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Abstract  The effects of using both directions and directional subdividing on adaptive grid-
embedding on the computational time and the number of grid points required for the same accuracy
are considered. Directional subdividing is used from the beginning of the adaptation procedure
without any restriction. To avoid the complication of unstructured grid, the semi-structured grid was
used. It is used to solve three test cases, transonic and supersonic inviscid flows in channels with
circular arc bump and with convergent part. The Euler equations are integrated to steady state by an
explicit, finite volume, Ni’s Lax-Wendroff type. In this work, multi-grid technique is applied to
increase the convergence rate. The directional subdividing is more complex than both directions
subdividing. However, the results show that for the same accuracy, directional subdividing
considerably reduces the number of grid points and the computational time.
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1. INTRODUCTION

In traditional methods, numerical solution of Euler
and Navier-Stoks equations are carried out in a
fixed grid. For most practical problems, flow fields
contain several length scales due to the presence of
shock waves, boundary and shear layers, regions of
leading and trailing edges, etc. The order of
magnitude of such dominant length scales is
smaller than the main flow length scales. For
intelligent use of computational sources, grid is
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permitted to adapt with solution so that regions
with different errors or flow property gradients are
analyzed equally. Therefore, the algorithms of grid
generation and the solution must be linked. For this
reason, adaptive methods are much more
complicated than fixed-grid methods. Nevertheless,
saving of memory and time for many flows are so
large that this complexity is permissible. Adaptive
methods are suitable for flows with different
scales, and as the scale differences are higher, the
saving is larger.
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The use of embedding adaptive grid has been
center of attention by many researchers recently. In
such techniques, the cells are locally divided in the
regions of large errors or flow property gradients.
Indeed, the nodes are added in these regions.
Hence, the equations are solved in a composite
grid, a fixed global grid and adaptively embedded
patches in the special regions. The simplest and
easiest way of dividing the grid cells is to divide
each cell into four cells. This technique has been
used in vast verity of problems [1-6].

The subdividing a quadrilateral by quadsection
increases the number of cells. Some of these cells
are unnecessary and inefficient. To avoid such
unwanted cells, directional adaptation is used. In
this technique, locally refined cells are introduced
only in the direction of the flow property gradients.
Kallinderis and Baron [7] used directional
adaptation techniques for various compressible
laminar flows. They used the directional adaptation
only in the final stage of the adaptation. Davis and
Dannenhofer [8] used adaptive grid-embedding
technique to simulate 3-D inviscid flows. They
applied directional subdivision technique on block-
structured inputs, the so-called chunks. Although
this method makes the algorithm simple, but it
creates extra cells and most of the cells are divided
into four cells. This paper deals with the technique
that uses directional adaptation from the very
beginning of the adaptation procedure and
throughout the flow field. It is shown that this
technique produces the minimum number of grid
points and therefore it is more efficient algorithm
compare to the techniques that are used by others.

2. GOVERNING EQUATIONSAND
NUMERICAL METHOD

The invisid compressible fluid flow is governed by
the Euler equations. They represent conservation

of mass, momentum and energy. For unsteady two-
dimensional flows:

a_U:—l:BF+a_GD (1)
ot % OyE
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where p, u and v, e, p, hpand y are density, velocity
components in the x and y directions, total energy
per unit volume, static pressure, total enthalpy and
specific heat ratio respectively.

The unsteady Euler equations are integrated to
steady state by an explicit, finite volume, Lax-
Wendroff type time-marching that was developed
by Ni [9]. Local time steps are used to accelerate
convergence to steady state solution. In addition,
Ni’s multiple-grid acceleration technique is also
used to couple the solution on various embedded
grids and to accelerate overall convergence rate.

3. ADAPTIVE GRID-EMBEDDING METHOD

As mentioned earlier, in grid-embedding methods,
the cells are locally divided in the regions of large
error or gradient. To do this, the algorithm must
sense large gradient or error regions and
automatically divide the cells in these regions. The
process is repeated several times and therefore
local embedded grids become finer and finer in
order to resolve special regions adequately.

Local Grid Refinement Local refinements
of the grids can minimize memory and time
with the same accuracy. Simply simply dividing
grids in both directions can do this. Although
subdividing a quadrilateral by quadsection is
natural and the simplest way, for some flow field
features with a strong one-dimensional nature,
such as shock wave or boundary layers, bisection
(directional subdividing) is more efficient to
save computational time and storage (Figure 1)
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[7,8]. In this work, directional subdividing is
used from the beginning of the adaptation
procedure and throughout the flow field without
any restriction.

In order to avoid large changes in the grid size,
which introduces additional computational errors,
local smoothing of the grid-embedding levels is
performed. This ensures that only one subdivision
difference arises at the interfaces (Figure 2). In
addition, the islands and holes must be removed.
The cells that the two opposite sides of their
neighbors have been divided, are called holes and
the divided cells that non of their neighbors has
been divided, are called islands.

Adaptation Strategy One of the basic steps in
the embedding adaptive technique is to set
adoption parameter and threshold to detect the
existence and track the evaluation of special
features of the flow fields such as shock waves.
The first difference of density is the criterion used
in this paper to calculate the adoption parameter.
The procedure is as follows:

1. If the quadsection is used, the maximum
number of absolute values of density
differences in each cell is calculated and is
chosen as the adaptation parameter.

R = maxqu _p1|7|p3 _p2|7|p4—p3|’|p1 _p4|) 4)

where, 1, 2, 3, and 4 indicate the nodes
surrounding each cell.

If the bisection (directional subdividing) is
used, the absolute values of the density differences
of the two opposite walls will be used as the
adaptation parameter.

R, :|p2 PP _p4| (5)

R, =|p; +p, =P, — Py (6)

2.  Theaverage, R ,,. , and standard deviation, R .,
are used to calculate the threshold, R, [8].
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Figure 1. Three types of subdivision.

a) Unsmoothed grid b) Smoothed grid

Figure 2. Smoothing the grid.

1 Nce]l
R ave = R € (7)
cell &=

de = ! Nie”(Re _Rave)2
Nccll e=1 (8)

Rth = Ravc + Gde (9)

The threshold is compared with the adoption
parameter in each cell and if adoption parameter is
bigger, then the cell will be divided. The value of
the parameter ais chosen empirically. Too Large
or too small values of amay cause deficient or
extra cells to be refined respectively. It is usually
chosen between 0.3 and 0.8 and in this work, it is
found that 0.6 is suitable.

Data Structure  Hierarchical quadtree grid
generation offers an efficient method for the spatial
discretization of arbitrary shaped two-dimensional
domains. It consists of recursive algebraic splitting
of sub-domains into quadrants, leading to an
ordered hierarchical data structure with regard to
the storage of mesh information [10,11]. The
hierarchical quadtree grids are ideally suited to
multiple-grid.

With some modifications to the quadtree
structure, the approach proves highly flexible and
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has been adopted for the adaptive grid-embedding
procedure. The quadtree method is based on family
branches and their neighbors. Thus, the new
generations (children) and the parent of each cell
are known. If directionally subdividing is not used,
the cells that are divided at the same level will be
identified as neighbor for each cell. For example,
the cell D in Figure 3-a has the neighbor E in its
right and has no neighbor on its left. However, the
neighbor on the right side of cell A is B. If the
directional subdividing is used, several different
cases will occur. There may be cells that are
divided at the same level, but the newborn divided
cells have no neighbor in one side, or the neighbor
is in different level. Figure 3-b shows this matter
clearly. In this figure, there is no neighbor in the
left side of cell E. However, the neighbor on the
left side of the cell B is D. In this data structure,
the nodes corresponding to each cell must be
specified and in the directionally subdividing,
types of subdivision for parent cells must be
known.

Interface Nodes A consequence of grid
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Figure 3. Defining neighbors.

Figure 4. Elimination of interface nodes by employing
triangular and quadrilateral cells.

embedding is the internal boundaries between cells
with different levels. An interface is distinguished
by an abrupt change in the cell size. The grid lines
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Figure 5. Comparison of computational grids and the Mach number contours, channel with a %10 bump
and inlet Mach number of 0.675.
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Figure 6: convergence history for directional embedding,
channel with a %10 bump, R = (Apv)
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may be continued across the interface or cut off by
the interface. In the latter, cells contain extra node
at the midside, called hanging nodes. In this paper,
the hanging nodes are removed by transition of
local connections to surrounding nodes such
that triangular and quadrilateral cells are
produced (Figure 4). This method is simple and
conservative.

4. RESULTS

Three model problems are considered to evaluate
the accuracy and efficiency of the technique. They
are transonic and supersonic flows on a channel
with circular arc wall and supersonic flow in a
converging nozzle. In all cases, when the

convergence criterion, 3(pv) is reached 107,

the adaptation is done. The final convergence
criterion has also been chosen to be smaller

than107°.

Transonic Flow in a Channel with Circular
Arc The first case is transonic flow in a channel

with a circular arc bump with inlet Mach number
of 0.675. The height of the channel is equal to the
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length of the bump and the maximum height of the
bump is %10 of inlet height. The initial grid is
49 % 17 and the embedding procedure is applied
twice. Figure 5 shows the generated grids and the
Mach number contours for three different grid
configurations. They are uniform fine grid,
embedded grid without directional embedding and
with directional embedding. In order to get the
same accuracy, especially in the areas, which high
flow gradient exists, the size of each cell in the fine
grid configuration is set to be the same as the
smallest size in adapted grid case. The number of
grid points for the fine grid configuration is 12545,
for the embedded without directional embedding is
3541, and for the directional embedding this
number is reduced to 2272. The results of adaptive
grid cases show that the same accuracy, compared
to the results for fine grid, is obtained with regard
to the location and thickness of the shock waves
and general flow patterns. When the directional
embedding is used, fewer wiggles are seen in the
results compared to the case when both directions
embedding is applied. This is due to the fact that in
the case of directional embedding, the number of
interface nodes, which are the main source of the
wiggles, is reduced. With regard to the CPU time,
both directions embedding required only %11 of
the time required for fine grid calculations and for
the directional embedding case it was about %10
of the time that required for fine grid calculations.

107°. The convergence history for the directional
embedding solution is shown in Figure 6. In this
figure, the two peaks mark the upset introduced by
the adaptive grid-embedding process and shows
that the rate of convergence is similar for each
level of adaptation.

Supersonic Flow in a Channe with a
Circular Arc The second case is supersonic
flow with inlet Mach number of 1.4 in a channel
with a %4 thick circular arc bump. The initial grid
is the same as the previous case and the embedding
procedure is applied twice. Figure 7 shows the
generated grids and the Mach number contours for
three cases with different grid configurations. The
size of each cell in the fine grid configuration is the
same as the smallest size in adapted grid case. The
results for the embedded case that is the location
and thickness of the shock waves and general flow
pattern show that the same accuracy is obtained in
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Figure 7: Comparison of computational grids and the Mach number contours
channel with a %4 bump and inlet Mach number of 1.4.

comparison with the results for fine grid. Again,
when the directional embedding is used, fewer
wiggles are seen in the results compared to the
case when both directions embedding is applied.
The number of grid points for the fine grid
configuration is 12545, for the embedded grid
without directional embedding is 4417, and for
directional embedding, this number is reduced to
3537. The required CPU time for both directions
embedding is %27 of the time required for fine
grid calculations. This reduces to %25 for the
directional embedding case.

Supersonic Flow in a Convergent Channel

The last test case is supersonic flow in a
converging channel with a 8°ramp and the inlet
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Mach number of 3.0. The length of the ramp is
equal to inlet height of the channel. The initial grid

is 33%9 and the embedding procedure is applied
three times. Figure 8 shows the generated grids and
the Mach number contours for three cases with
different grid configurations. The size of each cell
in the fine uniform grid configuration is the same
as the smallest size in adapted grid case. The
results show that the accuracy is essentially the
same as previous test cases. The number of grid
points in fine grid configuration is 16705. This
number for embedded grid case without directional
embedding is 3941, and for directional embedding,
the number is reduced to 3055. The required CPU
time for both directions embedding is %24 of the
time required for fine grid calculations. This
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Figure 8. Comparison of computational grids and the Mach number contours,

converging channel with a 8° ramp and inlet Mach number of 3.0.

reduces to %22 for the directional embedding case.

5. CONCLUSIONS

The adapted grid embedding is considered and
directional and both directions subdivision are used
and the results for three different cases are
obtained. The results show that although the
general adaptive grid embedding reduces nodes
and computational time with the same accuracy
when compared to fine grid configuration, but the
directional embedding is more efficient. Another
advantage of directional subdivision over both
directions subdivision is that it produces results
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with fewer wiggles around the interfaces.
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