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Abstract   This study is concerned with the numerical analysis, formulation, programming and 
computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in 
ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method 
is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, 
parabolized in the axial direction. The boundary conditions are also transformed accordingly. Applying a 
novel feature of the solution procedure, the contravariant velocity components are introduced into the 
transformed equations while the physical Cartesian velocity components are retained as dependent variables 
of the velocity field in the equations. The transformed equations are integrated over 3D control-volumes, 
followed by differencing the convective and diffusive terms by upwind and central-difference schemes 
respectively. A modified version of the SIMPLER algorithm is introduced in the solution procedure and 
a line-by-line TDMA algorithm is employed for the solution of discretization equations. A computer-
programe is developed for the generation of non-orthogonal grids corresponding to Patankar�s B-type 
arrangement in the transformed plane. A general computer programme in FORTRAN is developed for 
the solution of flow, heat and mass transfer problems for laminar reacting flows in straight ducts of 
arbitrary cross-sections. The model and computer codes are validated by theoretical, experimental and 
numerical results from various sources. The computer programs are employed for studies in the analysis 
of hydrodynamics and heat transfer in the entrance regions of ducts of arbitrary cross-sections for 
Newtonian and non-Newtonian fluids and ultimately for simulation of production of polystyrene in 
arbitrary cross-sectional duct reactors. 
Key Words   Boundary-Fitted Coordinates, Arbitrary Cross-Sectional Ducts, Reacting Flow, Heat and 
Mass Transfer, Non-Newtonian Fluids 

ايـن مطالعه در رابطه با آناليز عددي، فرمول بندی، برنامه نويسی و محاسبات انتقال حرارت و انتقال                     چکـيده چکـيده چکـيده چکـيده 
. باشد جـرم بـرای معادلات سه بعدی بقا در جريان آرام در حال واکنش در مجراهای با سطوح مقطع دلخواه مي      

ی شکل کارتزين معادلات پيوستگي کلي،     روش انتقال مختصات غيرمتعامد دربرگيرنده حدود اشکال هندسي برا        
شرايط مرزی .  شود مومنـتوم، انـرژی و پيوستگي جزئي که در جهت محوری پارابوليزه شده باشد، بکار برده مي               

نتراواريانت در  ای سرعت كو  ه  با بکار بردن يک شيوه جديد راه حل، مولفه        . يابند نـيز بهميـن طـريق انـتقال مـي         
يرهای وابسته ای سرعت فيزيکی کارتزين بعنوان متغه  در شرايطي كه مولفه  . گردند   ل مي معادلات انتقال يافته داخ   

ی کنترل سه بعدی حجمهامعـادلات انـتقال يافـته روی        . وندش ـ  در مـيدان سـرعت در معـادلات نگهـداری مـي           
 برای  central-difference برای جملات کنوکسيون و روش       upwindانـتگرال گـيری و متعاقباً با بکار بردن روش           

 در حـل معادلات  Simplerشـکل جديـد الگوريـتم    . وندش ـ   مـي discretizeجمـلات ديفـيوژن توزيـع گسسـته       
discretize    شود در حالی که اين معادلات با الگوريتم     شده بکار برده ميTDMAوندش  حل مي خط به  بطور خط .

 در صفحه انتقال يافته     Patankar روش   Bبنای نوع   ای غير متعامد بر م    هيـک برنامه رايانه ای برای ساختن شبکه         
ای برای حل مسائل جريان انتقال حرارت و انتقال جرم در جريانهای آرام در        و همچنيـن يـک برنامه کلي رايانه       

صحت مدل ريزی رياضي و برنامه   . حـال واکـنش در مجراهای مستقيم با سطوح مقطع دلخواه ايجاد شده است             
ای رايانه اي براي   ه برنامه. ج نظـري، تجربي و عددی از منابع مختلف اثبات شده است           هـاي رايانـه اي بـا نـتاي        

مطالعه و تجزيه و تحليل هيدروديناميکي و انتقال حرارت در قسمتهای ورودی مجراهای با سطوح مقطع دلخواه 
تايرن در راکتورهای با سا در سـيالات نيوتنـي و غير نيوتني و نيز از نظر انتقال جرم برای مشابه سازی توليد پلي                  

 .سطوح مقطع دلخواه بکار شده است

1. INTRODUCTION 

The subjects in transport phenomena are modeled 

by nonlinear-coupled partial-differential equations. 
These equations can be solved by several 
approximate solution methods for special cases 
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such as asymptotic-expansion and perturbation 
methods ,collocation and integral methods, finite-
difference, finite-volume, and finite-element 
methods [1]. In general, finite-difference, finite-
volume and finite-element discretization 
techniques have been the most successful methods 
the use of which, however ,requires discretizing 
the entire domain employing a mesh or a grid 
network. 
     The finite element method has been concerned 
with the treatment of irregular boundaries since its 
beginning, however, this method requires 
excessive amount of computational time and 
storage [2]. 
     In finite difference methods a convenient choice 
for a grid network is composed of rectangles. The 
application of the method is therefore suitable to 
domains such as rectangular shapes whose 
boundaries coincide with the computational grid 
points. In earlier studies whenever the finite-
difference method was applied to irregular-shape 
domains, special interpolation schemes were 
employed at the boundaries for discretization of 
the boundary conditions. However, this method 
can lead to large errors. In any boundary value 
problem, the boundary conditions exert a strong 
influence on the solution of the interior of the 
domain, so that greater accuracy is required in the 
representation of the difference equations at the 
boundaries than what is obtained by interpolation. 
     The inadequacy of the interpolation methods 
and the fact that an accurate expression of the 
boundary conditions is best accomplished if the 
boundaries coincide with some coordinate lines, 
brought about the development of coordinate 
transformation of the physical domain i.e. 
Cartesian coordinates to boundary-fitted 
curvilinear coordinates such that all the boundaries 
match the coordinate lines and the need to 
interpolate the boundary conditions is eliminated 
[3-7]. Appropriate transformation relations thus 
transform the partial differential equations from the 
Cartesian coordinates into the new coordinate 
system. The boundary conditions are similarly 
transformed without the need to use interpolation 
techniques. The transformed plane is simply a 
rectangular domain. The transformed-equations 
and the boundary conditions are discretized over 
this plane and the discretized equations are 
conveniently solved by similar methods in 

Cartesian space. It has been shown that the partial 
differential equations do not change their 
type, i.e. elliptic, parabolic or hyperbolic upon 
transformation. 
     A review of some of the related developments 
in the numerical methods for the solution of 
momentum equations reveals the elegant features 
of the numerical procedure applied in this work. In 
general, coupling between the momentum and 
mass conservation equations is often the major 
cause of the slow convergence of the iterative 
solution methods. Caretto et al. [8] applied a 
numerical method to the solution of the momentum 
equations, which involved an implicit simultaneous 
solution of coupled nonlinear difference equations 
without linearization or decoupling. The solution 
procedure was, however, a point-by-point iterative 
method due to which slow convergence is 
inevitable. The method of Patankar and Spalding 
[9] involved linearization and decoupling of the 
equations. In their method, the non-linear terms 
(the product terms) of the momentum equations are 
handled by setting the value of velocities in these 
terms the same as their values at the previous axial 
step. The axial momentum equation is treated 
separately from the transverse momentum 
equations, which are decoupled by assuming a 
pressure-field in the transverse direction. In the 
computations of transverse velocities, corrections 
are made for tentative transverse velocities and 
pressure field by iteratively solving a Poisson like 
equation for the pressure-correction. The method 
proposed by Briley [10] requires two Poisson like 
equations to solve, one for a velocity potential for 
velocity corrections and the other for the pressure 
field. The method of Patankar and Spalding [9] 
developed later brought about the SIMPLE and 
SIMPLER algorithms [11]. The SIMPLE and 
SIMPLER algorithms have been already applied to 
solve problems using the non-orthogonal boundary 
fitted coordinate transformation system. For 
example, Hadjisophocleous et al. [12], Shyy et al. 
[13] and Braaten et al. [14] employed the SIMPLE 
algorithm in their analysis for non-orthogonal 
systems. Maliska [15, 16] applied a mixed 
scheme comprising of the SIMPLE and 
SIMPLER algorithms. In the present work, the 
SIMPLER algorithm is further developed for 
the solution of the power-law non-Newtonian 
fluid problems. 
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2. THE MATHEMATICAL MODELLING    

The strongly conservative form of the conservation 
equations in Cartesian coordinates are employed 
[17] in this work. The conservative form enhances 
the subsequent treatment of the equations for 
numerical solution. The rheology of many purely 
viscous non-Newtonian fluids is adequately 
expressed by the power-law model [18,19] for 
which the corresponding constitutive equation is 
expressed as follows: 
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The diffusion terms are neglected in the axial 
direction in the conservation equations and the 
equations are parabolized in this direction. The 
free-convection effect (buoyancy term) is 
introduced in the �y� momentum equation while 
the pressure-field is modified [21, 22]. The heat of 
reaction and the viscous dissipation effects are 
considered in the energy equation. The Arrhenius 
model or any empirically obtained rate law may be 
employed for any reaction under study. Variable 
physical properties may be considered except for 
specific heat, which is nearly constant for liquids 
within some specified temperature ranges.  

3. THE PARABOLIZED GOVERNING 
EQUATIONS IN CARTESIAN 

COORDINATES    

The Overall Continuity Equation 
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The Momentum Equations    
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y- Component 

g
yxy

P

z

wv

y

v

x

uv

a
yyxy

)

2

(

)()()(

ρρ
ττ

ρρρ

−−





∂
∂

+
∂
∂

−
∂
∂−

=
∂

∂+
∂

∂+
∂

∂

 (5) 

z- Component 
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The Energy Equation 
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The Reactant Continuity Equation 
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     The pressure, P in the above equations is 
dynamic-pressure due to the introduction of 
buoyancy term in the "y" momentum equation. In 
cases of negligible buoyancy effect, P would be the 
total pressure defined as hydrostatic plus dynamic 
pressures. 

The Boundary Conditions    

Inlet (@z =0) 

Axial Velocity   A uniform entrance velocity 
profile is specified at inlet: 

inletww =  (9) 

Transverse Velocities   It is assumed that, there is 
no secondary flow at inlet: 

0,0 == vu  (10) 

Temperature   A uniform temperature-profile is 
specified at inlet: 

inletTT =  (11) 

Reactant Weight Fraction   For an unconverted 
reactant at inlet: 

1=m  (12) 

Walls of the Duct    

Axial Velocity   No slip-condition is assumed on 
the walls of the duct 

0=w  (13) 

Transverse Velocities 

0,0 == vu  (14)    

Temperature   For a constant wall- temperature: 

wallTT =  (15) 

Reactant Weight-Fraction   The material does 
not move through the wall    

0=
∂
∂

n

m
 (16) 

Outflow Condition (@z = L)   The complete 
conservation equations are elliptic; hence the 
geometrical domain under consideration must be 
closed; that is, for duct flow, the downstream 
boundary conditions have to be specified. However 
for the parabolized governing equations used here 
no downstream boundary conditions are required. 

4. THE NUMERICAL SOLUTION    

The Orthogonal and Non-Orthogonal 
Coordinate Systems   The curvilinear boundary-
fitted mesh generated over the physical domain, 
may be either orthogonal or non-orthogonal. The 
generation of orthogonal meshes is generally time-
consuming [15]. In addition, the concentration of 
the grid lines in certain regions of the domain is 
not conveniently handled when using orthogonal 
methods. The use of non-orthogonal systems has 
the disadvantage that the transformed governing 
equations become somewhat more complex 
because of the presence of the non-orthogonal 
terms. Also the finite-difference equations for 
pressure-correction involve 9 discrete-points 
versus 5 discrete points for orthogonal systems [15, 
16]. The use of non-orthogonal coordinates versus 
orthogonal system has the advantage of getting rid 
of the generation of orthogonal grids at certain 
locations which are difficult or impossible to make. 
The boundary-fitted method involves the following 
two tasks for the solution of PDE�s: 
i. method for generating the coordinate system or 

grid network. 
ii. method to model the governing equations in 

the transformed domain. 
     A number of studies have appeared in literature 
on the use of the non-orthogonal numerical 
solution schemes. For example Hadjisophocleous 
et al. [12] applied a non-orthogonal numerical 
method for the prediction of transient natural 
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convection in enclosures of arbitrary geometry. 
Shyy, et al. [13] and Braaten, et al. [14] applied a 
non-orthogonal numerical scheme using boundary-
fitted coordinates for numerical solution of a 
recirculation flow problem. Maliska [16] 
developed a numerical model using non-
orthogonal grids for the solution of three-
dimensional fluid-flow problems in irregular 
geometries. This method uses a novel grid layout, 
which promotes numerical stability and 
convergence for the system of equations. Maliska�s 
method is adopted here to be applied to the present 
analysis considering also any developments 
required. 

Curvilinear Transformation   A transformation 
is defined between a physical region �D� of any 
arbitrary shape and a transformed region of �D*� 
of rectangular-shape. In the physical-region, the 
Cartesian coordinates x and y are the independent 
variables and the curvilinear coordinates ξ and η 
are the dependent variables. In the transformed 
region, the coordinates ξ and η are the independent 
variables and x and y are the dependent variables. 
There exists a one to one correspondence between 
the coordinates in the physical-region and the 
transformed-region. 
     The general transformation relation from the 
physical-plane (x, y) to the transformed- plane (ξ, 
η) are given by [3-7]: 
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     The inverse transformation of Equation 17 (if 
exists) is: 
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     The Jacobian determinant or Jacobian simply, is 
then 
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Partial derivatives are transformed using the 
following relations: 
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Higher order derivatives are obtained by repeated 
application of Equation 22. 

Numerical Grid Generation   Consider a 
simply connected region, the boundary of which is 
specified at discrete-points (xb, yb). The simplest 
elliptic system to choose is to use Laplace equation 
and to find ξ, η so that a system of Laplace 
equations is satisfied in the physical plane, that is: 
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subject to Dirichlet boundary conditions. 
 Since it is desired to perform all the numerical 
computations on the uniform rectangular 
transformed plane, the dependent and independent 
variables in the above equations must be 
interchanged. This results in: 
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The coupling coefficients in the above-equations 
are: 
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 Equation 24 can be solved by a finite-
difference method using second-order central 
difference approximation of derivatives and 
applying the SOR (successive over-relaxation) 
method. The discrete values of (x, y) at the 
corresponding (ξ, η) points are then determined. 
The grid generation method described in this 
section is employed to develop a B-type grid 
generation computer program required in this work 
[11]. 

5. TRANSFORMATION OF THE 
GOVERNING EQUATIONS 

The governing partial-differential equations and the 
respective boundary conditions must be transformed 
to the boundary-fitted curvilinear coordinates in 
order to be solved in the transformed plane. The 
problem of solving the governing-equations on a 
complex physical domain is therefore changed to 
the solution of the transformed-equations on a 
uniform grid of rectangular shape in the 
transformed plane. In general, the transformation 
operation generates additional terms in the 
governing equations so that these equations 
become more complicated upon transformation. 
 For the transformation of the governing 
equations, one has to first decide upon the de 
pendent variables in the transformed-plane for the 
velocity components, which could be either the 
physical Cartesian velocities, or the contravariant 
velocity components. The contravariant velocities 
are related to the physical Cartesian components 
by the following relationships: 
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 Use of contravariant velocities - as the 
dependent variables - leads to a complex 
transformation in which the physical interpretation 
of the transformed equations is also very difficult. 
Retaining the physical Cartesian velocities as the 
dependent variables in the transformation of the 
equations has the advantage that very complex 
transformed equations are avoided. Also the 
equations preserve their conservative form after 
transformation, which is a desired feature in the 
physical interpretation of the equations and in the 
convenience of formulation of discretization 
equations. 

The dependent variables for velocity 
components selected in this analysis are the 
physical- Cartesian velocities; however, both the 
Cartesian and the contravariant velocities take part 
in the structure of the transformed equations and in 
the solution procedure. The transformed forms of 
the parabolized governing equations are as follows: 

The Overall Continuity Equation    
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The Momentum Equations    

x-Component    
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y-Component    
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z- Component    
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The Energy Equation    
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The Reactant Continuity Equation    
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where Amm ≡  for the derivatives. 
     The boundary conditions are also transformed. 
The transformed components of the stress tensor, 
expressed by the power-law constitutive equation, 
are substituted in the transformed governing 
equations, which are then expanded to their 
ultimate form before being used for discretization. 
It is to be noted that the source term in the 
transformed energy equation is composed of the 
viscous dissipation and heat of reaction terms, 
while the source term in the transformed reactant 
continuity equation involves the rate of reactant 
consumption due to chemical reaction. 

6. DISCRETIZATION OF TRANSFORMED 
EQUATIONS    

The Grid    Configuration Adopted   For a non-
orthogonal grid system, the best choice is a 
classical staggered-grid in which both components 
of �u� and �v� velocities are used coincidentally at 
the same location with the contravariant-velocities 
normal and parallel to the faces of the cell [16]. 
This configuration involves one difficulty, which 
can be solved by an interpolation scheme. Due to 
the fact that one of the contravariant velocities 
(parallel components) do not enter to satisfy the 
overall continuity equation, the �u� and �v� values 
can depart considerably from their realistic values 
during the iteration process. The values of these 
velocities can, however,  produce normal 
components of the contravariant velocities, which 
would satisfy the mass balance equation while the 
parallel components of the contravariant velocities 
remain free to assume unrealistic values. The 
solution to this difficulty is to enforce somehow 
the continuity equation to also hold for the parallel 
components of the contravariant velocities. Thus 
the parallel components of the contravariant 
velocities are obtained by interpolation from the 
normal components of the contravariant velocities, 
which do satisfy the mass conservation. 

The Discretization Method   The transformed 
governing equations are discretized using the 
method known as the �control-volume� finite 
difference approach [11]. Applying this method, 
the calculation domain is divided into a number of 
control volumes such that there is one control-
volume surrounding each grid-point. The 
differential equations are integrated over each 
control-volume. For 3D problems, triple integrals 
are involved. In the formulation of the 
discretization equations, the upwind difference 
scheme is applied to the convective terms and the 
central difference approximation to the diffusion 
terms. The fact that the flow field must satisfy the 
mass conservation equation provides some 
simplification to the discretized governing 
equations combined with the discretized overall 
continuity equation. Finally, each equation is cast 
into the general discretization form, that is, an 
algebraic relation connecting values of the 
dependent variable for a group of grid points, 
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bearing their respective coefficients. For each 
nodal point P, four adjacent control volumes 
surrounding the interfacial points (e n w and s) are 
considered over which the transformed transverse 
momentum equat ions are  integrated and 
discretized. Thus, four pairs of discretization 
relations for u and v velocities, namely, (ne, ve), 
(un, vn), (uw, vw) and (us, vs) are obtained. 
Meanwhile, the transformed equations for axial 
momentum, energy and reactant continuity are 
integrated over the main control volume enclosing 
the nodal point P from which the discretization 
equations for wp, hP and mP are obtained. The list 
of discretization equations is as follows: 
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PP BmAmAPm )()( ..:  (43) 

     Note that there exists the following relationship 
for the coefficients of each discretization equation: 

AUASAWANAEAP ++++=  (44) 
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     Introducing source-term linearization for energy 
and species-continuity equations: 

VSPAUASAWANAEAP ∆−++++= .
 (45) 

Location of the Control-Volume Faces   For 
the proper location of the control-volume faces, the 
B-type grid or practice-B [11] is employed here. In 
this arrangement, one draws first the control-
volume boundaries and then places a grid-point at 
the geometric center of each control-volume 
through which the main grid lines are drawn. If the 
grid is designed this way, then the entire 
calculation domain would be covered with regular 
control-volumes. 

The Solution Method of the Discretization 
Equations   The discretization equations are 
algebraic equations and are solved by a line-by-line 
tridiagonal matrix (TDMA) algorithm. Introducing 
a relaxation-factor to the discretization equations 
one may enhance the convergence of the iterative 
solution. With the line-by-line method, use of over 
relaxation is uncommon while underrelaxation is 
often used to avoid divergence in the iterative 
solution of the equation. The general discretization 
equation in which relaxation factor is introduced is 
as follows: 
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( ) ( ) ( )
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 (46) 

Pressure-Velocity Coupling in the Transverse 
Direction   The SIMPLER algorithm is modified 
for non-orthogonal system and power-law non- 
Newtonian fluids in this work. The coefficients of 
the �u� and �v� momentum equations are 
computed using the best available velocities. A 
Poisson-like equation for pressure using pseudo 
velocities is solved to obtain a tentative pressure-
field, P*, which is used to solve the �u� and �v� 
momentum equations to obtain the starred-

velocities u* and v*. These velocities do not, in 
general, conserve mass. The corresponding values 
of U* and V* are obtained by substituting u* and v* 
in the following relations: 

***

***

uyvxV

vxuyU

ξξ

ηη

−=

−=
 (47) 

     These velocities must be corrected by U - U* 
and V - V* respectively, to obtain �U� and �V� 
velocities which do conserve mass. The above 
changes are related to the corresponding required 
changes in the �u� and �v� velocities as follows: 

)()(

)()(
***

***

uuyvvxVV

vvxuuyUU

−−−=−

−−−=−

ξξ

ηη
 (48) 

Estimates of change in �u� and �v� that result from 
change in �P� are: 
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 (49) 

in which *PPP −=′ . Similar expressions are 
obtained for *

nn uu − , *
nn vv − , *

ww uu − , *
ww vv − , 

*
ss uu −  and *

ss vv − . The value of P′  is obtained 
from a Poisson-like pressure-correction equation 
derived in this work for the power-law non-
Newtonian fluid in which the starred velocities are 
used. Once the P′  is known, the contravariant 
velocities which enter into the mass-balance (Ue, 
Uw, Vs, Vn) can be found from the Equation 48. The 
other contravariant velocities (Ve, Un, Vw, Us) are 
obtained by interpolation. The physical velocities 
�u� and �v� are obtained from the following 
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equations: 

[ ]

[ ]ηξ

ηξ
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1

 (50) 

To obtain an equation for pressure correction, P′  
one should substitute the velocity-correction (49) 
etc. in Equation 48 to obtain equations for �U� and 
�V� in terms of U*, V* and P′  which when 
substituted in the overall continuity equation: 

0
)()(

)()()()(

=
∆
−

+
∆
−

+
∆
−

σ
ρρ

η
ρρ

ξ
ρρ

UD

snwe

WW

VVUU

 (51) 

results the following Poisson-like pressure-correction 
equation: 

BPAPAPAPA
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 (52) 

in which 

SWNEP AAAAA +++=  (53) 

also 

0=+++ SESWNWNE AAAA  (54) 

Taking �ρ� constant in the above formulations 
(which enhances convergence) and using ∆ξ=∆η=1 
(for simplicity), the coefficients are obtained as 
follows: 
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(for pressure-correction equation  )  
     The Poisson-like pressure equation is similar to 
the equation for pressure-correction equation, 
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 (65) 

with the exception of the B term which is 
expressed in terms of pseudovelocities for the 
pressure equation. 
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(for pressure equation) 

Pressure-Velocity Coupling in the Parabolic 
Direction   The method adopted here is that of 
Raithby/Schneider [23]. Primarily the momentum 
equation in the axial-direction is solved with the 
boundary condition using a guessed pressure- 

gradient 


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∂
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σ
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 to obtain a tentative axial-velocity 

*
Pw . The corresponding mass flow rate is 

∑=
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where �all P� denotes all the w-control volumes 
inside the duct walls. Defining two new variables: 
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and the corrected axial-velocity would be related to 
*
Pw  by 

Qfww PPP ∆+= *  (70) 

where fP is obtained from the following 
discretization-equation using appropriate 
boundary- conditions: 
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and ∆Q values is chosen to make the total mass 
flow rate constant, i.e. 

∑
−=∆
Pall PfJ

MM
Q

ρ

*

 (72) 

in which �M� is the exact mass-flow rate known 
from the inlet conditions. 
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7. OUTLINE OF THE SOLUTION 
PROCEDURE    

(i) Compute the coefficients for the axial 
momentum equation using the best available 
velocities and using a guessed pressure-gradient. 
Solve the axial momentum-equation for a tentative 
axial-velocity, w*, 
(ii) Solve for the factor “f� and calculate �∆Q�, 
(iii) Calculate the corrected axial-velocity field, w 
and the corrected pressure-gradient in the axial 
direction using the �f� and the �∆Q� parameters. 
Proceed to perform an inner iteration for w. 
(iv) Using the best available velocities, compute 
the coefficients for the �u� and �v� momentum 
equations, 
(v) Compute the pseudo velocities, u�  and v�  and 
the corresponding contravariant components U�  
and V�  using the relevant relations, 
(vi) Solve the Poisson-like equation for pressure, 
P. in which U�  and V�  are used. 
(vii) Treating this pressure-field as P*, solve 
transverse momentum equations for u* and v*, 
(viii) Calculate the corresponding U* and V* from 
the relevant equations, 
(ix) Solve the Poisson-like equation for pressure-
correction, P′, in which U* and V* are used, 
(x) Correct U* and V* velocities using P′ solution 
to obtain �U� and �V� components that conserve 
mass and obtain the other components of �U� and 
�V� velocities by interpolation, 
(xi) Compute the physical velocities, �u� and �v� 
from the latter contravariant velocities using the 
relevant equations. 
(xii) Solve the energy equation, 

(xiii) Solve the reactant continuity equation. 
With the new velocity field, temperature and mass-
fraction values obtained above return to step (i) 
and iterate up to convergence. 

8. RESULTS AND DISCUSSION    

Fluid Flow   Numerical results are presented in 
Figures 1 to 5. The specific geometries selected for 

this analysis are as flows: 
! square duct 
! equilateral triangular duct 
! trapezoidal duct (acute-angle = 60û, one side 

twice the other) 
! pentagonal duct (each angle = 108û) 
     All the above ducts are selected on the basis of 
the same equivalent diameters. Consequently, the 
same value of the relaxation factor is applied to all 
the geometries corresponding to each discretization 
equation. It is believed that this scheme is valid if 

Figure 1. Centerline velocity development. 
 
 
 
 

 
Figure 2. D.L. pressure-drop vs D.L. axial- distance. 
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the geometries selected do not involve oddity. For 
a pictorial representation of this concept, one may 
refer to Bejan [24] for a scale drawing of the duct 
sizes for some geometry having the same 
equivalent diameter. The inlet Reynolds number 
values applied for the Newtonian fluid was 900 
and that for the non-Newtonian case was 128 
respectively. The problem is solved for constant-
property fluid and the fluid is considered 
isothermal in the transverse direction due to which 
the buoyancy effect is ignored. For the sake of 
numerical accuracy and computational economy 
the mesh size selected was 21 × 21 over the 
transverse plane. The typical CPU time was about 
3 minutes for one run on IBM ESA9000 machine 
(mainframe). 
     The Newtonian case was solved with an axial 
step size of 0.160 m for which 26 marching 
stations were required in the axial direction to 
converge to the fully developed flow condition. 
The predicted results for the centerline velocity 
development, axial pressure gradient and axial 
velocity profiles on the central plane are presented 
in Figures 1 to 3 for square ducts. The axial 
velocity results show an excellent gradual 
development as expected. Within the numerical 
accuracy, there is close agreement between the 
ultimate centerline velocity results and their 
corresponding theoretical values examined for the 
square and circular ducts. The computed result for 

the square duct centerline velocity (
w

wcl ) is 2.110 

versus the theoretical value of 2.096 at the fully 

developed condition where the relative deviation 

between two successive values of 
w

wcl only 0.24%. 

The computed result for the circular duct centerline 

velocity (
w

wcl ) is 1.99 versus the theoretical value 

of 2.00. These results provide a measure of 
accuracy of the grid size selected as indicated in 
Table 1. 
     Also the results obtained in the present analysis 
for Newtonian fluids in square ducts exhibit 
excellent agreement with the experimental 
measurements of Goldstein et al. [25] for 
centerline velocity development and those of 
Beavers et al. [26] for pressure-drop values (see 
Figures. 1 and 2). 
     About 5 iterations were required to obtain 
converged solution over each transversed plane. 
The convergence criterion was set on the basis of 
the residual values defined as follows: 
(i). the residual of the momentum equations, 

that is, the remainder of these equations 
when the results are substituted for the 
velocities into these equations. In general 

∑ −+= PPnbnb abaR ϕϕ  and R will be zero 
when the discretization equation is satisfied 
[11] 

(ii). the residual of velocities, that is. the 
difference in velocity values between two 
successive iterations. 

TABLE    1. Comparison of Theoretical and Predicted 
Results. 
 

(
w

wcl )@ F.D. Square Duct Circular Duct 

Exact 2.096 2.00 

21×21 2.110 1.99 

Error -0.67% 0.50% 

 
 

Figure 3. Development of axial velocity profile. 
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     Table 2 shows the residual values of momentum 
equations and velocities at the fully developed 
condition. 
     It should be noted that the numerical solution 
procedure, which was developed and implemented 
in this study, did not show any convergence 
problems. 
     The  non-Newtonian  ana lys i s  i s  for  a  
polystyrene solution with a power-law index of n = 
0.5 and Reynolds number value of 128 at inlet. The 

axial-step size selected was 0.05 m. The axial 
velocity development shows a plug-flow behavior 
at all four arbitrary cross-sectional ducts chosen, 
although the triangular duct shows a slight delay in 
the development to a plug flow velocity profile. 
The plug flow behavior  observed for the non-
Newtonian case was previously predicted by 
Husain and Hamielec [27]. 
     Husain and Hamielec [27] in their analytical 
studies of tubular styrene polymerization. The non-

TABLE 2. Residual Values (Fluid-Flow). 
 

Momentum-equation Residual Velocity Residual Geometries 
Transverse Axial Transverse Axial 

Square 0.12×10-6 0.21×10-10 0.34×10-6 -0.35×10-5 
Triangular 0.26×10-6 0.98×10-10 0.60×10-6 -0.44×10-5 

Trapezodial 0.20×10-6 0.36×10-10 0.40×10-6 -0.32×10-5 
Pentagonal 0.18×10-6 0.52×10-10 0.44×10-6 -0.35×10-5 

 

 
 

Figure 4. Secondary flow velocity profiles for a trapezoidal duct, Newtonian fluids Re = 900, (z/Dh)/Re = 0.0054. 
 
 
 

 
Figure 5. Secondary flow velocity profiles for a trapezoidal duct, non-Newtonian fluids (n = 0.5), Re = 128, (z/Dh)/Re = 0.0115. 
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Newtonian case applied to circular ducts in this 
analysis also showed a plug flow behavior. It is, 
however, worthwhile to mention that specific non-
Newtonian cases should be investigated separately 
due to the wide range of viscosities involved and 
the power- law indices. 
     The solution procedure showed a lower critical 
limit of axial step size, ∆σ = 0.01 m, at which u 
and v components of velocity field (secondary 
flow) could not be obtained in conjunction with the 
w component (primary flow). An upper limit was 
also observed for the values of ∆σ selected beyond 
the value mentioned above for both Newtonian and 
non-Newtonian cases. 
     The transverse velocity components, u and 

v, supply the fluid that permit axial flow 
development, the highest value of which occur 
near the entrance where the most rapid 
arrangement of the axial velocity takes place. In 
laminar flow, due to the very small components of 
transverse velocities, the secondary flow has a 
small effect on the primary flow and the axial 
pressure-gradient [10,16]. The results of secondary 
flow analysis, for trapezoidal ducts, for Newtonian 
and non-Newtonian cases at one axial location, are 
presented in Figures 4 and 5. Comparing the 
corresponding z/Dh values, it is observed that the 
axial location for non- Newtonian case is closer to 
the entrance than for the Newtonian case. The 
secondary flow is away from the walls towards the 

TABLE 3. Comparison of Limiting Nusselt Numbers. 
 

 Square Rectangular(2/1) Rectangular(3/2) Equilateral 
Triangular Circular 

Clark and Kays 2.890 3.390 - - - 
Dennis et al. 2.980 3.390 3.120 - - 

Shah and 
London 2.976 3.391 3.117 - - 

Schmidt 2.970 3.383 3.121 - - 
Javeri 2.981 3.393 - - - 

Lyczkowski et 
al. 2.975 3.395 3.117 - - 

Kays and 
Crawford 2.980 3.390 - 2.350 3.658 

Wibulswas - - - 2.570 - 
This Study 2.980 3.363 3.118 2.598 3.603 

 
 
 
 

TABLE 4. Residual Values (Heat-Transfer). 
 

Geometry Energy-equation Residual Enthalpy Residual 
Square 0.303×10-7 -0.275×10-4 

Triangular 0.160×10-6 -0.270×10-4 
Trapezoidal 0.533×10-7 -0.270×10-4 
Pentagonal 0.694×10-7 -0.385×10-4 

Rectangular(2/1) 0.224×10-7 -0.357×10-4 
Rectangular(3/2) 0.262×10-7 -0.315×10-4 

Circular 0.105×10-6 -0.501×10-4 
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intermediate sections at which it is reversed in 
direction for all the geometries. The order of 
magnitude of the secondary flow velocities for 
square ducts obtained in this work conforms to the 
results illustrated by Briley [10]. Comparing 
Newtonian and non-Newtonian secondary-flow 
results, it is observed that the results of Newtonian 
case are relatively higher than the results of non-
Newtonian case. The reason for this difference is 
attributed to the primary velocity profile patterns 
of the two cases, that is, tending to parabolic for 
Newtonian and plug-flow for non-Newtonian cases. 

Heat Transfer   The limiting Nusselt number 
(NuT) for square, rectangular, triangular and 
circular ducts obtained in this study are compared 
with analytical and numerical results of other 

investigators in Table 3. The analysis was made for 
Pr = 6.78 and constant wall temperature case. 
These results confirm the validity of the model and 
computer code for heat transfer in this study. 
     This study was performed on the basis of the 
same equivalent diameters. The mesh size selected 
was 21 × 21 over the transverse-plane as before. 
The problem was solved for an axial step size of 
0.276 m for which 250 marching stations were 

TABLE 5. Husain and Hamielec [27], 1976, Simulation Results. 
 

Molecular- Weight 
Length Z(cm) Conversion wt% 510−×nM  510−×nM  

Polydispersity 
n

w

M

M
 

100 1.26 4.16 7.34 1.77 
300 3.95 4.04 7.16 1.77 
500 6.62 3.96 7.08 1.78 

 
 

TABLE 6. Present Work Simulation Results. 
Number of Stations Selected in Axial Direction: 5.    

 

Molecular- Weight 
Length Z(cm) Conversion wt% 510−×nM  510−×nM  

Polydispersity 
n

w

M

M
 Total (Pa)∆P  

100 1.38 4.22 7.43 1.76 0.037 
300 4.14 4.75 8.68 1.83 0.40 
500 6.74 4.52 8.20 1.81 1.46 

 
 

TABLE 7. Present Work Simulation Results. 
Number of Stations Selected in Axial Direction: 10.    

 

Molecular- Weight 
Length Z(cm) Conversion wt% 510−×nM  510−×nM  

Polydispersity 
n

w

M

M
 Total (Pa)∆P  

100 1.37 5.09 9.33 1.83 0.06 
300 3.95 4.48 8.08 1.80 0.48 
500 6.34 4.40 7.87 1.79 1.74 

 

TABLE 8. Residual Values(Mass Transfer). 
 

Species-continuity equation 
residual 

 

Mass-fraction 
residual 

 
0.2×10-7 0.2×10-2 
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required in the axial-direction. The typical CPU 
time required was about 26 minutes for one run on 
IBM ESA9000 machine. The computations were 
performed for fully developed velocity and 
developing temperature profiles. About 5 iterations 
were required to obtain converged solution over 
each transverse plane. The convergence criteria 
was set on the residual values similarly defined for 
the Fluid-Flow study mentioned before, that is, the 
residuals for this study are as follows: 
(i) the residual of energy equation, 
(ii) the residual of enthalpy values between 

two successive iterations. 
     Table 4 shows the residual values of energy 
equation and enthalpy values at the converged 
solution. 

Mass Transfer with Chemical Reaction   The 
thermal polymerization of styrene is selected in 
this study for analysis in arbitrary cross-sectional 
duct reactors. The validation of system modeling 
and computer codes for mass transfer is accomplished 
through comparison of the results of other 
investigators with the predicted results obtained by 
the present analysis. One typical comparison is 
presented in Tables 5, 6, and 7. The above results 

are related to the following operating data: 
length of tube 500 cm 
tube radius 2.0cm 
inlet velocity 0.0695 cm/sec 
inlet/wall temperature 100û C/100ûC 

     Employing the above operating data, this work 
was conducted for the analysis of thermal 
polymerization of styrene in arbitrary cross-
sectional duct reactors for eight different 
geometries. The same mesh-size on transversed 
plane was used as before. Typical CPU time was 
about 10 minutes for the longest run on IBM 
ESA9000 machine. About 5 iterations were 
required on each transversed plane for 
convergence. The same convergence indicators 
were selected as mentioned previously in Fluid-
Flow and Heat-Transfer sections. Refer to Table 8 
in this respect. 
     The basis for computations in all the reactors 
bearing different geometries in their cross sections 
and the same length is the same residence-time in 
the reactors or the same cross sectional area, while 
the same uniform velocity is maintained at inlet of 
each reactor. Refer to Table 9 for the simulation 
results of styrene polymerization in eight different 
geometries corresponding to the above-mentioned 
operating conditions. 

TABLE 9. Simulation Results of Styrene Polymerization at Reactor Exit. 
 

No. Geometry 
WPA 

(wt%) )(
kgmol

kg

M n

 
)(

kgmol

kg

M w

 

Polydispersity 

n

w

M

M
 

Bulk-
temp 

(ûC) 

Total 
DP 

(Pa) 

1 Circular 6.74 452460 819590 1.81 102.3 1.46 

2 Square 6.74 452910 820240 1.81 102.2 1.88 

3 Triangular 6.38 453450 820660 1.81 101.9 2.70 

4 Trapezoidal 6.33 454100 822100 1.81 101.9 2.57 

5 Pentagonal 6.63 453810 822110 1.81 102.1 2.28 

6 Hexagonal 6.74 452940 820450 1.81 102.3 1.69 

7 Rectangular(AR=1.5) 6.70 453784 821697 1.81 102.0 1.91 

8 Rectangular(AR=2.0) 6.63 455120 823870 1.81 101.8 1.97 
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9. CONCLUSIONS    

This paper demonstrates the application of a 
non-orthogonal boundary-fitted coordinate 
transformation method to the solution of 3D 
parabolized conservation equations of reacting 
laminar flow in various ducts of non-circular cross-
sections. The solution procedure has been modified 
to handle non-orthogonal boundary-fitted method 
and non-Newtonian fluids. The results of 
validation of system model and computer codes are 
excellent. 

10. NOMENCLATURE    

A, a  coefficient in discretization equation 
AR, ar aspect ratio 
B, b constant term in discretization equation 
CP  specific heat 
DP  pressure drop 
DE, Dh equivalent or hydraulic diameter 
DA  mass diffusivity of A 
D.L. dimensionless 
f  defined by Equation (68) 
F. D.  fully-developed 
g  acceleration due to gravity 
h  enthalpy (h = CPT) 
J  Jacobian of transformation 
k  thermal conductivity 
m  mass fraction 
M  apparent viscosity for a power-law 

fluid 
M  mass flow rate 

wM  cup-averaged weight average 
molecular-weight 

nM  cup-averaged number average 
molecular-weight 

n  power-law index 
n  unit normal vector 
NuT limiting Nusselt number 
P pressure 
P΄ pressure correction 
P0  static pressure at inlet 
P  mean viscous pressure 
q  heat flux 
Q  defined by Equation (68) 

RDPT ( )PP −0 / )
2
1( 2

0wρ  

R  residual of discretization equation 
RA  mass rate of consumption of reactant 

�A� due to chemical reaction 

Re  Reynolds number )(
2

µ
ρ nn

h
e

wD
R

−

=  

RW  axial velocity ratio 






w

w
 

RWCL centerline velocity ratio 






w

wcl  

SC  constant part of linearized source term  
SP coefficient of the dependent variable 

in the linearized source term  
w  mean axial velocity 
wcl centerline velocity 
w0 inlet velocity 
WPA polymer average weight fraction 
u,v,w velocity components in the Cartesian 

system 
wvu �,�,�  pseudovelocity components 

WVU �,�,�  pseudovelocity components (contravariant) 
*** ,, wvu  tentative velocity field 
*** ,, WVU  tentative contravariant velocity field 

x,y,z Cartesian coordinate system 
Z duct length 
Z* dimensionless axial-distance,  
 

)(.
*

localRD

z
Z

eh

=   

Greek Letters 
α relaxation factor 
α, β, γ coordinate transformation coefficients 

σηξ ,,  axes of curvilinear coordinate 
µ  consistency index (for power-law 

fluids) and viscosity (for Newtonian 
fluids) 

ρ  density 

aρ  arithmetic mean density for duct 
cross-section  

ijτ  stress-tensor 
H∆  heat of reaction  
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ij∆  rate of deformation tensor  
P∆  pressure-drop in the duct  
V∆  change in volume  
ϕ  general dependent variable  
Φ  viscous dissipation function 

Superscripts    
^ refers to transformed quantities, 

except for velocities 

Subscripts    
nb general neighbor grid point 
P central grid point under consideration 
U upstream plane 
D downstream plane 
E ,W, N, S nodes neighboring to P 
NE, NW nodes neighboring to P 
SE, SW nodes neighboring to P 

Special Symbols    
L[ ] finite-difference approximation of the 

quantity in brackets 
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