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Abstract   Load Frequency Control (LFC) has received considerable attention during last decades. 
This paper proposes a new method for designing decentralized interaction estimators for 
interconnected large-scale systems and utilizes it to multi-area power systems. For each local area, a 
local estimator is designed to estimate the interactions of this area using only the local output 
measurements. In fact, these interactions are the information of other area. A new scheme is 
developed to construct an approximate model for the interaction dynamics and design a local 
estimator. The designed local estimator exploits the model of each area and its actual inputs and 
outputs to produce a good estimation of unknown states and interactions. It is shown that in the 
proposed method the errors of estimation are globally ultimately bounded with respect to a specific 
bound. Our scheme is used to design decentralized estimator for a three-area power system to 
illustrate the effectiveness of the proposed method. 
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در اين مقاله روش    . مورد توجه زيادی قرار گرفته است      ) LFC( فرکانس   -   در دهه اخير کنترل بار           چکيدهچکيدهچکيدهچکيده
عاد وسيع و بکارگيري آن در يک سيستم قدرت            تخمين نا متمرکز اثرات تداخلي سيستمهاي اب        برايجديدي  

 تخمين اثرات تداخلي وارده به هر ناحيه محلي طراحي          براي هيک تخمينگر محلي  . گردد چند ناحيه اي ارائه مي    
طي يک روش جديد، مدلي تقريبي . باشند  در حقيقت، اطلاعاتي از ساير نواحي مي       ،اين اثرات تداخلي  . گردد مي

تخمينگر هر ناحيه با استفاده از      . گردد شود و تخمينگر محلي طراحي مي       خلي ساخته مي  از ديناميک اثرات تدا   
. آورد ورودي ها و خروجي های آن ناحيه، تخميني از اثرات تداخلي و متغيرهای حالت ناشناخته را بدست مي                  

. گردد ميطي چند قضيه، نشان داده شده است که خطای تخمين به طور نهايي به يک محدوده مشخص همگرا                    
متمرکز در يک سيستم قدرت       طراحي تخمينگر نا   به منظور  نشان دادن قابليت های بيشتر، روش پيشنهادي         براي

 .سه ناحيه ای پياده سازی گرديده است
 
 
 

1. INTRODUCTION 
 
In Power systems, one of the most important issues 
is load frequency control (LFC), which deals with 
the problem of how to deliver the demanded power 
at the desired frequency with minimum transient 
oscillations [1]. This problem has received considerable 
attentions during the last three decades led to 
development of many different approaches [2-4]. 
     Load frequency control in a multi-area power 
system is an example of large-scale systems, which 

is important in electrical power system design and 
operation. Many control strategies for load frequency 
control have been proposed [5-7]. A local load 
frequency controller uses only its area’s state 
measurements. It does not use any feedback from 
other area. Therefore the interactions of the other 
area are unknown for each local controller. In the 
most control strategies the interactions are considered 
as an external disturbances [8-9]. While this paper 
addresses a method to reconstruct the interactions 
which can be used in control design strategies to 
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yields the better results. 
     The classical scheme for decentralized state 
feedback control is based on the assumption that 
all states of the subsystems are available [10-11]. 
In large-scale systems, especially multi-area power 
systems, however, this assumption is not usually 
realistic. Therefore, a state estimator has to be 
designed. This estimator exploits the model of each 
subsystem and its actual inputs and outputs to 
produce a good estimation of unknown states of 
the system. Interactions between subsystems are 
another uncertainties that make the complexity of 
controller design in large-scale systems. In the 
classical scheme for decentralized control, the 
interactions are unknown for the local observer or 
controller. Therefore the reconstruction of interactions 
plays an important role in the local observers and 
controllers to achieve less conservative performance. 
     The main idea of this paper is to introduce a 
scheme to estimate the interactions in a decentralized 
approach. The decentralized observation problem 
was first considered in [12]. Necessary and 
sufficient conditions on the subsystems were 
derived in [13] under which the observers could be 
designed. In [14] an output-decentralization and 
stabilization scheme were proposed, which could 
be directly used to construct asymptotic state 
estimators for linear large-scale systems. The 
problem of robustness of a Luenberger observer 
applied to a given large-scale system was addressed in 
[15]. 
     In [16] a decentralized filter was obtained by 
identifying the dynamics of the interaction variables, 
and estimating the local states and interactions 
using local information. An indirect method for 
decentralized estimation of interconnected large-
scale systems was presented in [17]. In [17], the 
estimators were obtained in two steps. In the first 
step, an approximate model for the desired local 
variables, in an indirect method, was derived. In 
the second step a local filter was derived using the 
obtained model and the local measurements. 
     In the previously published papers, [16-19], either 
the local state vector and the interaction variables 
are assumed to be available or the interactions have 
been treated as disturbances. However in the 
practical problems, as considered in this paper, 
there is no measurement on the interaction variables. 
Our main objective, in this paper, is to introduce a 
new method for designing decentralized estimators 

to estimate the states and interactions, using only 
local output feedback. 
     In a decentralized control problem, such as 
decentralized state estimation or the interaction 
estimation problem, the overall large-scale system 
is split into the two systems, the related subsystem 
(ith subsystem) and the residue system (aggregation 
of other subsystems). It should be noted that, the 
interactions to the ith subsystem are generated by 
the dynamics of the residue system. Therefore, by 
incorporating the dynamics of the residue system 
one can expect to reduce the error of the 
estimation. Now, if the dynamics of the residue 
system is added to the estimator dynamics, the 
order of the designed filter becomes very high, 
while, the aim of decentralized estimation is to use 
low order estimator for each subsystem.  
     This paper is organized as follows: Section 2 
formulates the problem. The system under study is 
described in Section 3. Section 4 is devoted to 
present the main contributions of this paper namely 
as: (1) introducing a new technique for interaction 
dynamics identification and (2) developing a 
new decentralized states and interactions 
estimator, which uses the identified model. In 
Section 5, the simulation results for a three-area 
power system show the effectiveness of the 
proposed algorithm. 
 
 
 

2. PROBLEM STATEMENT 
 
Consider the large-scale LTI system S, composed 
of N subsystem Si  ( N,...,2,1i = ) described by 
 

iiii

iiiiiiiii

vxCy
wGuBhxAx

+=
+++=&

 (1) 

 
where, ih  is the interaction from other subsystems, 
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where in

i Rx ∈  is the state vector of ith subsystem 
and ip

i Ru ∈  is its control function. Furthermore 
ig

i Rw ∈  is the disturbance and iq
i Rv ∈  is the 
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measurement noise, which is assumed be bounded 

iiA , iB , iC , and iG  describe the dynamics of the 
isolated ith subsystem, ijA  describes the interaction 
matrix from the jth subsystem, which are assumed 
to have appropriate dimensions. It is assumed that 

( )iii A,C  is observable and ( )iii B,A  is controllable. 
     The goal of this paper is to design an estimator 

iF  for each subsystem to estimate the interactions 
from other subsystems, ih , and the states of ith 
subsystem. As seen in Figure 1, the estimator iF  
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Figure 1. State and interaction estimation diagram at ith subsystem. 
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Figure 2. Multi-area power system. 
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constructs the estimate of interaction, iĥ , and state 
estimation ix̂  from the input and output of iS . The 
local controller uses these estimations to control 
the ith subsystem. 
 
 
 

3. THE SYSTEM UNDER STUDY 
 
A three-area power system shown in Figure 2 is 
taken as an example system [20]. 
     Figure 3 shows the block diagram of area 1. 
Referring to Figure 3, state vector x, control vector 
u, and disturbance vector d can be defined as 
follows: 
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where, 

if∆  incremental frequency deviation of area I 

gkiP∆  incremental governor valve position change 
of generator k of area I 

ciP∆  control input of area I 

tkiP∆  incremental output of generator k in area I 

ij tieP∆  incremental change in tie-line power between 
areas i and j 

diP∆  disturbance of area I 

iM  equivalent inertia constant for area I 

iD  equivalent damping coefficient for area I 

gkiT  governor time constant of generator k for 
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Figure 3. Block diagram of area-1. 
 
 



IJE Transactions A: Basics Vol. 16, No. 4, November 2003 - 351 

area I 
tkiT  turbine time constant of generator k for area I 

ijT  synchronizing coefficient in normal operating 
conditions between areas i and j 

ija  ratio between the rated MW capacity of 
areas i and j 

kiα  distribution factor for generator k 

iR  drooping characteristic for area i 
The system parameters are listed in Table 1. 
 
 
 

4. THE PROPOSED METHOD 
 
In this section a new method is introduced to 
design decentralized estimator. 
Equation 1 can be rewritten as: 
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For convenience, in Part A of this section, the 
overall system dynamics is considered without 

TABLE 1. System Parameters. 
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any control inputs, measurement noise, and 
disturbances. In Part B, the results are extended to 
the general case where all of these assumptions are 
relaxed. 
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A. The Simplified Case   Consider the dynamics 
models 3 and 4, without any control inputs, 
measurement noise, and disturbances, i.e., 
 

iiiii hxAx +=&  

ihiiii xAx~A~x~ +=&  

iii x~C~h =  

iiii vxCy +=  
 (5) 
 
Now let’s define the following estimator: 
 

( )iii1iiiii x̂CyKĥx̂Ax̂ −++=&    
( )iii2iii x̂CyKx̂NM −++ξ=ξ&  

ii Eĥ ξ=  
 (6) 
 
where, 1K  and 2K are filter gains and E, M, N, are 
appropriately dimensioned design matrices which 
substitute for the dynamics of the interactions. iξ  
is a state variable vector, which is considered for 
dynamics of the interactions. Let us set the 
dimension of iξ  equal to the dimension of ix . 
     Now, the appropriate values of E, M, N should 
be found such that the best response for the 
estimator 6 and bounded error estimation are 
achieved.  
     Let the estimation errors be defined as: 
 

iix x̂xe −=  

iih ĥhe −=  
 (7) 

where, xe  is the error of state estimation and he  is 
the error of interaction estimation. Then for the 
state error, we have: 
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and for the interaction error, we have: 
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−ξ−+−=

−−ξ−−+

ξ−=−= &&&&

 (9) 
 
Now let’s choose the matrices E and N such 
that, 
 

hii AC~EN =  (10) 
 
then, Equation 9 can be rewrite as: 
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Assuming that E is nonsingular, the above equation 
can be written in the form: 
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Augmenting 8 with 12, the error equation can be 
written as: 
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the Equation 13 become: 
ix~FHee +=&  (15) 

 
Theorem 1   The solutions )e,t;t(e 00  of the 
error system 13 are globally ultimately bounded 
with respect to a bound fV  if H is chosen as a 
stable matrix and ix~  are bounded. 
 
Proof   Let’s choose H as a stable matrix such that 
for any symmetric positive definite matrix Q there 
exists a unique symmetric positive definite matrix 
P as the solution of the Lyapunov matrix equation: 
 

QPHPHT −=+  (16) 
 
Then we define a function +→ RR:V ni2  as: 
 

( ) PeeeV Tγ=  (17) 
 
where, γ  is a positive number. Computing ( )eV&  
using 15, results in: 
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now using 16, we have: 
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and then the term PeFx~ T
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by dropping some negative terms and using the 
bounded ness assumption of ix~ , the following 
inequality is obtained: 
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The last inequality can be summarized as: 
 

( ) η+ζ−≤ 2eeV& , ( ) ni2RRe,t ×∈∀  (23) 
 
where, the constants ζ  and ηare defined to be: 
 

( )[ ]γγ−λ=ζ 2
min PQ , 

2Fχ=η  (24) 
 
Selecting *γ small enough such that 0>ζ , then 23 
implies: 
 

( ) ( ) η+µ−≤ eVeV& , ( ) ni2RRe,t ×∈∀  (25) 
 
where, the positive number µ  is given by 
 

( )P1
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1 −− λζγ≤µ  (26) 
 
From 25 it is clear that )e(V  decreases monotonically 
along any solution of 23 until the solution reaches 
the compact set: 
 

( ){ }f
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where, 
 

ηµ= −1
fV  (28) 

 

Therefore the solutions )e,t;t(e 00  of 13 are 
globally ultimately stable with respect to bound 

fV . Q.E.D 
     From 15 it is clear that if 0F =  and H is stable, 
the error e converges to zero. To choose the 
matrices M, N, E, the first step is satisfying the 
stability condition of matrix H. 
     The following Lemma gives the stability condition 
of matrix H. 
 
Lemma 2   If we choose the matrices E and M 
such that the following condition is satisfied, 
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Condition 1: The couple ( HH C,A ) be observable, 
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then we can stabilize the matrix H by selecting the 
appropriate filter gains. 
 
Proof   From 14 we can rewrite the matrix H as 
the form 
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Therefore, if the observability condition of ( HH C,A ) 
is satisfied, then there exists a gain HK  such that 
H is stable. Note that we can compute the gain 
matrix HK  as a LQE problem for the system 
( HH C,A ) such as previous sections. Q.E.D 
 
Selection of E and N   It seems that there are 
some degrees of freedom for the selection of the 
matrix E, but according to Theorem 3.1, first the 
effect of matrix E on the upper bound of the error 
estimation and the possibility of decreasing it 
should be investigated. 
     Equations 28, 26, and 24, imply that: 
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λ
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From 30, it can be noted that the larger Q and 
lower P, results in decreasing the upper bound fV . 
For a fixed matrix Q, increasing the matrix H 
results in small P matrix, i.e., the unique solution 
of the Lyapunov matrix Equation 16. Therefore the 
matrix H should be high, by appropriate selection 
of E. 
     If the matrix E is chosen as: 
 

IE ρ=  (31) 
 
then, by increasing ρ , the element )12( ×  of the 
matrix H become high. The precise value of ρ  can 
only be obtained by trial and error. 

     From 10 and 31, the matrix N can be get as: 
 

hii
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Selection of M   As stated in the previous section, 
if 0F =  and H is stable then the error e converges 
to zero. Unfortunately as seen in 14) F cannot 
always be equal to zero, because, the matrix iC~  
may be not a full rank matrix. But we can choose 
the matrix M such the effect of F is minimized. In 
the other word, M can be achieved from the 
following optimization problem: 
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One solution of 33 in the absence of condition 3.1 
is 
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where, ⊥
iC~  is the pseudo-inverse of iC~ . 

Therefore by using 31, 32, 34 and Lemma 2, the 
estimator 6 can be constructed. 
 
B. The General Case   Now, the above method 
is extended to the general case, when the input 
disturbance, measurement noise, and external input 
are present. Hence consider the large-scale system 
which is introduced by Equations 3,4, and the 
following estimator can be defined: 
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Let the error of estimation be defined as 7, and as a 
result the error system dynamics as: 
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Figure 4. Estimated interaction of area 1. 
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Figure 5. First estimated interaction of area 2. 
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Figure 6. Second estimated interaction of area 2. 
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Figure 7. Estimated interaction of area 3. 
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By defining H and e as 14 and f as: 
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w~G~C~u~B~C~vEKx~C~EMEA~C~
vKwG

:f  

 (37) 
 
the error system 36 can be summarized to: 
 

fHee +=&  (38) 
 
Theorem 2   The solutions )e,t;t(e 00  of the error 
system 36 are globally ultimately bounded with 
respect to a bound fV  if H is chosen as a stable 

matrix and ix~ , iw~ , iu~  be bounded signals. 
 
Proof   Similar to proofs of Theorem 3.1 we define 
a function +→ RR:V ni2  as 17 and compute 

( )eV&  with respect to 38 and using 16, we have, 
 

( ) ( ) ( ) ePeffPefPefQeeeV 2T2TTT γ++γ−γ−−γ−=&

, ( ) ni2RRe,t ×∈∀  
 (39) 
By dropping some negative terms and using the 
boundedness assumption of ix~ , iw~ , iu~ , which 
means the boundedness of f, the following 
inequality is obtained. 
 

( ) η+ζ−≤ 2eeV& , ( )∀ ∈ ×t e R R ni, 2  (40) 
 
where, 
 

( ) 2

t
tfsup=η , ( )[ ]γγ−λ=ζ 2

min PQ  (41) 

 

Selecting *γ small enough so that 0>ζ , Equation 
40 implies: 
 

( ) ( ) η+µ−≤ eVeV& , ( ) ni2RRe,t ×∈∀  (42) 
 

where, the positive number ( )P1
max

1 −− λζγ≤µ  is 
given as 26. 
     From 42) it is clear that )e(V  decreases 
monotonically along any solution of 36 until the 
solution reaches the compact set 
 

( ){ }f
ni2

f VeV  :Re ≤∈=Ω ,  ηµ= −1
fV  (43) 

 
Therefore the solutions )e,t;t(e 00  of 36 are 
globally ultimately stable with respect to bound 

fV . Q.E.D 
     Hence, the same results in Part A for selection 
of matrices M, N, E, are valid. 
 
 
 

5. SIMULATION RESULTS 
 
In order to demonstrate the effectiveness of the 
proposed decentralized interaction estimation, 
numerical simulations have been carried out. Now 
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Figure 8. Estimated interaction of area 3 for some different ρ . 
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Figure 9. Estimated interaction of area 3 for 1000=ρ . 
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the proposed interaction estimation method is 
implemented to a multi-area power system, which 
is described in Section 3. For each area, it is 
assumed that there occurs 0.1 puMW step disturbance 
in other two area and also there is 0.01 percent 
measurement noise. A local estimator is design for 

100=ρ  at each area and the estimated interactions 
are shown in Figures 4 to 7. Figures 8 shows the 
real and estimated interactions of area 3 for ρ =10, 
20,50, and 100. As we can see from this figure, we 
may still improve the estimator behavior by 
increasing the parameter ρ . More increasing of ρ  
caused the noisy results, as shown in Figure 9 for 
ρ =1000. The precise value of this parameter ( ρ ) 
can be obtained by trial and error. 
     It should be noted that, since the estimation of 
interactions is the main goal of this paper, no 
control input signals, ciP∆ , are considered for each 
area. In fact they have no effect on the estimation 
results. In area 1 there exist one interaction signal, 

212 fT ∆ , which is the frequency deviation of area 2 
and in area 2 there exist two interaction signals, 

323 fT ∆  and 212tie M/P∆ , and in area 3 the 
interaction signal is 323tie M/P∆ . 
 
 
 

6. CONCLUSION 
 

In this paper, the design of decentralized estimators for 
interconnected large-scale systems was investigated. 
Local estimators were designed to estimate the 
interactions and states of each subsystem using only 
the local output measurement. We outlined a new 
method to construct an approximated model for the 
interaction dynamics. The theorems showed that, in 
the proposed algorithm the errors of estimation are 
globally ultimately bounded with respect to a specific 
bound. This bound can be minimized by appropriate 
selection of a parameter (ρ ). The precise value of this 
parameter (ρ ) can be obtained by trial and error. 
Numerical simulations were presented for a multi-
area power system. These simulation results 
demonstrated the effectiveness of the proposed method. 
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