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Abstract Drought is an inevitable part of the world's climate. It occurs in wet as well as in dry
regions. Therefore, planning for drought and mitigating its impacts is essential. In this study, a
hedging rule is developed using the zero/one mixed integer-programming approach. Furthermore,
some procedures are introduced to ease the computational burden inherent in integer programming.
Hedging rules are developed using three, two, and one-year historical droughts. Moreover, yield
model (YM) along with the standard operating policy (SOP) are also formulated for comparison
purposes. Simulations are carried out using 40 years of monthly historical data along with 20 series of
synthetically generated inflows of the same length. The Karadj reservoir located in the northwest of
Tehran is the major source of the capital’s municipa water supply. It also provides a substantial
portion of the irrigation demand of the Karadj Valley. Synthetic data are generated using single and
multi-variate autoregressive modeling approaches. Models are compared using important reservoir
operation criteria including reliability, resiliency, and vulnerability. As compared to the well-known
SOP model, it is noticed that the application of the hedging rule and the yield model substantially
reduces the system reliability as well as it's vulnerability, however it increases the resiliency.
Moreover, hedging rules developed using longer drought periods tend to have lower vulnerability and
reliability, and higher resiliency.

Key Words Drought, Hedging Rule, Reservoir Management, Reservoir Operation, Karadj
Reservoir, Yield Model, Zero/One Programming, Water Deficit Management
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1. INTRODUCTION to the fewer ones with higher intensities. For

example, the cost of having two droughts each

Hedging is based on the fact that having more with a deficit equal to, say 5 units, isless than a
frequent droughts of lower intensity is preferred single drought with 10 units of shortage. In other
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Figure 1. A two-level discrete hedging model.

words, losses due to droughts are not linear. On the
other hand, uncertainties on the future events
prevent us from a perfect allocation of resources
during a drought. Therefore, it is inevitable to
search for models that could help us in these
situations. These models must rely on the trend of
the past events. They usually consist of two types;
optimization and smulation. Simulations are typically
used to study and verify the results of optimization
models.

Degspite of the fact that it is an inevitable part of
today’ s world, there has been less effort and research
on the planning of resources during droughts.
Drought is a very genera term with no unique
definition. However, in water resources we may
define it as a situation in which due to lower river
flows, demands are not met. Aliketo its definition,
the extension and variety of studies carried out are
numerous. In this paper, we have focused on the
approaches that are used to manage a reservoir
system during some critical drought periods.
Hedging is an approach that is used for reservoir
operation during droughts. Shih and Revelle [1]
introduced and developed a continuous hedging
rule for a single reservoir operation. They used a
Zero/One programming to linearize the nonlinear
functions. Dariane [2] used a different procedure to
solve the nonlinear functions and showed that the
solution algorithm employed by Shih and Revelle
[1] is not efficient. He also proposed a revision on
the objective function to include the importance of
different values of the water released in different
periods. Bayazit and Unal [3] investigated the
impact of hedging on a reservoir operation. They
concluded that the reliability and vulnerability of
the system is reduced when hedging is applied.
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Srinvasan and Philipose [4] and [5] studied the
sensitivity of a system to the changes in hedging
thresholds. Shih and Revelle [6] extended their
previous work and developed a discrete hedging
rule. Neelakantan and Pundarikanthan [7] studied
the discrete hedging rule by optimization and
simulation models.

2. MODEL DEVELOPMENT

In this paper, we employed the discrete hedging
model originally developed by Shih and Revelle
[6]. Our objective is to develop a practica
reservoir operation model during drought periods.
Figure 1 shows the model with two hedging levels.

Application of the model developed by Shih
and Revelle [6] indicated very high computer
execution time and memory utilization. In fact, for
some cases of their example, we never reached a
solution within acceptable time consumption.
These are the cases where the phase 2 frequencies
are low enough to force the model to extensively
search for optimal solutions. Therefore, we moved
the spilling constraint into the objective function.
This eliminated 36 zero/one variables responsible
to control spills from the reservoir, resulting in
substantial reduction of computer time and
memory utilization. Despite these changes, it was
not yet possible to reach any solution using a
Pentium Il computer. The followings are the revised
objective function and constraints of the model.
Objective:

N T T
MAX ZZ (Y1, - wspxSP, ) - wZ (VL +V2,+V3)
n=1 t= t=

1)
Congtraints:
Y1, 2((S, +Q.) (VL —£))/M ©
Y1, <1-(V1 = (S, +Q,))/M 3
Y2, 2((S,, +Q..) - (V2 —¢g))/M 4)
Y2, <1-(V2, (S, +Q,.))/M (5)
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TABLE 1. Computer Execution Time Required for Different N,'s—Method 1.

Number of phase 2 events (n,) 34 32 30 28
Execution time (min: sec) 1:24 20:05 41:53 52:55
Iterations 26832 296136 738455 942043

Rt =(@=3)xTDy XYL, ; +(ag —ap) xTD ¥

(6)
Y2, +a;xTD;

S =S ¥ Que ~Ry —SP, (7)
SF=Syr +Qun ~Ryr =SPyr (8)
S, <CAP 9
S, <SF (10)
V1, 21.05xV2, (11)
V2, 21.05xV3, (12)
V3, 2a,xTD, (13)
S +Q, 2V3, +¢ (14)
Y1, ., +YL  s1+YL, (15)
Y1,,SY2, (16)
N T

;ZYZM =NxT-n, (17)

Where Y1,,; and Y 2,; are zero/one variables. They
are both equal to 1 for no hedging and O for phase
2 hedging level. In phase 1, Y1 is 0 and Y2 is
equal to 1. wsp is weight less than one used for
controlling the spills. Through a trail and error it
was noticed that a value of 0.01 for wsp would
satisfy our goal of minimizing the spills while not
affecting the primary objective of maximizing the
number of full demand supply periods. TD, S, Q,
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R, and SP are respectively the total demand, storage,
inflow, release, and spills from the reservoir. V1,
and V2 are the hedging thresholds for the
beginning of phase 1 and phase 2, respectively.
V3 indicates the minimum reservoir operation
threshold during droughts where no further release
is possible. Second term in the objective function
Is used to avoid variable solutions. w is a weight
similar to wsp and was found by trail and error. n,
is the number of phase 2 hedging. N and T are
number of years and seasons considered in the
analysis, respectively. M and ¢ are very big and
small numbers, respectively. a; and o, are fraction
of the demand to be met in phase 1 and 2,
respectively.

Congtraints 2 through 5 dong with 11 and 12 are
used to logically determine the hedging threshold
levels. Constraint 6 is used to set the hedging rule.
Reservoir continuity and capacity constraints are
stated by Constraints 7, 8, and 9. Constraint 10 is
used to avoid the consumption of initial storage
during drought. This constraint may be altered
depending on a specific case. Constraints 15 and
16 are used to enforce smooth transitions in
hedging levels. Finally, Constraint 17 is set to
control the number of phase 2 hedging.

Shih and Revelle used an IBM 3090-600J super
computer to run their model. As mentioned earlier,
even using these revisions, it was not possible to
reach a solution in lower values of n, by a Pentium
Il computer. Therefore, further improvements were
required before the model could be practically
applied using the publicly available computers.

Assuming a; = 0.75 and a, = 0.60 for the example
in Shih and Revelle [6], the model was executed
using different phase 2 frequencies. It was noticed
that as n, is reduced, the computer execution time
is exponentially increased (Table 1).

Further investigation of the solutions revealed
that some of the results stay the same from one n,
level to another. In fact, as Table 2 shows solutions
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TABLE 2. Changesin the Solution of Y2 with Different N,
Levels.

n2=34 n2=32 n2=30 n2=28

o
o
o
o

Y2(3, 4)
Y2(3,5)
Y2( 3, 6)
Y2(3,7)
Y2(3,8)
Y2(3,9)
Y2( 3, 10)
Y2(3,11)
Y2(3, 12)

PP, OOOOCOO
PP PP OOCOO
PR RPREPRPRPRPLOO
PR R RPRRBRE R

of Y2 that are equal to 1 stay the same with
reduced n, levels. This is obvious, since as the
frequency of phase 2 hedging is reduced, humber
of phase 1 hedging events must increase. If we call
An to be the difference between the two subsequent
assumed n, levels, then as n, is reduced An periods
must take either a phase 1 or full demand
commitment level. In either case, they will have
Y2 equal to 1. In this process, An periods of phase
2 must be raised to phase 1 level. To do this some
of the full commitment levels must be changed to
phase 1, so that the extra water gained from this
transaction could be used to rise An periods from
phase 2 to phase 1. Therefore, reducing n, will
usually increase frequency of phase 1 (cases with
Y2=1and Y1 =0) and decrease frequency of full
success (caseswithYl=21and Y2 =1).

To further reduce the computer execution time
and memory, we used the above-mentioned results.
Starting from a high n; level, such as 34 in this
case, we may easily reach a solution. In the next
step, we set n, equal to a lower value such as 32,
and transfer those results of Y2 from the previous
step that were found to be 1. Computer execution
time of this method will be much less than the
earlier method. By continuing this procedure, we

would easily solve the model for values of n, as
small as 10. It is possible to apply this technique
for solutions of more sophisticated models within
acceptable time and memory spans. It is also
practically possible to further increase the number
of hedging phases. Table 3 show the execution
time and iterations required for the same problem
when the new procedure is applied. Figure 2
clearly shows the superiority of the proposed
method.

In Figure 3 results of Shih and Revelle [6] and
the proposed method are compared. It is noticed
that in overall the proposed method has higher
frequencies of full demand commitments. This is
clearly true for lower levels of n,, where proper
allocation of available water is crucial.

3. CASE STUDY

The revised method is applied to Karadj reservoir
located in northwest of Tehran. Thereservoir isthe
maor source of municipa water supply for Tehran,
the capital. It is also used to provide irrigation
water needs of downstream valley. Table 4 shows
Tehran’s mean monthly water demand from Karadj
reservoir. Note that orders of the months are based
on typical Iranian water year. It starts on the first
day of each fall and ends on the last day of each
summer.

In our study, we used 40 years of monthly historical
inflow as well as 20 series of synthetically
generated data of the same length. For this
purpose, a single and a multi-variate AR model
were used to generate 10 series of reservoir inflow
each. Table 5 shows a summary of long-term
parameters of historical and generated data.

The model was prepared and the proposed
method was applied using a; = 0.75 and a, = 0.60.
For this purpose, droughts with three, two, and
one-year long durations were identified from the
historical data and used to develop the hedging
rules. Frequency of different hedging levelsfor a

TABLE 3. Computer Execution Time Required for Different N, Levels Using the Proposed M ethod.

Number of phase 2 events (n,) 34 32 30 28
Execution time (min: sec) 1:24 2:14 1:20 1:07
Iterations 26832 40904 26045 21916
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Figure 3. Frequencies of different hedging levels (a) Shih and Revelle and (b) proposed method.

three-year drought is illustrated in Figure 4. Similar
charts were depicted for two and one-year droughts.
In Figure 5 rule curves analogous to the well-
known form of reservoir rule curves are shown.
These curves are simply derived from the hedging
threshold levels.

In the next step, suitability of the hedging rules
was investigated through simulation of the system
by historical and synthetic data. Meanwhile, a
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yield model and standard operating procedure
(SOP) were aso used for comparison purposes.
Table 6 shows the summary of the results. It
should be noted that the values shown under the
artificial columns are the average of all series. The
yield model (YM) is developed using firm and
secondary yields equal to 60 and 15 percent of
total demand. The initial storage for all models is
assumed to be 100 mcm. It is noticed that YM is
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TABLE 4. Monthly Municipal Water Demand of Tehran from Karadj Reservoir (mcm).

month 1 2 3 4 5 6 8 9 10 11 12
demand | 344 | 30.2 | 254 | 251 | 233 | 242 | 26.8 46.8 576 | 528 | 45.7 | 413
TABLE 5. Monthly Parameters of Historical and Generated Reservoir Inflow.

Data Type |[Parameter| 1 2 3 4 5 6 7 8 9 10 | 11 | 12

Avg. (mcm)|15.1]117.3{15.5|{13.8[14.7| 26.5 | 61.8 |102.3| 87.0 | 50.3 [26.6|17.6
Historical Stdev. 3418118214841 )1135]23.21335|31.8|20.7|9.3]4.9
r 0.7010.79]10.7610.6810.33| 0.68 | 0.73 ] 0.82 | 0.96 | 0.96 |0.94]0.66
Generated |Avg. (mcm)|26.4|21.9|118.1(15.9|14.8| 23.4 | 50.9 | 80.9 | 80.2 | 50.2 |40.2(34.1
ARMV Stdev. 6.3|65]|65[65|57[295|57.2]134.3[28.1|15.3|98]8.1
r 0.99/0.98|1.00{0.97]0.26| 0.23 | 0.53 | 0.96 | 0.98 | 0.96 |0.98|0.46
Generated |Avg. (mcm)|15.0{17.0/15.6[14.0{15.0| 26.2 | 62.7 |{101.5| 87.4 | 50.2 | 26.5|17.5
AR Stdev. 3262159141141 ]1105]1255]1344)1323]19.7188|4.4
r 0.7310.8010.87|0.7010.51] 0.55 | 0.73 ] 0.82 | 0.96 | 0.96 |0.94]0.73
é
c
o
=
16 18 20 22 24 26 28 30 32 34
n2
Owithout rationing Ephase 1 Ophase 2
Figure 4. Frequency of different hedging level — Karadj reservoir.
not successful in making full demand frequency of full success, but it also exerts the

commitments and its resiliency is high, however its
maximum vulnerability is much less than any other
rule. On the other hand, SOP has the highest
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highest maximum vulnerability among the others
with the exception of 1-year hedging rule. In fact,
the SOP and 1-year hedging rules behave similar in

IJE Transactions B: Applications
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Figure 5. Hedging rule curves for Karadj reservoir.
TABLE 6. Summary of Results.
. Hedging Hedging Hedging
Criteria Yield SOP 3-yr 2-yr 1-yr
His.\ | Arti.”" | His. | Arti. | His. | Arti. | His. | Arti. | His. | Arti.
Freqa. of Full 286 310 417 406 394 | 391 398 392 415 | 409
Freq. of Phase 1 185 157 - - 39 40 20 26 15 20
Freq. of Phase 2 4 6 - - 46 45 60 58 41 40

Time Reliability 060 | 065|087 | 084|082 ]0.81 (083 082]| 0.86 | 0.85
Quantity Reliability] 091 | 0.92 [ 0.95 | 0.94 | 0.94 | 0.94 | 095 | 0.94 | 0.95 | 0.94
Resiliency (%) 9.61 7.98 [ 3.01 | 256 | 481 | 503 | 3.46 | 3.63 | 3.90 | 4.23
Avg. Vulnerability 314 | 307 | 171 | 203 | 204 | 2.35 | 1.95 | 2.25 | 1.77 | 2.09
Max. Vulnerability | 17.8 21.2 | 29.0 | 283 | 23.0 | 264 | 25.1 | 30.9 | 30.2 | 36.4

Avg. annual Spill 524 | 488 | 0.00 | 0.00 | 4.13 | 3.69 | 4.05 | 4.12 | 3.88 | 3.97
Avg. Annua Deficit] 3.1 3.1 1.7 2.0 2.0 2.3 19 | 225 1.8 | 2.09
% of Time Full 144 | 151 | 90 | 12.2 | 115 | 10.7 | 11.0 | 128 | 9.0 | 12.3
% of Time Empty 0.0 0.1 | 131|156 | 00 | 00 | 0.0 | 0.0 | 0.0 | 0.1
Avg. Monthly 124 127 | 96 98 | 109 | 107 | 106 | 108 | 99 | 101
Final Storage 156 | 112 | 147 | 66 | 156 | 95 | 156 | 85 | 148 | 78

historical data. artificial data.

most aspects. SOP also faces more empty reservoir Although the 3-year hedging rule indicates
storages than any other model. dlightly lower frequencies of full success, however
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its maximum vulnerability is much less than SOP.
The results also indicate that as we shift from 3-
year to 1-year modeling of droughts we dightly
gain more frequency of success, however the systems
maximum vulnerability rises greatly. Although not
presented in here, both models of synthetic data
generation show smilar results. The vaues indicated
in the Table are the average of al 20 series.

4. CONCLUSIONS

The hedging model as developed by Shih and
Revdle [6] is not suitable for practical applications.
It requires supercomputers to run. A simple
method is developed that greatly reduces computer
execution time and memory requirements. The
proposed method alows the modd application with
the publicly available computers. It also makes further
incresse in the number of hedging levels or extension
of time horizon practically possible. It was also
compared with the original modd based on the
example from Shih and Revelle [6]. The results
indicated higher frequencies of full success by the
new method.

To further illustrate the method, it was applied
to the Karadj reservoir system in Iran. The results
show that a 3-year hedging rule has slightly lower

216 - Val. 16, No. 3, October 2003

frequency of full release commitment, however its
maximum vulnerability is much less than SOP.
When compared to the yield model, itsreliability is
much higher. The yield model has the lowest
maximum vulnerability among all of the models
experienced in this paper.
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