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Abstract  This study is concerned with the numerical analysis, formulation, programming and
computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in
ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method
is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations,
parabolized in the axial direction. The boundary conditions are also transformed accordingly. Applying a
novel feature of the solution procedure, the contravariant velocity components are introduced into the
transformed equations while the physical Cartesian velocity components are retained as dependent variables
of the velocity field in the equations. The transformed equations are integrated over 3D control-volumes,
followed by differencing the convective and diffusive terms by upwind and central-difference schemes
respectively. A modified version of the SIMPLER algorithm is introduced in the solution procedure and
a line-by-line TDMA algorithm is employed for the solution of discretization equations. A computer-
programe is developed for the generation of non-orthogonal grids corresponding to Patankar’s B-type
arrangement in the transformed plane. A general computer programme in FORTRAN is developed for
the solution of flow, heat and mass transfer problems for laminar reacting flows in straight ducts of
arbitrary cross-sections. The model and computer codes are validated by theoretical, experimental and
numerical results from various sources. The computer programs are employed for studies in the analysis
of hydrodynamics and heat transfer in the entrance regions of ducts of arbitrary cross-sections for
Newtonian and non-Newtonian fluids and ultimately for simulation of production of polystyrene in
arbitrary cross-sectional duct reactors.

Key Words Boundary-Fitted Coordinates, Arbitrary Cross-Sectional Ducts, Reacting Flow, Heat and
Mass Transfer, Non-Newtonian Fluids
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1. INTRODUCTION by nonlinear-coupled partial-differential equations.
These equations can be solved by several
The subjects in transport phenomena are modeled approximate solution methods for special cases
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such as asymptotic-expansion and perturbation
methods ,collocation and integral methods, finite-
difference, finite-volume, and finite-element
methods [1]. In general, finite-difference, finite-
volume and finite-element discretization
techniques have been the most successful methods
the use of which, however ,requires discretizing
the entire domain employing a mesh or a grid
network.

The finite element method has been concerned
with the treatment of irregular boundaries since its
beginning, however, this method requires
excessive amount of computational time and
storage [2].

In finite difference methods a convenient choice
for a grid network is composed of rectangles. The
application of the method is therefore suitable to
domains such as rectangular shapes whose
boundaries coincide with the computational grid
points. In earlier studies whenever the finite-
difference method was applied to irregular-shape
domains, special interpolation schemes were
employed at the boundaries for discretization of
the boundary conditions. However, this method
can lead to large errors. In any boundary value
problem, the boundary conditions exert a strong
influence on the solution of the interior of the
domain, so that greater accuracy is required in the
representation of the difference equations at the
boundaries than what is obtained by interpolation.

The inadequacy of the interpolation methods
and the fact that an accurate expression of the
boundary conditions is best accomplished if the
boundaries coincide with some coordinate lines,
brought about the development of coordinate
transformation of the physical domain i.e.
Cartesian coordinates to boundary-fitted
curvilinear coordinates such that all the boundaries
match the coordinate lines and the need to
interpolate the boundary conditions is eliminated
[3-7]. Appropriate transformation relations thus
transform the partial differential equations from the
Cartesian coordinates into the new coordinate
system. The boundary conditions are similarly
transformed without the need to use interpolation
techniques. The transformed plane is simply a
rectangular domain. The transformed-equations
and the boundary conditions are discretized over
this plane and the discretized equations are
conveniently solved by similar methods in
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Cartesian space. It has been shown that the partial
differential equations do not change their
type, i.e. elliptic, parabolic or hyperbolic upon
transformation.

A review of some of the related developments
in the numerical methods for the solution of
momentum equations reveals the elegant features
of the numerical procedure applied in this work. In
general, coupling between the momentum and
mass conservation equations is often the major
cause of the slow convergence of the iterative
solution methods. Caretto et al. [8] applied a
numerical method to the solution of the momentum
equations, which involved an implicit simultaneous
solution of coupled nonlinear difference equations
without linearization or decoupling. The solution
procedure was, however, a point-by-point iterative
method due to which slow convergence is
inevitable. The method of Patankar and Spalding
[9] involved linearization and decoupling of the
equations. In their method, the non-linear terms
(the product terms) of the momentum equations are
handled by setting the value of velocities in these
terms the same as their values at the previous axial
step. The axial momentum equation is treated
separately from the transverse momentum
equations, which are decoupled by assuming a
pressure-field in the transverse direction. In the
computations of transverse velocities, corrections
are made for tentative transverse velocities and
pressure field by iteratively solving a Poisson like
equation for the pressure-correction. The method
proposed by Briley [10] requires two Poisson like
equations to solve, one for a velocity potential for
velocity corrections and the other for the pressure
field. The method of Patankar and Spalding [9]
developed later brought about the SIMPLE and
SIMPLER algorithms [11]. The SIMPLE and
SIMPLER algorithms have been already applied to
solve problems using the non-orthogonal boundary
fitted coordinate transformation system. For
example, Hadjisophocleous et al. [12], Shyy et al.
[13] and Braaten et al. [14] employed the SIMPLE
algorithm in their analysis for non-orthogonal
systems. Maliska [15, 16] applied a mixed
scheme comprising of the SIMPLE and
SIMPLER algorithms. In the present work, the
SIMPLER algorithm is further developed for
the solution of the power-law non-Newtonian
fluid problems.
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2. THE MATHEMATICAL MODELLING

The strongly conservative form of the conservation
equations in Cartesian coordinates are employed
[17] in this work. The conservative form enhances
the subsequent treatment of the equations for
numerical solution. The rheology of many purely
viscous non-Newtonian fluids is adequately
expressed by the power-law model [18,19] for
which the corresponding constitutive equation is
expressed as follows:

1
Ty = _U‘ﬂ?(AU ARy

in which

n-1

A, (1)

i

% GVE ? avé Bﬁ_u ow

+—H+ +—H+ +—
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The diffusion terms are neglected in the axial
direction in the conservation equations and the
equations are parabolized in this direction. The
free-convection effect (buoyancy term) is
introduced in the “y” momentum equation while
the pressure-field is modiﬁed [21, 22]. The heat of
reaction and the viscous dissipation effects are
considered in the energy equation. The Arrhenius
model or any empirically obtained rate law may be
employed for any reaction under study. Variable
physical properties may be considered except for
specific heat, which is nearly constant for liquids
within some specified temperature ranges.

3. THE PARABOLIZED GOVERNING
EQUATIONSIN CARTESIAN
COORDINATES

The Overall Continuity Equation

d(pu) . 9(pv) . 0(pW) _
0X ay 0z

3)
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The Momentum Equations

x- Component
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y- Component
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z- Component
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The Energy Equation
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The Reactant Continuity Equation
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The pressure, P in the above equations is
dynamic-pressure due to the introduction of
buoyancy term in the "y" momentum equation. In
cases of negligible buoyancy effect, P would be the
total pressure defined as hydrostatic plus dynamic

pressures.

The Boundary Conditions

Inlet (@z=0)

Axial Velocity =~ A uniform entrance velocity
profile is specified at inlet:

W= Vvinlet (9)

Transverse Velocities It is assumed that, there is
no secondary flow at inlet:

u=0,v=0 (10)

Temperature A uniform temperature-profile is
specified at inlet:

T =T« (11)

Reactant Weight Fraction For an unconverted
reactant at inlet:

m=1 (12)
Walls of the Duct

Axial Velocity No slip-condition is assumed on
the walls of the duct

w=0 (13)

Transverse Velocities

u=0,v=0 (14)

Temperature For a constant wall- temperature:

T =T, (15)
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Reactant Weight-Fraction The material does
not move through the wall

=0 (16)

Outflow Condition (@z = L) The complete
conservation equations are elliptic; hence the
geometrical domain under consideration must be
closed; that is, for duct flow, the downstream
boundary conditions have to be specified. However
for the parabolized governing equations used here
no downstream boundary conditions are required.

4. THE NUMERICAL SOLUTION

The Orthogonal and Non-Orthogonal
Coordinate Systems The curvilinear boundary-
fitted mesh generated over the physical domain,
may be either orthogonal or non-orthogonal. The
generation of orthogonal meshes is generally time-
consuming [15]. In addition, the concentration of
the grid lines in certain regions of the domain is
not conveniently handled when using orthogonal
methods. The use of non-orthogonal systems has
the disadvantage that the transformed governing
equations become somewhat more complex
because of the presence of the non-orthogonal
terms. Also the finite-difference equations for
pressure-correction involve 9  discrete-points
versus 5 discrete points for orthogonal systems [15,
16]. The use of non-orthogonal coordinates versus
orthogonal system has the advantage of getting rid
of the generation of orthogonal grids at certain
locations which are difficult or impossible to make.
The boundary-fitted method involves the following
two tasks for the solution of PDE’s:

i.  method for generating the coordinate system or

grid network.
ii. method to model the governing equations in
the transformed domain.

A number of studies have appeared in literature
on the use of the non-orthogonal numerical
solution schemes. For example Hadjisophocleous
et al. [12] applied a non-orthogonal numerical
method for the prediction of transient natural
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convection in enclosures of arbitrary geometry.
Shyy, et al. [13] and Braaten, et al. [14] applied a
non-orthogonal numerical scheme using boundary-
fitted coordinates for numerical solution of a
recirculation flow problem. Maliska [16]
developed a numerical model wusing non-
orthogonal grids for the solution of three-
dimensional fluid-flow problems in irregular
geometries. This method uses a novel grid layout,
which  promotes numerical stability and
convergence for the system of equations. Maliska’s
method is adopted here to be applied to the present
analysis considering also any developments
required.

Curvilinear Transformation A transformation
is defined between a physical region “D” of any
arbitrary shape and a transformed region of “D*”
of rectangular-shape. In the physical-region, the
Cartesian coordinates x and y are the independent
variables and the curvilinear coordinates & and
are the dependent variables. In the transformed
region, the coordinates & and 1 are the independent
variables and x and y are the dependent variables.
There exists a one to one correspondence between
the coordinates in the physical-region and the
transformed-region.

The general transformation relation from the
physical-plane (x, y) to the transformed- plane (&,
1) are given by [3-7]:

¢
n

$(Xx,y)

17
n(x.y) (17

The inverse transformation of Equation 17 (if
exists) is:

X = x(&,n)

18
y = y(.n) (49

The Jacobian determinant or Jacobian simply, is
then

_JUxy0_
J=J =Xy, - XY, £0 (19)
%%EJ?)E e e
where
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0x 0
Xg =¥;y,, =%;etc. (20)

one can readily show that:

_Yn __Ye
Ex nx J

21

__X _ Xe
SETY LT

Partial derivatives are transformed using the
following relations:

f, = %[yn ff Y fn]
(22)

—h
1

y %[_ X fe + X, fn]

Higher order derivatives are obtained by repeated
application of Equation 22.

Numerical Grid Generation Consider a
simply connected region, the boundary of which is
specified at discrete-points (Xp, y,). The simplest
elliptic system to choose is to use Laplace equation
and to find & m so that a system of Laplace
equations is satisfied in the physical plane, that is:

o T &y =

0
23
D #1y =0 =

subject to Dirichlet boundary conditions.

Since it is desired to perform all the numerical
computations on the uniform rectangular
transformed plane, the dependent and independent
variables in the above equations must be
interchanged. This results in:

1l
S

O Xg — 2ﬁX5,7 +tYXo

(24)
Ay _2Bye‘n * YYm
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The coupling coefficients in the above-equations
are:

- u?2 2
_Xn+yn

a
B = Xfxn + y.f yn (25)
y = X; + Yy

Equation 24 can be solved by a finite-
difference method using second-order central
difference approximation of derivatives and
applying the SOR (successive over-relaxation)
method. The discrete values of (x, y) at the
corresponding (&, 1) points are then determined.
The grid generation method described in this
section is employed to develop a B-type grid
generation computer program required in this work

[11].

5. TRANSFORMATION OF THE
GOVERNING EQUATIONS

The governing partial-differential equations and the
respective boundary conditions must be transformed
to the boundary-fitted curvilinear coordinates in
order to be solved in the transformed plane. The
problem of solving the governing-equations on a
complex physical domain is therefore changed to
the solution of the transformed-equations on a
uniform grid of rectangular shape in the
transformed plane. In general, the transformation
operation generates additional terms in the
governing equations so that these equations
become more complicated upon transformation.

For the transformation of the governing
equations, one has to first decide upon the de
pendent variables in the transformed-plane for the
velocity components, which could be either the
physical Cartesian velocities, or the contravariant
velocity components. The contravariant velocities
are related to the physical Cartesian components
by the following relationships:

U =y,u-x,v
V =X,Vv-y,u (26)
W = Jw
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Use of contravariant velocities - as the
dependent variables - leads to a complex
transformation in which the physical interpretation
of the transformed equations is also very difficult.
Retaining the physical Cartesian velocities as the
dependent variables in the transformation of the
equations has the advantage that very complex
transformed equations are avoided. Also the
equations preserve their conservative form after
transformation, which is a desired feature in the
physical interpretation of the equations and in the
convenience of formulation of discretization
equations.

The dependent variables for wvelocity
components selected in this analysis are the
physical- Cartesian velocities; however, both the
Cartesian and the contravariant velocities take part
in the structure of the transformed equations and in
the solution procedure. The transformed forms of
the parabolized governing equations are as follows:

The Overall Continuity Equation

0 0 0
- — - = 27
OE(PU)"'G’7 (PV)"'OU(PW) 0 (27)

The Momentum Equations

x-Component

d 9 d _
E(PUU )+ W(PUV )+ E(PUW ) =

0 2 - 2 -
_E[yn(rxx) Xr)(T yx)]

0 . ~
X () =Y (E) = [Yo Pe = Ve Py ]

(28)
y-Component
%(pqu%(pvvw%(pvvv) =

~ LY )1 -
pERUMERACIE

[Xgpq _qug]_‘](p_pa)g
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z- Component
_g (ppwU i (ppwV+ — (ppr =
__[yn (TAXZ )_Xn (‘Eyz)] - (30)

dP
677 ) y(sz)]_‘]E

The Energy Equation

0 0 0
38 (PCATU)+ 5 (PCTV) + 2 (pC,TW) =

0¢
0 ,8
KT, KT,
o0& H) E
0 Ly B 0, id A
+ — kT - —KT, JMOP  + J(-AH)R
on By 1n g e M T ICADRS
(1)
The Reactant Continuity Equation
0 0 0
E(pmAU)"'%(pmAV)"'%(pmAW):
0 oDy P D, 0
— am, — (32)
I 3”175
0 oD, D, 0 -
+— M7~ JRa
onHa V™ Pmeg

where M= m, for the derivatives.

The boundary conditions are also transformed.
The transformed components of the stress tensor,
expressed by the power-law constitutive equation,
are substituted in the transformed governing
equations, which are then expanded to their
ultimate form before being used for discretization.
It is to be noted that the source term in the
transformed energy equation is composed of the
viscous dissipation and heat of reaction terms,
while the source term in the transformed reactant
continuity equation involves the rate of reactant

consumption due to chemical reaction.
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6. DISCRETIZATION OF TRANSFORMED
EQUATIONS

The Grid Configuration Adopted For a non-
orthogonal grid system, the best choice is a
classical staggered-grid in which both components
of “u” and “v” velocities are used coincidentally at
the same locatlon with the contravariant-velocities
normal and parallel to the faces of the cell [16].
This configuration involves one difficulty, which
can be solved by an interpolation scheme. Due to
the fact that one of the contravariant velocities
(parallel components) do not enter to satisfy the
overall continuity equation, the “u” and “v” values
can depart considerably from thelr reahstlc values
during the iteration process. The values of these
velocities can, however, produce normal
components of the contravariant velocities, which
would satisfy the mass balance equation while the
parallel components of the contravariant velocities
remain free to assume unrealistic values. The
solution to this difficulty is to enforce somehow
the continuity equation to also hold for the parallel
components of the contravariant velocities. Thus
the parallel components of the contravariant
velocities are obtained by interpolation from the
normal components of the contravariant velocities,
which do satisfy the mass conservation.

The Discretization Method The transformed
governing equations are discretized using the
method known as the “control-volume” finite
difference approach [11]. Applying this method,
the calculation domain is divided into a number of
control volumes such that there is one control-
volume surrounding each grid-point. The
differential equations are integrated over each
control-volume. For 3D problems, triple integrals
are involved. In the formulation of the
discretization equations, the upwind difference
scheme is applied to the convective terms and the
central difference approximation to the diffusion
terms. The fact that the flow field must satisfy the
mass conservation equation provides some
simplification to the discretized governing
equations combined with the discretized overall
continuity equation. Finally, each equation is cast
into the general discretization form, that is, an
algebraic relation connecting values of the
dependent variable for a group of grid points,
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bearing their respective coefficients. For each
nodal point P, four adjacent control volumes
surrounding the interfacial points (e n w and s) are
considered over which the transformed transverse
momentum equations are integrated and
discretized. Thus, four pairs of discretization
relations for u and v velocities, namely, (n., Vve),
(up, Vo), (uy, Vvy) and (us, Vvs) are obtained.
Meanwhile, the transformed equations for axial
momentum, energy and reactant continuity are
integrated over the main control volume enclosing
the nodal point P from which the discretization
equations for w,, hp and mp are obtained. The list
of discretization equations is as follows:

U, : AR, =

u s |
> AU, TB -0 _ Vv

(33)
v,: ARV, =
R+Re-R—Fe U
1w 7 f
> Ay Vo, B~ Vv
R X, O
Bas ™ H
(34)
u,: AR, =
[PNE + RE B F\)N R\lw y _D
H o " %
u +RY — \/
Z'Atnmnu(nb)n B, EPN R -
gag g
(35)
v,: APV, =
R, -k O

.
g

%<

|

%DD

v Vv +RBY —
Z'Atnb)n o i Ret R —Ry —Rw
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u,: AR, =
] . Hag o™ H
> AU, T B0 rav
Pt Paw = Fs —Pay y O
g 40n “B
(37)
v, :
APV, =
Py + Py =P =Py,
, . B 4 e
Z Aan)WV(nb)W +B,-O P -P 1 AV
O 7p ~w g 0
H ag ™ =
(38)
U : AF;UUS =
(R +Pe =Ry =Py | L
u TS s
2 AU, *B 70 v
L' S y O
ER. E
(39)
v, AR, =
R -R O
H an X H
\% vV + BV — V
zAtnb)s (o), T Bs El_ P.+P.—R, -Py, XHSEA
= 40 =
(40)

w, : AP .w, =

. . . OAPO., (D)
z Aloyp Wimyp + Bp = Jp BE%V
h, : APPh'hP - Z A(hnb)P'h(nb)P + BS (42)

Myt AP M, =S Al o Mipye + By (43)

Note that there exists the following relationship
for the coefficients of each discretization equation:

AP = AE + AN + AW + AS+ AU (44)
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Introducing source-term linearization for energy
and species-continuity equations:

AP = AE + AN + AW + AS+ AU - SP.AV
(45)

Location of the Control-Volume Faces For
the proper location of the control-volume faces, the
B-type grid or practice-B [11] is employed here. In
this arrangement, one draws first the control-
volume boundaries and then places a grid-point at
the geometric center of each control-volume
through which the main grid lines are drawn. If the
grid is designed this way, then the entire
calculation domain would be covered with regular
control-volumes.

The Solution Method of the Discretization
Equations The discretization equations are
algebraic equations and are solved by a line-by-line
tridiagonal matrix (TDMA) algorithm. Introducing
a relaxation-factor to the discretization equations
one may enhance the convergence of the iterative
solution. With the line-by-line method, use of over
relaxation is uncommon while underrelaxation is
often used to avoid divergence in the iterative
solution of the equation. The general discretization
equation in which relaxation factor is introduced is
as follows:

AP(1,3)(1,3)=
Ay (1,3 000, (1,3)+ B(1,3)+ (46)
(1-a)AP(1,3)(1,3)- L[P, 1AV

Pressure-Veocity Coupling in the Transverse
Direction The SIMPLER algorithm is modified
for non-orthogonal system and power-law non-
Newtonian fluids in this work. The coefficients of
the “u” and “v” momentum equations are
computed using the best available velocities. A
Poisson-like equation for pressure using pseudo
velocities is solved to obtain a tentative pressure-
field, P*, which is used to solve the “u” and “v”
momentum equations to obtain the starred—

IJE Transactions A: Basics

velocities U™ and V. These velocities do not, in
general, conserve mass. The corresponding values
of U and V' are obtained by substituting u” and v
in the following relations:

Uu =y,u

*

Vi =X v —yu

* _ X V*
! (47)

These velocities must be corrected by U - U’
and V - V respectively, to obtain “U” and “V”
velocities which do conserve mass. The above
changes are related to the corresponding required
changes in the “u” and “v” velocities as follows:

U-U" =y, u-u)=-x(v-v)
* * * (48)
V-V =X((V-V)=-y(u-u)

Estimates of change in “U” and “v” that result from
change in “P” are:

PP ) 0

- *:—AVD a¢ w %
© T A Py + P —PL-PL % (y,).0
g 40n =

0P, + P — P, — P 0

X

e AVH 480 (). %
g ag AE H

(49)

in which P'=P-P".
obtained for u, —u,, v, —Vv,, U, —u,,

Similar expressions are
VW - VW’
u, - U: and V, —V: . The value of P’ is obtained

from a Poisson-like pressure-correction equation
derived in this work for the power-law non-
Newtonian fluid in which the starred velocities are
used. Once the P’ is known, the contravariant
velocities which enter into the mass-balance (U,
Uw, Vs, Vi) can be found from the Equation 48. The
other contravariant velocities (Ve, Up, Vi, Ug) are
obtained by interpolation. The physical velocities
“u” and “v” are obtained from the following
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equations:

u:%[Ux§+Vxn] 0
5
V= %[Uys +Vy,7]

To obtain an equation for pressure correction, P’
one should substitute the velocity-correction (49)
etc. in Equation 48 to obtain equations for “U” and
“V* in terms of U, V' and P' which when
substituted in the overall continuity equation:

(PU)e = (PU), , (PV), = (PV),
Y3 An

(pW)D - (pW)u
Ao

(51

=0

results the following Poisson-like pressure-correction
equation:

AP = APL+ AP, + AP+ AR,
+ANEPI:IE +ASEPS'E +ANWPI<IW +A9NPS'N +B

(52)
in which
Ao = A+ A+ A, + A (53)
also
Ae tAw T Ay A =0 (54)

Taking “p” constant in the above formulations
(which enhances convergence) and using Aé=An=1
(for simplicity), the coefficients are obtained as
follows:

Aoy>.  Aox: Aoy’ Aox?
A = Ve , BOXe DOV,  BOX,
AP APY AP APY
Aoy>.  Aox: Aox: Aoy’
oy5n+ OX§n+ 0X55+ oygs
AP' AP’ APY AP’

(55)
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2

A = Aoy;, .\ AOX,,  DOXg X  DOYe Y,
APeu APeV 4 APnV 4 AI:’nu
+ AO-Xésxns + AOyés yns
4 AP/ 4 AP,

(56)

- _ Ao-yfeyrye _ Ao—xéexne + Aoy.{quw
N 4AP 4AP) 4AP !
AOX,, X Aox;. Aoy;
Ew *nw + én + Oy.{n
4AP) APY  APY

+

(57)

_ AOYeeYpe N AOXge X e i AOYeyYiw
4 AP 4 AP 4 AP
D OX gy X . Aox .\ Aoy,
4 AP AP AP/

S

(58)

2 2
A, = Aoy, N Aox,, N AoXg, X,
AP AP/ 4 AP’
AOYe,Yin _ AOXgsXps _ AOY Vs
4 AP’ 4 AP/ 4 AP

(59)
+

AOXge X, e _ AOY¢ Ve _
4 AP ' 4 AP *
_ AO-y.»fn yryn

ANE = -

(60)
AOTXg, Xpn

4AP " 4AP Y

AO—Xéexne + Ao—yée yne +
4 AP’ 4 AP

SE
(61)

Aaxésx,7s N Aayésy,7S
4 APSV 4 APSu
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_ AUXEWX,;W N Aoyéwy,7W N

NwW

4 AP 4 AP !
(62)
AoXe, X, N AOYe Yo
4 AP Y 4 AP "
A - _ Ao-xéwxnw _ Ao-y{wynw _
sw T Y] u
4 AP 4 AP}
(63)
AO-XEer)s _ AO-y{s yns
4AP 4 AP}

. . . « W, -W
B=(U, -U)+(V, -V)+——" (64
Ao

(for pressure-correction equation)
The Poisson-like pressure equation is similar to
the equation for pressure-correction equation,

AcPy = AP + APy + AP + Ay Ry +

ANE I:)NE + ASE PSE + ANW I:)NW + ASN PSN + B
(65)

with the exception of the B term which is

expressed in terms of pseudovelocities for the
pressure equation.

n n A A W, -W
B:(UW_Ue)+(\/s_Vn)+u (66)
Ao

(for pressure equation)

Pressure-Velocity Coupling in the Parabolic
Direction The method adopted here is that of
Raithby/Schneider [23]. Primarily the momentum
equation in the axial-direction is solved with the
boundary condition using a guessed pressure-

A

. P . : . .
gradient to obtain a tentative axial-velocity
o

W;; . The corresponding mass flow rate is
M" = ; Jow’ (67)

IJE Transactions A: Basics

where “all P” denotes all the w-control volumes
inside the duct walls. Defining two new variables:

Q=——oand f, =— (68)

The corrected pressure-gradient

<%

E would be

*

P
related to %E by
o

AQ=—§—?— Eé (69)

Bk

and the corrected axial-velocity would be related to
W, by

W, =W, + f,AQ (70)

where fp is obtained from the following
discretization-equation using appropriate
boundary- conditions:

Ao = AN+ A+ AV + A+ 3,8V
(71)

and AQ values is chosen to make the total mass
flow rate constant, i.e.

AQ=——— (72)

in which “M” is the exact mass-flow rate known
from the inlet conditions.
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7. OUTLINE OF THE SOLUTION
PROCEDURE

(i) Compute the coefficients for the axial
momentum equation using the best available
velocities and using a guessed pressure-gradient.
Solve the axial momentum-equation for a tentative
axial-velocity, W,

(i1) Solve for the factor “f” and calculate “AQ”,

(iii) Calculate the corrected axial-velocity field, w
and the corrected pressure-gradient in the axial
direction using the “f” and the “AQ” parameters.
Proceed to perform an inner iteration for w.

(iv) Using the best available velocities, compute

[{3 1)

the coefficients for the “u” and “v” momentum
equations,
(v) Compute the pseudo velocities, 4 and v and

A

the corresponding contravariant components U

and V using the relevant relations,
(vi) Solve the Poisson-like equation for pressure,

P. in which lj and \7 are used.

(vii) Treating this pressure-field as P°, solve
transverse momentum equations for u” and v',
(viii) Calculate the corresponding U™ and V' from
the relevant equations,

(ix) Solve the Poisson-like equation for pressure-
correction, P’, in which U” and V' are used,

(x) Correct U™ and V" velocities using P’ solution

to obtain “U” and “V” components that conserve
mass and obtain the other components of “U” and
“V” velocities by interpolation,

(xi) Compute the physical velocities, “U” and “v”
from the latter contravariant velocities using the
relevant equations.

(xii) Solve the energy equation,
(xiii) Solve the reactant continuity equation.

With the new velocity field, temperature and mass-
fraction values obtained above return to step (i)
and iterate up to convergence.

8. RESULTSAND DISCUSSION

Fluid Flow Numerical results are presented in
Figures 1 to 5. The specific geometries selected for

12 — Vol. 16, No. 1, February 2003
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Figure 1. Centerline velocity development.
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Figure 2. D.L. pressure-drop vs D.L. axial- distance.

-0~ comrutio

this analysis are as flows:
= square duct
= equilateral triangular duct

= trapezoidal duct (acute-angle = 60°, one side
twice the other)

» pentagonal duct (each angle = 108°)

All the above ducts are selected on the basis of
the same equivalent diameters. Consequently, the
same value of the relaxation factor is applied to all
the geometries corresponding to each discretization
equation. It is believed that this scheme is valid if
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TABLE 1. Comparison of Theoretical and Predicted
Results.

W
(Wd )@ F.D. Square Duct | Circular Duct
Exact 2.096 2.00
21x21 2.110 1.99
Error -0.67% 0.50%

the geometries selected do not involve oddity. For
a pictorial representation of this concept, one may
refer to Bejan [24] for a scale drawing of the duct
sizes for some geometry having the same
equivalent diameter. The inlet Reynolds number
values applied for the Newtonian fluid was 900
and that for the non-Newtonian case was 128
respectively. The problem is solved for constant-
property fluid and the fluid is considered
isothermal in the transverse direction due to which
the buoyancy effect is ignored. For the sake of
numerical accuracy and computational economy
the mesh size selected was 21 x 21 over the
transverse plane. The typical CPU time was about
3 minutes for one run on IBM ESA9000 machine
(mainframe).

The Newtonian case was solved with an axial
step size of 0.160 m for which 26 marching
stations were required in the axial direction to
converge to the fully developed flow condition.
The predicted results for the centerline velocity
development, axial pressure gradient and axial
velocity profiles on the central plane are presented
in Figures 1 to 3 for square ducts. The axial
velocity results show an excellent gradual
development as expected. Within the numerical
accuracy, there is close agreement between the
ultimate centerline velocity results and their
corresponding theoretical values examined for the
square and circular ducts. The computed result for

W,
the square duct centerline velocity (— ) is 2.110
W

versus the theoretical value of 2.096 at the fully
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Figure 3. Development of axial velocity profile.

developed condition where the relative deviation

. W,
between two successive values of —2- only 0.24%.

The computed result for the circular duct centerline
Lo Wy .
velocity (—2 ) is 1.99 versus the theoretical value
W

of 2.00. These results provide a measure of
accuracy of the grid size selected as indicated in
Table 1.

Also the results obtained in the present analysis
for Newtonian fluids in square ducts exhibit
excellent agreement with the experimental
measurements of Goldstein et al. [25] for
centerline velocity development and those of
Beavers et al. [26] for pressure-drop values (see
Figures. 1 and 2).

About 5 iterations were required to obtain
converged solution over each transversed plane.
The convergence criterion was set on the basis of

the residual values defined as follows:

(i). the residual of the momentum equations,
that is, the remainder of these equations
when the results are substituted for the
velocities into these equations. In general

R= z ad,, +b—a.¢, and R will be zero

when the discretization equation is satisfied
[11]

(ii). the residual of velocities, that is. the
difference in velocity values between two
successive iterations.
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Figure5. Secondary flow velocity profiles for a trapezoidal duct, non-Newtonian fluids (n = 0.5), Re = 128, (z/D)/Re = 0.0115.

TABLE 2. Residual Values (Fluid-Flow).

Geometrics Momentum-equation Residual Velocity Residual
Transverse Axial Transverse Axial
Square 0.12x10° 0.21x10™"° 0.34x10° -0.35%x107
Triangular 0.26x10° 0.98x10™"° 0.60x10° -0.44x10”
Trapezodial 0.20x10° 0.36x10™"° 0.40x10° -0.32x107
Pentagonal 0.18x10° 0.52x10"° 0.44x10° -0.35x10”

Table 2 shows the residual values of momentum
equations and velocities at the fully developed
condition.

It should be noted that the numerical solution
procedure, which was developed and implemented
in this study, did not show any convergence
problems.

The non-Newtonian analysis is for a
polystyrene solution with a power-law index of n =
0.5 and Reynolds number value of 128 at inlet. The

14 — Vol. 16, No. 1, February 2003

axial-step size selected was 0.05 m. The axial
velocity development shows a plug-flow behavior
at all four arbitrary cross-sectional ducts chosen,
although the triangular duct shows a slight delay in
the developmentto a plug flow velocity profile.
The plug flow behavior observed for the non-
Newtonian case was previously predicted by
Husain and Hamielec [27].

Husain and Hamielec [27] in their analytical
studies of tubular styrene polymerization. The non-
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TABLE 3. Comparison of Limiting Nusselt Numbers.

Equilateral .
Square Rectangular(2/1) Rectangular(3/2) Triangular Circular
Clark and Kays 2.890 3.390 - - -
Dennis et al. 2.980 3.390 3.120 - -
Shah and 2.976 3.391 3.117 - -
London
Schmidt 2.970 3.383 3.121 - -
Javeri 2.981 3.393 - - -
LyCZk;’IW skiet | 975 3.395 3.117 - -
Kays and 2.980 3.390 - 2.350 3.658
Crawford
Wibulswas - - - 2.570 -
This Study 2.980 3.363 3.118 2.598 3.603
TABLE 4. Residual Values (Heat-Transfer).
Geometry Energy-equation Residual Enthalpy Residual
Square 0.303x107 -0.275x10"
Triangular 0.160x10° -0.270x10"
Trapezoidal 0.533x10” -0.270x10™
Pentagonal 0.694x10”' -0.385x10™
Rectangular(2/1) 0.224x107 -0.357x10"
Rectangular(3/2) 0.262x107 -0.315x10"
Circular 0.105x10° -0.501x10™

Newtonian case applied to circular ducts in this
analysis also showed a plug flow behavior. It is,
however, worthwhile to mention that specific non-
Newtonian cases should be investigated separately
due to the wide range of viscosities involved and
the power- law indices.

The solution procedure showed a lower critical
limit of axial step size, Ac = 0.01 m, at which u
and v components of velocity field (secondary
flow) could not be obtained in conjunction with the
w component (primary flow). An upper limit was
also observed for the values of Ac selected beyond
the value mentioned above for both Newtonian and
non-Newtonian cases.

The transverse velocity components, u and
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v, supply the fluid that permit axial flow
development, the highest value of which occur
near the entrance where the most rapid
arrangement of the axial velocity takes place. In
laminar flow, due to the very small components of
transverse velocities, the secondary flow has a
small effect on the primary flow and the axial
pressure-gradient [10,16]. The results of secondary
flow analysis, for trapezoidal ducts, for Newtonian
and non-Newtonian cases at one axial location, are
presented in Figures 4 and 5. Comparing the
corresponding z/Dy, values, it is observed that the
axial location for non- Newtonian case is closer to
the entrance than for the Newtonian case. The
secondary flow is away from the walls towards the
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TABLE 5. Husain and Hamielec [27], 1976, Simulation Results.

Length Z(cm) Conversion wt% Molecular- Weight Polydispersity My
M, x107 M, x107 M,
100 1.26 4.16 7.34 1.77
300 3.95 4.04 7.16 1.77
500 6.62 3.96 7.08 1.78
TABLE 6. Present Work Simulation Results.
Number of Stations Selected in Axial Direction: 5.
) Molecular- Weight ) ) w
Length Z(cm) | Conversion wt% M. x10° M, x10° Polydispersity —n Total AP(Pa)
100 1.38 4.22 7.43 1.76 0.037
300 4.14 4.75 8.68 1.83 0.40
500 6.74 4.52 8.20 1.81 1.46
TABLE 7. Present Work Simulation Results.
Number of Stations Selected in Axial Direction: 10.
) Molecular- Weight ) .. M,
Length Z(cm) | Conversion wt% M. x10° M, x10° Polydispersity M_n Total AP(Pa)
100 1.37 5.09 9.33 1.83 0.06
300 3.95 4.48 8.08 1.80 0.48
500 6.34 4.40 7.87 1.79 1.74

intermediate sections at which it is reversed in
direction for all the geometries. The order of
magnitude of the secondary flow velocities for
square ducts obtained in this work conforms to the
results 1illustrated by Briley [10]. Comparing
Newtonian and non-Newtonian secondary-flow
results, it is observed that the results of Newtonian
case are relatively higher than the results of non-
Newtonian case. The reason for this difference is
attributed to the primary velocity profile patterns
of the two cases, that is, tending to parabolic for
Newtonian and plug-flow for non-Newtonian cases.

Heat Transfer  The limiting Nusselt number
(Nyr) for square, rectangular, triangular and
circular ducts obtained in this study are compared
with analytical and numerical results of other

16 — Vol. 16, No. 1, February 2003

investigators in Table 3. The analysis was made for
P, = 6.78 and constant wall temperature case.
These results confirm the validity of the model and
computer code for heat transfer in this study.

This study was performed on the basis of the
same equivalent diameters. The mesh size selected
was 21 x 21 over the transverse-plane as before.
The problem was solved for an axial step size of
0.276 m for which 250 marching stations were

TABLE 8. Residual Values(M ass Transfer).

Species-continuity equation Mass-fraction
residual residual
0.2x10” 0.2x10~

IJE Transactions A: Basics



TABLE 9. Simulation Results of Styrene Polymerization at Reactor Exit.

WPA I\Wn IWW Polydi_spersity Bulk- | Total
No. Geometry o ( kg ) ( kg ) M, temp DP
Wt p——— °
)1 Cgmol kgmol M, (O | (Pa)
1 Circular 6.74 452460 819590 1.81 102.3 | 1.46
2 Square 6.74 452910 820240 1.81 102.2 | 1.88
3 Triangular 6.38 453450 820660 1.81 101.9 | 2.70
4 Trapezoidal 6.33 454100 822100 1.81 101.9 | 2.57
5 Pentagonal 6.63 453810 822110 1.81 102.1 | 2.28
6 Hexagonal 6.74 452940 820450 1.81 102.3 | 1.69
7 Rectangular(AR=1.5) 6.70 453784 821697 1.81 102.0 | 191
8 Rectangular(AR=2.0) 6.63 455120 823870 1.81 101.8 | 1.97
required in the axial-direction. The typical CPU are related to the following operating data:
time required was about 26 minutes for one run on length of tube 500 cm
IBM ESA9000 machine. The computations were tube radius 2.0cm
performed for fully developed velocity and inlet velocity 0.0695 cm/sec

developing temperature profiles. About 5 iterations
were required to obtain converged solution over
each transverse plane. The convergence criteria
was set on the residual values similarly defined for
the Fluid-Flow study mentioned before, that is, the
residuals for this study are as follows:
(1) the residual of energy equation,
(i1) the residual of enthalpy values between
two successive iterations.

Table 4 shows the residual values of energy
equation and enthalpy values at the converged
solution.

Mass Transfer with Chemical Reaction The
thermal polymerization of styrene is selected in
this study for analysis in arbitrary cross-sectional
duct reactors. The validation of system modeling
and computer codes for mass transfer is accomplished
through comparison of the results of other
investigators with the predicted results obtained by
the present analysis. One typical comparison is
presented in Tables 5, 6, and 7. The above results
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inlet/wall temperature ~ 100° C/100°C

Employing the above operating data, this work
was conducted for the analysis of thermal
polymerization of styrene in arbitrary cross-
sectional duct reactors for eight different
geometries. The same mesh-size on transversed
plane was used as before. Typical CPU time was
about 10 minutes for the longest run on IBM
ESA9000 machine. About 5 iterations were
required on each transversed plane for
convergence. The same convergence indicators
were selected as mentioned previously in Fluid-
Flow and Heat-Transfer sections. Refer to Table 8
in this respect.

The basis for computations in all the reactors
bearing different geometries in their cross sections
and the same length is the same residence-time in
the reactors or the same cross sectional area, while
the same uniform velocity is maintained at inlet of
each reactor. Refer to Table 9 for the simulation
results of styrene polymerization in eight different
geometries corresponding to the above-mentioned
operating conditions.
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9. CONCLUSIONS

This paper demonstrates the application of a
non-orthogonal boundary-fitted coordinate
transformation method to the solution of 3D
parabolized conservation equations of reacting
laminar flow in various ducts of non-circular cross-
sections. The solution procedure has been modified
to handle non-orthogonal boundary-fitted method
and non-Newtonian fluids. The results of
validation of system model and computer codes are
excellent.

10. NOMENCLATURE

A a coefficient in discretization equation
AR, ar aspect ratio

B,b constant term in discretization equation
Co specific heat

DP pressure drop

DE, Dy, equivalent or hydraulic diameter

O
>

mass diffusivity of A
dimensionless

defined by Equation (68)
fully-developed
acceleration due to gravity
enthalpy (h = CpT)
Jacobian of transformation
thermal conductivity

mass fraction

apparent viscosity for a power-law
fluid

mass flow rate

el
o [

<

=

cup-averaged weight average

molecular-weight

<

=

cup-averaged number average

molecular-weight
power-law index

unit normal vector
limiting Nusselt number
pressure

pressure correction
static pressure at inlet

3

mean viscous pressure
heat flux
defined by Equation (68)

08 gENTvZz= s
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=\, 1
RDPT (= —P)/(Epwg)
R residual of discretization equation
Ra mass rate of consumption of reactant
“A” due to chemical reaction
Dn W 2-n
R. Reynolds number (R, = ph—)
u
RW axial velocity ratio Bg H
w ]
RWCL centerline velocity ratio B‘/é H
aw o
SC constant part of linearized source term
SP coefficient of the dependent variable
in the linearized source term
w mean axial velocity
W, centerline velocity
Wo inlet velocity
WPA polymer average weight fraction
u,v,w velocity components in the Cartesian
system
a,v, w pseudovelocity components
O,V,W pseudovelocity components (contravariant)
u\v,w tentative velocity field
Uvw tentative contravariant velocity field
X,Y,Z Cartesian coordinate system
Z duct length
Z* dimensionless axial-distance,
2t = z
D,.R.(local )
Greek Letters
o relaxation factor
o, B,y coordinate transformation coefficients
é.n,o axes of curvilinear coordinate
u consistency index (for power-law
fluids) and viscosity (for Newtonian
fluids)
P density
P, arithmetic mean density for duct
cross-section
T stress-tensor
AH heat of reaction
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A; rate of deformation tensor

AP pressure-drop in the duct

AV change in volume

(0] general dependent variable

) viscous dissipation function

Super scripts

A refers to transformed quantities,

except for velocities

Subscripts

nb general neighbor grid point

P central grid point under consideration

U upstream plane

D downstream plane

E ,W, N, S nodes neighboring to P

NE,NW  nodes neighboring to P

SE, SW nodes neighboring to P

Special Symbols

L[] finite-difference approximation of the

quantity in brackets
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