
obtains the following equation:

AKpI=M@+3_Ji+Cla,6)a+G(a) +REA) +T,
©®)

Also, if we combine Equation 3 with Equation
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2, dynamic equation of actuators can be written as.
Li+RI+K AQ+T. =V (6)
According to Reference 6, we can have a cascaded

form of the dynamic equations by considering
Equations 5 and 6 together:

[(M(a) +3,,)9+C(,0).q+G(g) + F(@) + T, = AK, |
ﬁ.{ +RI+K AQ+T. =V

(7)

3. STATE SPACE REPRESENTATION

Let us put the system's dynamics in a state space
form. With the state vectors chosen as

B L I (8)

=[] 9)

then, from Equations 7, 8 and 9, we have:
&,=q0 §&-=

&, =q 0
Ez =q= (M(El)+‘]m)_l

(- C(E,,8,) &, ~G(E)-F(E,) - T, +AK, ;)
(1)

q=¢, (10)

g,=1 0 &, =L (-RE-K_AE, -T.+V)
(12)

0 £,
° %—(M(El) +3,)(CE,.E,) &, +GE) +FE) +T,)
0 0
HMeE) +3,) %
=[-LMRE, +K AL, +T.)|+[L]v

O
O+
0

(13)

This dynamics can be written in the following
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general form:

& =f(&)+9(8)&,
23 = f1(E|E3) + 91(5)23)'V

(14)

where,E 1R*", &, OR" andvOR".

4. INTEGRATOR BACKSTEPPING
TECHNIQUE

Backstepping is a recursive design methodology
for constructing both feedback control laws and
associated Lyapunov functions in a systematic
manner, whose significance for nonlinear control
can be compared to root locus or Nyquist's method
for linear systems. Its root is in the theory of
feedback linearization of the 1980's, [12,18,19].
The key idea in backstepping is to let certain states
act as "virtual controls' of others, [11,19]. The
same idea can be found in cascade control design
and singular perturbation theory [20].

In this method, by recursive manner we introduce
feedback control laws and their Lyapunov functions,
storage functions and their stabilizing functions, in
asystematic way [11].

Nonlinear backstepping designs are strongly
related to feedback linearization. However, while
feedback linearization method cancels all
nonlinearities in the system, it will be shown that
when gpplying the backstepping design methodology,
the designer obtains flexibility to exploit "good"
nonlinearities while "bad" or detabilizing nonlinearities
are dominated e.g. by adding nonlinear dampings.
Hence, additional robustness is obtained. This is
important in industrial control systems since
cancellation of al nonlinearities require precise moddls
which are difficult to obtain in practice [11,18].

The reference [1] applied this procedure in robot
motion control. Also the references [6,8] used this
method for the case of uncertainty in combined
dynamics. But these studies were for planar or low
DoF robot manipulators. We consder this technique
to control the whole dynamics of a 5-Dof robot
manipulator. The proposed technique in this paper
does not need measuring joint accelerations and
some difficult calculations are avoided although
system dynamicsis still complex.
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5. THE BACKSTEPPING CONTROL LAW
FOR ROBOT TRAJECTORY TRACKING

According to Reference 21, the control law will be
conceived by applying the backstepping technique.
To ensure the asymptotic stability of the
system, the backstepping technique consists of
considering a given output, fixing a storage function
and cdculating the candidate and stabilizing
functions valid for each system step. In the present
case, we have only one step. The objective is to
find a control law v to dabilize the sysem of
Equation 7. Sysem of Equation 13 satisfies all
requirements of the class of strict-feedback

systems [21].

Considering the output,
Y=B.(& =65 )—a0(&) (15)
the candidate Lyapunov function,
V(EE)=WE) +3y"y (16)

and the storage function,
WEE) = 26, ~8) (1~ Eu) )

such that the stabilizing function is:
ao(E):B-(Eg_Egd)_(Ez_EZd) (18)
with selecting B = I, the identity matrix, and using

Equations 8 and 9, the time derivatives of w(g),
V(E,E,) andy are:

W(E) =2 (6~ £u) (6 ~Eu) +

%(El _Eld)T-(El _Eld) = (El _Eld)T-(Ez _Ezd)

(19)
V(E,Eg):TW(E)+%S/ .y:%y Y= (20)
(El_éld) -(EQ_EZd)+y y
ok _g y_90,() ¢
Y =(&;~&s) o8 23 (21)
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From Equation 18:

006(8) _ 0 e ¢ v g v\
T“az((és Esd) (Ez Ezd)) (22)

{0]e [-1 et

So, we can rewrite Equation 21 as:

o P .
y=(£3—agd)—%(z).a=

(23 _E3d) _{ [O]nxn’[_]]nxr} E = (E3 _E3d) + Ez
(23)

Substituting Equation 23 into Equation 20, one
obtains

V(E:Ea) = (E1 _Em)T-(Ez _Ezd) +

yT'((Es _E3d)+éz) “

Now, by replacing & and &,in Equation 13, we
will have

V(E,Eg) = (El _Eld)T-(Ez _Ezd) +
Y FLRE, + K AL, +T.)+ L v -8y, +

ME)+3, ) (AK,E, -

(C(E1,8,)&, +G(E) +FE,) +T.))
(25)

By using Lyapunov stahility condition, one obtains
VEE)s-y'y (26)

Then we have
_yT-y 2 (El _Eld)T-(Ez _Ezd) +
Y (FLMRE, +K AL, +T, )+

LH =& +(ME) +3,) " (AK & -

(C(,.8,)&, +G(E) +F(E,) +T,))
27)

By rewriting the above equation, one gets
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_yT'y_(El _Eld)T'(EZ _Ezd) 2
Y (L (RE, + K AL, + T )+ LTV -8, +
ME)+I ) (AKLE, -
(C(81.8,) &, +G(&,) +F(E,) +T,))
(28)

In the other hand, combining Equation 15 and Equation
18 gives,

y:(Ez_E.zd) (29)

Therefore, we obtain from Equation 28:
Yy + (€ -Ey)) 2
y L (RE, + K AL, +T.)+ L v -,
+(ME)+I ) (AK,E, -
~(C(€,.&,)&, +G(E) +F(E,) + T.)))
(30)

One sufficient condition for Inequality 30 to be
satisfied is:

-(y+(51—31d))2
FL'(RE, +K AL, +T. )+ L v -8, +

ME)+I, ) (AKLE, -

-(C(.,8,) &, +G(E,) +F(E,) +T.))
(31)

Thefina form of the above equation is,

_((Ez _Ezd) +(E1 _Eld)) 2
FLY(RE, +K AL, + T )+ L v -8, +

+(ME)+3, ) (AK,E, -

(C(E,,8,) &, +G(E,) +F(E,) +T.))
(32

Noticing that
9,(8,&;) =L #0 (33)

where g; is nonsingular for al values of §,, &,
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and¢ ;, we can present a particular control law of
the model of Equation 13,

v=L -(_ ((Ez _Ezd) +(E:l _Eld)) +
LY RE, +K AL, +T.)+E,, +

(M (El) + Jm )_l-(_A-KT-Es +

(C(,.8,)E, +GE,) +FE,) +T.))
(34)

The global stability of the closed loop system is
ensured by the recursive nature of the backstepping
technique. If we consider that all the parameters
are known, in addition to the desired positions,
velocities and accel erations trgjectories, the expression
of the transformed desired current |4 from Equation
7 can be obtained as follow,

E(M (@) +3,,)a+C(q,a).q+G(q) +F@) +T, =
AK I, +AK, .
HA+RI+K, AQ+T. =v

(35)

where T , is the current error and |4 is the desired
current.
Then dynamics of the robotic arm can be seenas

asubsystem, which has adisturbance A.K ;.1 and is

controlled by A.Kt.lg. Thus, by transforming the
coordinates into state variable vectors, we have

£ =KEA(M(E) +3, )8, +C(E,E,)E)
+G(E) +FE) +T, K ¢)
(36)

with &, and € defined as follow
E; =&, ~N(&, —&y) (37
€=Ez‘52d"‘/\-(El—im):Ez—E; (38)

where €is the auxiliary error and A is an nxn
positive definite matrix. Vector of desired state
variables and their errors can be presented as,
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TABLE 1. Kinematic Specifications of The Robot.

. 6 di S q;
Joint : :
[rad] [mm] [mm] | [rad]
1 0, 125 0 —g
2 0, 0 200 0
3 0, 0 200 0
Tt
4 0, 0 0 3
5 05 148 0 0

TABLE 2. Desired Trajectory Data.

Link 1 2 3 4 5
e . —2[ E —L[ E Tt
m! 3 2 3 6

Figure 1. Schematic of the 5 DoF robot.

101 ‘1d"~2: EZ_EZd’Eszzs_Esd (39)

6. THE ROBOTIC SYSTEM

The considered robotic system is a 5Dof three-
dimensiona robot manipulator with revolute joints.
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Its kinematic specifications are given in Table 1
[16,17]. Schematic of the robot is presented in
Figure 1.

Masses and inertias, link's center of mass vectors
in corresponding frames and motors specifications
are considered [22].

The desired trajectory is defined in joint space
in which the arms start from zero and go to 6, ,
then pauses for 20 sec a the pogtion and finaly
return to the initial point. In the first part of the
trgjectory, al joints have motions together and in
the fina part, they have separate motions. Table 2
shows the desired trajectory datain joint space.

7.SIMULATION RESULTS

The simulation results are for two cases. In first,
we have smulated the robot for tracking a trgjectory
when there is ho uncertainty in the parameters and
no disturbance exists. In this case, gains of the
controller are chosen as A = 10.15x5, K4 = 10.I5xs.
Figs. 2-4 show the controlled voltage commands,
positions and velocities of links for 100 sec.

For the second case, we have smulated the system
for 5~10% uncertainty in the parameters and the
existence of voltage disturbances as V; = 0.1xSin
(Ttt/4) for i=1... 5. The controller gains are selected as
A = 100.lsx5, Ky = 80.I54s5. Results for this case are
shown in Figures 5-7.

8. CONCLUSION

The simulation results show the ability and merit
of the backstepping technique. The results of both
cases were fairly good. All control commands are
admissible and trgectory was tracked with good
accuracy.

The first case of simulation shows high tracking
accuracy of backstepping when just some parts of
robot dynamics are used. The second case shows
the power of the proposed control technique for
eliminating disturbances and the robot's acceptable
and accurate tracking of the desired trgjectory.

The results show the integrator backstepping
control method is very suitable since it does not
use all system nonlinearities. It only uses good
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Figure 2. Control commands for the first case.
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Figure 3. Positionsin trgjectory tracking for the first case.
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Figure 4. Veocitiesin trajectory tracking for thefirst case.
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Figure 5. Control commands for the second case.

nonlinearities and sabilizing properties of the

Also, it can be seen that the proposed technique
system dynamics.

is robust against parameter uncertainty and
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Figure 7. Velocitiesin tragjectory tracking for the second case.

disturbance. Therefore, if we have not complete
knowledge of the system, we can propose using
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this method to improve the system performance
and to decrease the possibility of controlled system
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instability. This is the subject of our continuing
research. Also, we are testing this method on an
experimental setup and the results will be reported
in the near future.

9. NOMENCLATURE

a, (&) stabilizing function,

B = lxn the identity matrix,

€: auxilliary error,

N an nxn positive definite matrix,

T nx1 vector of joint torques,

0 nx1 vector of angular positions of the rotors,

v nx1 input armature voltage vector,

g=lera] g.=[]  satevectors,

A: an nxn positive definite constant diagonal
matrix of gear ratios,

C(q,9): nxn diagona matrix due to Coriolis and
centrifugal forces,

F(g) : nx1 vector containing the static and dynamic
friction terms,

« ., . hx1vector of joint torques and forces, due
to gravity,

I: nx1 vector of armature current in each
joint actuator,

l: current error,

lg: desired current,

Jm: nxn diagonal matrix of motors and gear
inertias,

Ke: nxn postive definite constant diagonal

matrix of back e ectromotive coefficients,
Kr: nxn postive definite constant diagonal
matrix of actuator torque coefficients,

L: positive definite constant diagonal nxn
matrix used to represent the electrical
inductance,

w ., . NXn podtive definite manipulator inertia
matrix,

gOR" :vector of generalized displacements of
joint space coordinates,
gOR" :vector of generalized velosities of joint

space coordinates,
. OR" vector of generalized accelerations of joint

space coordinates,
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R: nx1 vector used to represent the electrical
resistance,

TL: nx1 vector representing an additive
bounded joint torque disturbance,

t: time

Te: nx1l vector representing an additive
bounded voltage disturbance,

V(&,€,) : candidate Lyapunov function,

Vi voltage disturbance,
W(&) : storage function,
y: output vector,
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