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Abstract   Drought is an inevitable part of the world’s climate. It occurs in wet as well as in dry 
regions. Therefore, planning for drought and mitigating its impacts is essential. In this study, a 
hedging rule is developed using the zero/one mixed integer-programming approach. Furthermore, 
some procedures are introduced to ease the computational burden inherent in integer programming. 
Hedging rules are developed using three, two, and one-year historical droughts. Moreover, yield 
model (YM) along with the standard operating policy (SOP) are also formulated for comparison 
purposes. Simulations are carried out using 40 years of monthly historical data along with 20 series of 
synthetically generated inflows of the same length. The Karadj reservoir located in the northwest of 
Tehran is the major source of the capital’s municipal water supply. It also provides a substantial 
portion of the irrigation demand of the Karadj Valley. Synthetic data are generated using single and 
multi-variate autoregressive modeling approaches. Models are compared using important reservoir 
operation criteria including reliability, resiliency, and vulnerability. As compared to the well-known 
SOP model, it is noticed that the application of the hedging rule and the yield model substantially 
reduces the system reliability as well as it’s vulnerability, however it increases the resiliency. 
Moreover, hedging rules developed using longer drought periods tend to have lower vulnerability and 
reliability, and higher resiliency. 
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 بطوريکه. آيد امروزه خشكسالي يکی از موضوعات اساسي در برنامه ريزي منابع آب به شمار مي                   چکيدهچکيدهچکيدهچکيده
تواند پاسخگوي معضلات    هرگونه برنامه ريزي در اين زمينه بدون لحاظ نمودن خشكسالي ناقص بوده و نمي               

اب ناپذير آب و هوايي حتي از طرفي خشکسالي يک پديده طبيعي و اجتن   . ايجاد شده در اثر خشکسالي ها باشد      
بنابراين برنامه ريزي براي مقابله با آن و کاستن اثرات آن لازم و ضروري . باشد در بخش هاي پر باران جهان مي

اين . کنند در سيستم هاي آبرساني براي کاستن اثرات کمبود آب، از مدلهای جيره بندي استفاده مي                 . باشد مي
 مصارف آب دارای توابع خسارت غيرخطي باشند، بطوريکه کمبودهاي             باشد که  عمل وقتي توجيه پذير مي     

در اين تحقيق از يک مدل بهينه سازي جيره بندي گسسته دو              . بزرگتر خسارات خيلي بيشتري را باعث شوند       
در اين روش اصلاح شده که به       . مرحله اي اصلاح شده برای مديرِيت مخزن در يک دوره خشک استفاده شد             

زمان . شود، امکان اجرای مدل جيره بندي برای تعداد سالهاي بيشتر وجود دارد               ام حل مي  صورت گام به گ    
نتايج اجرای مدل بر روی سيستم سد        . يابد اجرای مدل اصلاح شده نيز به طور قابل ملاحظه اي کاهش مي              

ه در مقايسه با    مخزني کرج نشان داد که به ازای تعداد دوره هاي جيره بندی مرحله دوم مشابه، مدل اصلاح شد                 
اما اين . باشد يعني اينکه تعداد دوره هاي بدون جيره بندي آن بيشتر مي. دهد ه نتايج مطلوبتری نشان مييِمدل اول

اجراي مدل براي دوره هاي خشک      . شود  برعکس مي  ۲وضعيت با افزايش تعداد دوره هاي جيره بندي مرحله           
پذيري   خشکسالي در مدل، معيارهای ارزيابي همچون اعتماد       دهد که با افزايش دوره     يک الي سه ساله نشان مي     

مدل از جنبه هاي مختلف مورد تحليل و بررسی . يابد و آسيب پذيری کاهش يافته و برگشت پذيري افزايش مي         
دهد که مدل    نتايج نشان مي  . قرار گرفته و با يک مدل آبدهي و مدل بهره برداری استاندارد مقايسه گرديده است              

تواند  گيري چنين ابزاری مي    بکار. دي برتری محسوسي در کاهش خسارات ناشي از خشکسالي دارد           جيره بن 
 .کمک شاياني در مواقع بحران آب به مديران در اتخاذ تصميمات مناسب بنمايد

 
 

1. INTRODUCTION 
 
Hedging is based on the fact that having more 
frequent droughts of lower intensity is preferred 

to the fewer ones with higher intensities. For 
example, the cost of having two droughts each 
with a deficit equal to, say 5 units, is less than a 
single drought with 10 units of shortage. In other 
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words, losses due to droughts are not linear. On the 
other hand, uncertainties on the future events 
prevent us from a perfect allocation of resources 
during a drought. Therefore, it is inevitable to 
search for models that could help us in these 
situations. These models must rely on the trend of 
the past events. They usually consist of two types; 
optimization and simulation. Simulations are typically 
used to study and verify the results of optimization 
models. 
     Despite of the fact that it is an inevitable part of 
today’s world, there has been less effort and research 
on the planning of resources during droughts. 
Drought is a very general term with no unique 
definition. However, in water resources we may 
define it as a situation in which due to lower river 
flows, demands are not met.  Alike to its definition, 
the extension and variety of studies carried out are 
numerous. In this paper, we have focused on the 
approaches that are used to manage a reservoir 
system during some critical drought periods. 
Hedging is an approach that is used for reservoir 
operation during droughts. Shih and Revelle [1] 
introduced and developed a continuous hedging 
rule for a single reservoir operation. They used a 
Zero/One programming to linearize the nonlinear 
functions. Dariane [2] used a different procedure to 
solve the nonlinear functions and showed that the 
solution algorithm employed by Shih and Revelle 
[1] is not efficient. He also proposed a revision on 
the objective function to include the importance of 
different values of the water released in different 
periods. Bayazit and Unal [3] investigated the 
impact of hedging on a reservoir operation. They 
concluded that the reliability and vulnerability of 
the system is reduced when hedging is applied. 

Srinvasan and Philipose [4] and [5] studied the 
sensitivity of a system to the changes in hedging 
thresholds. Shih and Revelle [6] extended their 
previous work and developed a discrete hedging 
rule. Neelakantan and Pundarikanthan [7] studied 
the discrete hedging rule by optimization and 
simulation models. 
 
 
 

2. MODEL DEVELOPMENT 
 
In this paper, we employed the discrete hedging 
model originally developed by Shih and Revelle 
[6]. Our objective is to develop a practical 
reservoir operation model during drought periods. 
Figure 1 shows the model with two hedging levels. 
     Application of the model developed by Shih 
and Revelle [6] indicated very high computer 
execution time and memory utilization. In fact, for 
some cases of their example, we never reached a 
solution within acceptable time consumption. 
These are the cases where the phase 2 frequencies 
are low enough to force the model to extensively 
search for optimal solutions. Therefore, we moved 
the spilling constraint into the objective function. 
This eliminated 36 zero/one variables responsible 
to control spills from the reservoir, resulting in 
substantial reduction of computer time and 
memory utilization. Despite these changes, it was 
not yet possible to reach any solution using a 
Pentium II computer. The followings are the revised 
objective function and constraints of the model. 
Objective: 
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Figure 1. A two-level discrete hedging model. 
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Where Y1n,t and Y2n,t are zero/one variables. They 
are both equal to 1 for no hedging and 0 for phase 
2 hedging level. In phase 1, Y1 is 0 and Y2 is 
equal to 1. ωsp is weight less than one used for 
controlling the spills. Through a trail and error it 
was noticed that a value of 0.01 for ωsp would 
satisfy our goal of minimizing the spills while not 
affecting the primary objective of maximizing the 
number of full demand supply periods. TD, S, Q, 

R, and SP are respectively the total demand, storage, 
inflow, release, and spills from the reservoir. V1, 
and V2 are the hedging thresholds for the 
beginning of phase 1 and phase 2, respectively. 
V3 indicates the minimum reservoir operation 
threshold during droughts where no further release 
is possible. Second term in the objective function 
is used to avoid variable solutions. ω is a weight 
similar to ωsp and was found by trail and error. n2 
is the number of phase 2 hedging. N and T are 
number of years and seasons considered in the 
analysis, respectively. M and ε are very big and 
small numbers, respectively. α1 and α2 are fraction 
of the demand to be met in phase 1 and 2, 
respectively. 
     Constraints 2 through 5 along with 11 and 12 are 
used to logically determine the hedging threshold 
levels. Constraint 6 is used to set the hedging rule. 
Reservoir continuity and capacity constraints are 
stated by Constraints 7, 8, and 9. Constraint 10 is 
used to avoid the consumption of initial storage 
during drought. This constraint may be altered 
depending on a specific case. Constraints 15 and 
16 are used to enforce smooth transitions in 
hedging levels. Finally, Constraint 17 is set to 
control the number of phase 2 hedging.  
     Shih and Revelle used an IBM 3090-600J super 
computer to run their model. As mentioned earlier, 
even using these revisions, it was not possible to 
reach a solution in lower values of n2 by a Pentium 
II computer. Therefore, further improvements were 
required before the model could be practically 
applied using the publicly available computers. 
     Assuming α1 = 0.75 and α2 = 0.60 for the example 
in Shih and Revelle [6], the model was executed 
using different phase 2 frequencies. It was noticed 
that as n2 is reduced, the computer execution time 
is exponentially increased (Table 1). 
     Further investigation of the solutions revealed 
that some of the results stay the same from one n2 
level to another. In fact, as Table 2 shows solutions 

TABLE 1. Computer Execution Time Required for Different N2’s – Method 1. 
 

Number of phase 2 events (n2) 34 32 30 28 

Execution time (min: sec) 1:24 20:05 41:53 52:55 
Iterations 26832 296136 738455 942043 

 



212 - Vol. 16, No. 3, October 2003 IJE Transactions B: Applications 

of Y2 that are equal to 1 stay the same with 
reduced n2 levels. This is obvious, since as the 
frequency of phase 2 hedging is reduced, number 
of phase 1 hedging events must increase. If we call 
∆n to be the difference between the two subsequent 
assumed n2 levels, then as n2 is reduced ∆n periods 
must take either a phase 1 or full demand 
commitment level. In either case, they will have 
Y2 equal to 1. In this process, ∆n periods of phase 
2 must be raised to phase 1 level. To do this some 
of the full commitment levels must be changed to 
phase 1, so that the extra water gained from this 
transaction could be used to rise ∆n periods from 
phase 2 to phase 1. Therefore, reducing n2 will 
usually increase frequency of phase 1 (cases with 
Y2 = 1 and Y1 = 0) and decrease frequency of full 
success (cases with Y1 = 1 and Y2 = 1). 
     To further reduce the computer execution time 
and memory, we used the above-mentioned results. 
Starting from a high n2 level, such as 34 in this 
case, we may easily reach a solution. In the next 
step, we set n2 equal to a lower value such as 32, 
and transfer those results of Y2 from the previous 
step that were found to be 1. Computer execution 
time of this method will be much less than the 
earlier method. By continuing this procedure, we 

would easily solve the model for values of n2 as 
small as 10. It is possible to apply this technique 
for solutions of more sophisticated models within 
acceptable time and memory spans. It is also 
practically possible to further increase the number 
of hedging phases. Table 3 show the execution 
time and iterations required for the same problem 
when the new procedure is applied. Figure 2 
clearly shows the superiority of the proposed 
method. 
     In Figure 3 results of Shih and Revelle [6] and 
the proposed method are compared. It is noticed 
that in overall the proposed method has higher 
frequencies of full demand commitments. This is 
clearly true for lower levels of n2, where proper 
allocation of available water is crucial. 
 
 
 

3. CASE STUDY 
 

The revised method is applied to Karadj reservoir 
located in northwest of Tehran. The reservoir is the 
major source of municipal water supply for Tehran, 
the capital. It is also used to provide irrigation 
water needs of downstream valley. Table 4 shows 
Tehran’s mean monthly water demand from Karadj 
reservoir. Note that orders of the months are based 
on typical Iranian water year. It starts on the first 
day of each fall and ends on the last day of each 
summer. 
     In our study, we used 40 years of monthly historical 
inflow as well as 20 series of synthetically 
generated data of the same length. For this 
purpose, a single and a multi-variate AR model 
were used to generate 10 series of reservoir inflow 
each. Table 5 shows a summary of long-term 
parameters of historical and generated data. 
     The model was prepared and the proposed 
method was applied using α1 = 0.75 and α2 = 0.60. 
For this purpose, droughts with three, two, and 
one-year long durations were identified from the 
historical data and used to develop the hedging 
rules. Frequency of different hedging levels for a 

TABLE 2. Changes in the Solution of Y2 with Different N2 
Levels. 
 

  n2 = 34 n2 = 32 n2 = 30 n2 = 28 
Y2( 3, 4) 0 0 0 0 
Y2( 3, 5) 0 0 0 1 
Y2( 3, 6) 0 0 0 1 
Y2( 3, 7) 0 0 1 1 
Y2( 3, 8) 0 0 1 1 
Y2( 3, 9) 0 1 1 1 

Y2( 3, 10) 0 1 1 1 
Y2( 3, 11) 1 1 1 1 
Y2( 3, 12) 1 1 1 1 

 

 
 
 

TABLE 3. Computer Execution Time Required for Different N2 Levels Using the Proposed Method. 
 

Number of phase 2 events (n2) 34 32 30 28 

Execution time (min: sec) 1:24 2:14 1:20 1:07 
Iterations 26832 40904 26045 21916 
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three-year drought is illustrated in Figure 4. Similar 
charts were depicted for two and one-year droughts. 
In Figure 5 rule curves analogous to the well-
known form of reservoir rule curves are shown. 
These curves are simply derived from the hedging 
threshold levels. 
     In the next step, suitability of the hedging rules 
was investigated through simulation of the system 
by historical and synthetic data. Meanwhile, a 

yield model and standard operating procedure 
(SOP) were also used for comparison purposes. 
Table 6 shows the summary of the results. It 
should be noted that the values shown under the 
artificial columns are the average of all series. The 
yield model (YM) is developed using firm and 
secondary yields equal to 60 and 15 percent of 
total demand. The initial storage for all models is 
assumed to be 100 mcm. It is noticed that YM is 

Figure 2. Comparison of execution time of the methods. 
 
 

Figure 3. Frequencies of different hedging levels (a) Shih and Revelle and (b) proposed method. 
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not successful in making full demand 
commitments and its resiliency is high, however its 
maximum vulnerability is much less than any other 
rule. On the other hand, SOP has the highest 

frequency of full success, but it also exerts the 
highest maximum vulnerability among the others 
with the exception of 1-year hedging rule. In fact, 
the SOP and 1-year hedging rules behave similar in  

TABLE 4. Monthly Municipal Water Demand of Tehran from Karadj Reservoir (mcm). 
 

month 1 2 3 4 5 6 7 8 9 10 11 12 

demand 34.4 30.2 25.4 25.1 23.3 24.2 26.8 46.8 57.6 52.8 45.7 41.3 
 
 
 

TABLE 5. Monthly Parameters of Historical and Generated Reservoir Inflow. 
 

Data Type Parameter 1 2 3 4 5 6 7 8 9 10 11 12 
Avg. (mcm) 15.1 17.3 15.5 13.8 14.7 26.5 61.8 102.3 87.0 50.3 26.6 17.6 

Stdev. 3.4 8.1 8.2 4.8 4.1 13.5 23.2 33.5 31.8 20.7 9.3 4.9 
  

Historical 
  r 0.70 0.79 0.76 0.68 0.33 0.68 0.73 0.82 0.96 0.96 0.94 0.66 

Avg. (mcm) 26.4 21.9 18.1 15.9 14.8 23.4 50.9 80.9 80.2 50.2 40.2 34.1 
Stdev. 6.3 6.5 6.5 6.5 5.7 29.5 57.2 34.3 28.1 15.3 9.8 8.1 

Generated 
ARMV 

  r 0.99 0.98 1.00 0.97 0.26 0.23 0.53 0.96 0.98 0.96 0.98 0.46 
Avg. (mcm) 15.0 17.0 15.6 14.0 15.0 26.2 62.7 101.5 87.4 50.2 26.5 17.5 

Stdev. 3.2 6.2 5.9 4.1 4.1 10.5 25.5 34.4 32.3 19.7 8.8 4.4 
Generated 

AR 
  r 0.73 0.80 0.87 0.70 0.51 0.55 0.73 0.82 0.96 0.96 0.94 0.73 
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Figure 4. Frequency of different hedging level – Karadj reservoir. 
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most aspects. SOP also faces more empty reservoir 
storages than any other model. 

     Although the 3-year hedging rule indicates 
slightly lower frequencies of full success, however 

 
Figure 5. Hedging rule curves for Karadj reservoir. 

 
 

TABLE 6. Summary of Results. 
 

Yield SOP Hedging 
3-yr 

Hedging 
2-yr 

Hedging 
1-yr Criteria 

 His.* Arti.** His. Arti. His. Arti. His. Arti. His. Arti. 
Freq. of Full 286 310 417 406 394 391 398 392 415 409 
Freq. of Phase 1 185 157 - - 39 40 20 26 15 20 
Freq. of Phase 2 4 6 - - 46 45 60 58 41 40 
Time Reliability 0.60 0.65 0.87 0.84 0.82 0.81 0.83 0.82 0.86 0.85 
Quantity Reliability 0.91 0.92 0.95 0.94 0.94 0.94 0.95 0.94 0.95 0.94 
Resiliency (%) 9.61 7.98 3.01 2.56 4.81 5.03 3.46 3.63 3.90 4.23 
Avg. Vulnerability 3.14 3.07 1.71 2.03 2.04 2.35 1.95 2.25 1.77 2.09 
Max. Vulnerability 17.8 21.2 29.0 28.3 23.0 26.4 25.1 30.9 30.2 36.4 
Avg. annual Spill 5.24 4.88 0.00 0.00 4.13 3.69 4.05 4.12 3.88 3.97 
Avg. Annual Deficit 3.1 3.1 1.7 2.0 2.0 2.3 1.9 2.25 1.8 2.09 
% of Time Full 14.4 15.1 9.0 12.2 11.5 10.7 11.0 12.8 9.0 12.3 
% of Time Empty 0.0 0.1 13.1 15.6 0.0 0.0 0.0 0.0 0.0 0.1 
Avg. Monthly 124 127 96 98 109 107 106 108 99 101 
Final Storage 156 112 147 66 156 95 156 85 148 78 

*
historical data.   

**
artificial data. 
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its maximum vulnerability is much less than SOP. 
The results also indicate that as we shift from 3-
year to 1-year modeling of droughts we slightly 
gain more frequency of success, however the systems 
maximum vulnerability rises greatly. Although not 
presented in here, both models of synthetic data 
generation show similar results. The values indicated 
in the Table are the average of all 20 series. 
 
 
 

4. CONCLUSIONS 
 
The hedging model as developed by Shih and 
Revelle [6] is not suitable for practical applications. 
It requires supercomputers to run. A simple 
method is developed that greatly reduces computer 
execution time and memory requirements. The 
proposed method allows the model application with 
the publicly available computers. It also makes further 
increase in the number of hedging levels or extension 
of time horizon practically possible. It was also 
compared with the original model based on the 
example from Shih and Revelle [6]. The results 
indicated higher frequencies of full success by the 
new method. 
     To further illustrate the method, it was applied 
to the Karadj reservoir system in Iran. The results 
show that a 3-year hedging rule has slightly lower 

frequency of full release commitment, however its 
maximum vulnerability is much less than SOP. 
When compared to the yield model, its reliability is 
much higher. The yield model has the lowest 
maximum vulnerability among all of the models 
experienced in this paper. 
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