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Abstract   A framework for development of constitutive models based on semi-micromechanical 
aspects of plasticity is proposed. The resulting of this model for material employed friction type 

failure criterion, sub-loading surface, and associated flow rule. This model is capable of predicting 
effects of the rotation of principal stress/strain axes and consequent plastic flow, induced anisotropy 
of strength, particularly, in cyclic loading. Also, this model has the potential of predicting the 
behavior of fully inherent anisotropic material, and strain history distributions at a point up to failure. 
The predicted model results and their conformity with experimental results of cyclic loading 
including the pre-failure specifications show the capability of the mode. 
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. . . . ستپايه تئوري خميري نيمه ذره بيني ارائه شده ا  سي مدلها بر   اي توسعه روابط اسا   ريك چهارچوب ب     چكيدهچكيدهچكيدهچكيده
اين مدل  . بارگذاري ارائه شده است    سطح زير  اي با  مرحله شكست مدل آشيانه    با اصطكاك تا   مواد براي رفتار 

 اثر  همساني تحميلي مقاومت بخصوص در     نا كرنش و  چرخش محورهاي اصلي تنش و     بيني آثار  قابليت پيش 
 همساني ذاتي و توزيع تاريخچه     نا د با موا تارف همچنين اين مدل پتانسيل پيش بيني ر       .بارگذاري متناوب را دارد   
تطبيق آن براي بارگذاري     نتايج پيش بيني شده مدل و     . دارد مرحله شكست را   نقطه تا  هاي زماني كرنش در هر    

 .گيهاي رفتاري قبل از شكست مويد قابليت مدل است ويژه متناوب همراه با
 
 

1. INTRODUCTION 
 
Constitutive modeling of material plasticity including 
different features has been the subject of numerous 
investigations during the recent years, primarily 
because of the increasing awareness of complexity 
of the loading conditions to which soil structures 
are subjected and the corresponding need for more 
accurate analysis for prediction of safety of such 
structures. The parallel development of more powerful 
and efficient numerical methods of analysis has 
motivated and allowed the use of sophisticated 
constitutive models beyond the linear or simple 
nonlinear elastic-plastic constitutive laws which 
were utilized in the early stages. 
     Most models proposed are based on the theory 
of elastic-plasticity, incorporating different yield 
criteria, flow and hardening rules. Strain hardening 
models according to various isotropic, kinematics 
or mixed hardening rules have been proposed. 

These models usually deal with a single or a 
combination of stress invariant. Rotation of the 
direction of principal axes of either stress/strain or 
both has been observed in many tests. A model 
based on invariant of stress/strain tensors, therefore 
cannot cope with the real behavior of soil under a 
complex loading program while either the values 
of stress or strain invariant are kept constant. 
     The task of representing the overall stress tensor 
in terms of micro level stresses and the condition, 
number and magnitude of contact forces has long 
been the aim of numerous researchers [1-3]. 
Sadrnejad developed a multi-laminate model for 
granular materials [4,5]. 
     For a granular material such as soil, which 
supports the overall applied loads through contact 
friction and cohesion, the overall mechanical 
response may ideally be described on the basis of 
micromechanical behavior of grains interconnections. 
Naturally, this requires the description of overall 
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stress, characterization of cohesion and fabric, 
representation of kinematics, development of local 
rate constitutive relations and evaluation of the 
overall differential constitutive relations in terms 
of the local quantities. 
     Properly prediction of soil behavior under cyclic 
loading is a major practical problem in geo-mechanics. 
In reality, stress/strain relation for soil under cyclic 
loading depends on many objects. Therefore, without 
using this task mathematical models will be 
impossible. Prof. K. Hashigushi proposed the first 
sub-loading model in 1989 [6]. Many progress and 
development implemented on this model later [7-
9]. Capability of this model encouraged the author to 
build up a new model based on multi-laminate 
framework adding all advantages of both. 
     In this paper, a multi-laminate based model 
capable of predicting the behavior of soils on the 
basis of sliding mechanisms and elastic behavior of 
particles has been presented. The capability of the 
model is to predict the behavior of soil under 
arbitrary stress paths. The influences of rotation of 
the direction of principal stress axes and induced 
anisotropy are included in a rational way without 
any additional hypotheses. 
 
 

2. BASIC ASSUMPTIONS AND 
DISCUSSIONS 

 
Multi-laminate framework defined by small continuum 
structural units formed as an assemblage of particles 
and voids filling infinite spaces between the sampling 
planes, has appropriately justified the contribution 
of interconnection forces in overall macro-mechanics. 
Plastic deformations are assumed to occur due to 
sliding as shearing, separation/closing of the 
boundaries as volume change. Elastic deformations 
are the overall responses of structural unit bodies. 
Therefore, the overall deformation of any small 
part of the medium is composed of total elastic 
response and an appropriate summation of sliding, 
separation/closing phenomenon under the current 
effective normal and shear stresses on sampling 
planes. 

 
 

3. THE CONSTITUTIVE EQUATIONS 
 
The classical decomposition of strain increments 

under the concept of elastic-plasticity in elastic and 
plastic parts are schematically written as follows: 
 

pe ddd ε+ε=ε  (1) 
 
The increment of elastic strain (dεe) is related to 
the increments of effective stress (dσ′) by: 
 

'1ee d.]D[d σ=ε −  (2) 
 
Where, [De ]-1 is elastic compliance matrix, usually 
assumed as linear and is obtained as follows: 
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Where, K and G are bulk modulus and the shear 
modulus, respectively. 
     To obtain plastic strain increments (dεp), for the 
soil mass, the stress-strain increments relation, is 
expressed as: 
 

'pp d.Cd σ=ε  (4) 
 
Where, Cp is plastic compliance matrix. 
     Clearly, it is expected that all the effects of 
plastic behavior be included in Cp. To find out Cp, 
the constitutive equations for a typical slip plane 
must be considered in calculations. Consequently, 
the appropriate summation of all provided compliance 
matrices corresponding to considered slip planes 
yields overall Cp, therefore, strain increment at 
each stress increment is calculated as follows: 
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Where, Lε and Lσ are transformation matrices for 
strain and stresses, respectively and n is number of 
planes. 
   To satisfy conditions of applicability of the theory 
from the engineering viewpoint and also to reduce the 
extremely high computational costs, a limited number 
of necessary and sufficient sampling planes are 
considered. 
     The choice of 13 independent planes for the 
solution of any three dimensional problem based 
on getting a good distribution of plastic deformation  
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through the media and avoiding huge computing 
time is a fair number. The orientation of the 
sampling planes as given by their direction 
cosines and the weight coefficients for numerical 
integration rule are given in first three and the last 
columns of Table 1. 

The coefficients Wi are simply calculated based on 
Gauss Quadrature numerical integration rule. 
     A coordinate system has been employed for 
each plane in such manner that one axis is 
perpendicular to the plane and the other two are on 
the plane. Plastic shear strain increments on each 
plane is considered as two component vectors on 
defined coordinate axes of plane. Thirteen sets of 
direction cosines of coordinate axes are presented 
in Table 1. 
     One of the important features of multi-laminate 
framework is that it enables identification of the 
active planes as a matter of routine. The application 
of any stress path is accompanied by the activities 
of some of the 13 defined planes in three-
dimensional media. The values of plastic strain on 
all the active planes are not necessarily the same. 
Some of these planes initiate plastic deformations 
earlier than the others. These priorities and certain 
active planes can change due to any change of 
direction of stress path, a number of active planes 
may stop activity and some inactive ones become 
active and some planes may take over others with 
respect to the value of plastic shear strain. The first 
set of planes, indicating %10 shear strain can be 
identified together as the first mode of failure. 
Thus, the framework is able to predict the 
mechanism of failure. Figure 2 shows the orientation 
of all 13 planes in similar cubes. In order to clarify 
their positions, they have been presented in four 
cubes. 

TABLE 1. Direction Cosines and Weight Coefficients of 
Integration Points.

 
Figure 1. The orientation of 13 planes, real grains and assumed 
blocks 

 
 
Figure 2. Subloading and normal yield surfaces of one plane. 
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4. CONSTITUTIVE EQUATIONS FOR A 
SAMPLING PLANE 

 
A sampling plane is defined as a boundary surface, 
which is a contacting surface between two structural 
units of polyhedral blocks. These structural units 
are parts of an inheterogeneous continuum and for 
simplicity they are defined as a full homogeneous 
and isotropic material. Therefore, all inheterogeneities 
behavior is supposed to appear in inelastic behavior of 
corresponding slip planes. Figure 1 shows these 
defined planes (say 13). The number of planes may 
be chosen as any number, however, based of some 
numerical experiences, 13 is found to fit a rationally 
justified and got enough power to show any 
distribution through the material. 

 
 

5. SUBLOADING AND NORMAL 
YIELD SURFACES 

 
The normal yield surface is defined here as a 
limiting boundary surface which separate possible 
and impossible cases in stress domains. This boundary 
is also a function of hardening parameters.  
     The sub-loading surface is a similar boundary 
except that, it is smaller and positioned any where 
inside normal yield surface. This boundary always 
passes through stress position and its size may 
change. The mobility of this surface is controlled 
by a center of similarity. The center of similarity 
moves when plastic strains take place. For an 
isotropic and homogeneous material sub-loading 
surfaces for all planes are the same. However, 
different plastic strains of planes, induced 
anisotropy provided in material and also different 
shape and position of sub-loading surfaces is 
obtained. Every plane has its normal yield surface, 
which is usually defined as effective stress 

σ σ σ  ,    ,    xi
'

yi
'

zi
' space, which are effective stress 

components on ith plane. Figure 2 shows sub-
loading and normal yield surfaces of one plane. 
     Normal yield surface for ith plane is defined as 
follows: 
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Where, )ˆ( if σ ′ is normal yield function, iσ ′ˆ stress 

vector comprising ziyixi ˆ andˆ , ˆ σσσ ′′′  for ith plane, 

also scalar Hi and iα̂ stand for isotropic hardening 

parameter and kinematics hardening vector 

respectably. *
ini ˆ and ˆ σσ ′′  are the effective 

normal and shear stresses on ith plane respectably. 
m is defined as a constant material property. )ˆ( if σ ′  

is a homogeneous elliptical function in 
*ˆ~ˆ ini σσ ′′  plane, and the ratio of two diameters of 

the ellipse remains constant while plasticity is in 
progress. 
 
 

6. HARDENING RULE 
 

An isotropic shear-hardening rule is employed to 
carry any change of normal yield surface size 
during plasticity on ith plane. F(Hi) introduced as 
hardening function for ith plane, is defined as 
follows: 
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where, 
 

222 )
3

(  )
3

( )
3

 
(

ivd
izd

ivd
iyd

ivd
ixdH

p

p

p

p

p

p

i

ε
ε

ε
ε

ε
ε −+−+−=

 (12) 
 

dε  vi
p  is plastic volumetric strain, Foi is initial 

value of F, and both di and bi are two isotropic 
hardening parameters, all corresponding to ith 
plane. 
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     A kinematics hardening is also employed to 
obtain only the changes of position of normal yield 
surface center. The following functions represent 
this rule: 
 

i

i
ii BIA
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Where, I is unity matrix, A, and B are parameters 
of plastic deformations which in this model are as 
follows: 
 
A = 0 (14) 
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Ki and Mi are constant parameters of hardening for 
ith plane. 
     It can be concluded that iα̂  and Hi are two first 

order homogeneous functions of plastic strain 
increment. However, they can be formed as follows: 
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Hi  =  hiλ  (17) 
 
Where, vector ai and scalar hi are related to stress 
and plastic strain variations. ai is calculated as 
follows: 
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7. FLOW RULE AND CONSISTENCY 
CONDITION 

 
Flow rule is expressed as follows: 
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p
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Where ni is the vector for orientation of plastic 
strain increment. The equation of loading surface 
for ith plane is written as follows: 
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However, the consistency condition is obtained as: 
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Therefore, parameter Di is defined as follows: 
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The plastic strain increment is obtained by the 
following equation: 
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From Equations 25, 20, and 19 the characteristic 
equation is obtained. 
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Generalizing the rule for normal yield surface and 
loading surface, it is adopted that: 
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which is based on: 
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Ci
p  as a whole, represent the plastic resistance 

corresponding to the ith plane and must be 
summed up as the contribution of this plane with 
the others. The scalar value of Di for the ith plane 
is calculated as follows: 
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where 
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d Hi i' ( ) . . . .= −  (31) 

 
hi in general, hi is a function of plastic deformation. 
For simplicity, it is taken constant for all planes 

and equal to ( / ) .2 3 0 5 . As already stated, the normal 
yield surface is a homogeneous function. Therefore, n 
is equal to one. ni is a 3x1 vector as follows: 
 

T

zi

i

yi

i

xi

i5.0

zi

i

yi

i

xi

i

T
ziyixii

]
fff

[]
fff

[

}n,n,n{n

∂σ
∂

+
∂σ
∂

+
∂σ
∂

∂σ
∂

+
∂σ
∂

+
∂σ
∂

==

−

 (32) 
 

{ }ziyixiI σσσσ ˆ,ˆ,ˆˆ =  (33) 

 

S Si xi= { } ,  S  ,  Syi zi  (34) 

 
where, Sxi, Syi, and Szi are components of center of 
similarity vector for the ith plane. 
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Where, yixi αα ˆ,ˆ and ziα̂  are components of the 

center of normal yield surface vector for the ith 
plane. 
     Ri is calculated for when n=1 as follows: 
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The value of Ui is calculated as follows: 
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where Si and ui are two constant parameters which 
must be known by calibrating the model. Also, Ri 
is found as follows: 
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8. IDENTIFICATION OF PARAMETERS 
 

In a general case, for the most anisotropic, 
non-homogeneous material, 13 sets of material 
parameters corresponding to plastic sliding of each 
sampling planes are required. However, any 
knowledge about the similarity of the sliding behavior 
of different sampling planes reduces the number of 
required parameters. 
     The number of parameters required to be used 
in the proposed model to obtain the behavior of an 
isotropic homogeneous soil is eleven. Two of these  
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(i.e. E and ν) correspond to elastic behavior of soil 
skeleton. The value of m is obtained through 
calibration of drained test corresponding to 
εv(volumetric strain) versus ε1(major axial strain). 
The values of b, d, k, and M are obtained through 
the variation of deviatoric stress versus axial strain. 
The parameters u and s are obtained through 
calibration of additive deformations in cyclic 
response of material. The dimension of hysteresis loop 
depends on parameters c and x. 
     The initial conditions which are to be define for 
the model are: 
σo (initial stresses), εo (initial strains) Fo, (initial 
value of normal yield surface), 0α̂ (initial position 

of normal yield surface center), so (initial position 
of the center of similarity). σo and εo are normally 
defined through initial and boundary conditions. 
The initial value of Fo depends on σno (initial 
normal stress on plane) and loading type. The 
values of 0α̂  depend on inherent anisotropy condition 

of each plane. This parameter can define the 
orientation of normal to plane regarding the fabric 
orientation of material at corresponding point. 
However, for the isotropic material it is as follows: 
 

φααα  = ˆ = ˆˆ 0z00 yx =  (43) 

 
The parameter Co depends on the degree of pre-

consolidation in material. It increases with the 
higher degree of pre-consolidation. 
 
 

9. RESULTS 
 
To present the capabilities of the proposed model the 
experimental results [10], which were obtained from, 
hollow cylindrical and true triaxial cube tests on 
Hostun sand are considered with the model results. 
     The eleven model parameters for this comparison 
were obtained through calibration and are show in 
Table 2. 
     Figures 3 and 4 are the results of calibrating the 
model with experiments. Figure 3 is the variation 
of Q (Q = σz - σx) versus εz for extension, 
compression and cyclic loading. Figure 4 is the 
variation of εv (εv= ε1+ε2+ε3) versus ε1, which 
corresponds to the previously mentioned tests.  
     Three invariant SD2, S1, and ID2 are defined as 
follows: 
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TABLE 2. Parameter Values. 

Figure 3. Calibration Results. 
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     Figures 5 to 9 show comparison of model 
results with tests CH1.TST, CH2.TST, CH3.TST, 
CH4.TST, and CH5.TST respectively. Figures 10 

and 11 are results corresponding to PHH3B.TST 
and PHH3C.TST, which were required to be predicted 
and presented at the conference in Cleveland [11]. 
The variations of τ versus γ and εv versus γ are 
presented and compared with experimental results. 
     The foregoing prediction of test results is 
encouraging and shows the validity of the model. 
 
 
 

10. CONCLUSIONS 
 

From this study a model capable of predicting the 
behavior of granular material on the basis of sliding 
mechanisms and elastic behavior of particles has 
been presented. The concept of multi-laminate 
framework has been applied successfully on a high 

 
 
Figure 4. Calibration results. 
 
 
 

 
 
Figure 5. test CH1. 

 
Figure 6. Test CH2. 



IJE Transactions A: Basics Vol. 15, No. 4, November 2002 - 323 

level sub-loading surface model for granular materials. 
The predicted numerical results show good agreement  

with the observed behavior of sand specimens 
tested in hollow cylindrical, true tri-axial test, and 

 
Figure 9. Test CH5. 
 
 
 

 
Figure 10. Test PHH3. 

 
 
Figure 7. Test CH3. 
 
 
 

 
 
Figure 8. Test CH4. 
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also complex stress path cyclic loading conditions. 
The influence of rotation of the directions of 
principal stress axes is included in a rational way 
without any additional hypotheses. The behavior 
of sand has been modeled based on a semi-
microscopic concept, which is very close to the 
reality of particle movement in soils. Accordingly, 
the sampling plane constitutive formulations 
provide convenient means to classify loading event, 
generate history rules and formulate independent 
evolution rules for local variables. This is an 
advantage of the model including induced 
anisotropy in plastic behavior of materials. 
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