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Abstract   One of the important factor in the design of automated guided vehicle systems (AGVS) is 
the flow path design. This paper presents a branch-and-bound algorithm to determining the flow path 
by considering not only loaded-vehicles, but also empty-vehicles. The objective is to find the flow 
path, which will minimize total travel of loaded vehicles. We know that in branch-and-bound method 
a branch can be fathomed in different ways, but it sometimes causes infeasible solutions. By 
branching on only feasible solutions, the algorithm presented in this paper works effectively. We also 
use DFS algorithm for finding only feasible solutions of the problem and by testing the objective 
function, one efficient flow path can be determined. 
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ين مقاله  ا. وامل در طراحي سيستمهاي باربر خودكار، طراحي مسير حركت است          عيكي از مهمترين       كيدهچ
 فقط براي وسايل بار شده، بلكه براي وسايل خالي يك روش شاخه و كران ارائه                ه  حركت ن ر  براي تعيين مسي  

م كه در روش    داني مي. نحوي است كه كل فاصله طي شده كمينه شود          هب تكرح ريستن م فياهدف،  . دده يم
ليل  د ي از آنها بسته شدن به      يكيل مختلف بسته شود؛ بطوريكه       ت يك شاخه به دلا      ممكن اس  ،ناشاخه و كر  

ار كري  وثه، الگوريتم به نحو م    بهاي موج اجوي  روط  فقن  زد مقاله با شاخه     نيا رد. بودن جواب است   وجهرمغي
به اين صورت   . كنيم ستجوي اولين عمق استفاده مي    جتم  ينين براي يافتن جوابهاي موجه از الگور      چهم. دكن يم

 . مشخص شودبا بررسي تابع هدف، مسير حركت موثري
 

 
 

INTRODUCTION 

An automated guided vehicle (AGV) is a driverless 
vehicle used for transportation goods and materials 
throughout a facility, usually by following either a 
wire guide-path painted on the floor [1]. A system 
controller is responsible for the regulation of traffic 
when more than one vehicle is in system. One of the 
most important design vehicles is the guide path 
layout. The AGVS guide path configurations 
discussed in previous research include: I- 
conventional (Gaskin and Tanchoco [2], Kaspi and 
Tanchoco [3], Venkataramanan and Wilson [4]), II- 
tandem (Bozer and Srinivasan [5], Lin et al. [6]), III- 
single loop (Tanchoco and Sinriech [7], Sinriech and 
Tanchoco [8]), IV- bi-directional shortest path (Kim 
and Tanchoco [9], Chhajed et al. [10]) and V- the 
segmented flow topology (SFT) (Sinriech and 

Tanchoco [11]). Related work in facility layout 
design includes Langevin et al. [12] and Banerjee 
and Zhou [13]. In conventional configurations, 
flow path is unidirectional. Unidirectional flow 
occurs when vehicle travel is restricted to only one 
direction along a given segment of the flow path. 
With unidirectional travel, a vehicle may have to 
travel a greater distance in moving from one point 
to another than it would if bi-directional flow is 
allowed. On the other hand, unidirectional flows 
require fewer controls and are more economical. 
The objective is to minimize the total distance 
traveled by loaded vehicles subject to the constraint 
that the resulting network consist of a single strongly 
connected component. This constraint assures that a 
vehicle can leave any station in the facility, visit any 
other station. 
 Efficient material flow is necessary for an AGVS 
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to be successfully utilized. There are several 
factors, which contribute to efficient material 
flow. The first is the choice of the appropriate 
vehicle type(s). Shelton and Jones [14] have 
developed a selection model that assists to user in 
evaluating his requirements and provides a set of 
AGV types that meet the user needs. 
 Maxwell and Muckstadt [15] addressed the 
issues of vehicle requirements and routing. Given a flow 
path, their method will simultaneously consider the 
minimum number of vehicles, the vehicles routs, 
and the number of trips over each route to meet the 
material handling requirements. Leung et al. [16], 
who allowed the capacity and speed of the vehicles 
to differ, extended this work. 
 Blair, Charnsethikul, and Vasques [17] also addressed 
the issue of vehicle routing. Their heuristic algorithm 
assumes that the number of vehicles and the flow 
path are given. It seeks to organize material movement 
into tours with the objective of minimizing the 
maximum tour length. Another factor that contributes 
to efficient material flow is dispatching. Egbelu 
and Tanchoco [18] presented a number of heuristic 
rules for dispatching AGVS and used simulation to 
evaluate effectiveness of these rules in different 
job shop environments. 
 All of the work mentioned thus far assumes that 
the flow-path design is given. Gaskin and Tanchoco 
[2] first proposed a method, which uses zero-one 
integer programming to determine the optimal, 
unidirectional flow path. The objective of their 
program was to minimize the total distance traveled by 
loaded vehicles. This method results in a nonlinear 
objective function and requires many sets of 
constraints. The constraint formulation requires 
evaluation of various shortest paths from the points of 
material pickup and material delivery. In a follow 
up paper, Kaspi and Tanchoco [3] proposed a 
branch-and-bound technique for solving the 
same problem. Venkataramanan and Wilson [4] 
presented an algorithm for determining the optimal, 
unidirectional flow path for an AGVS with a given 
facility layout. They formulated the problem as an 
integer program. The objective was to minimization 
the total distance traveled by vehicle subject to the 
constraint that the resulting network consist of a 
single strongly connected component and a specialized 
branch-and-bound solution procedure was discussed. 
In last three papers, the pickup/delivery stations 

were assumed stationary. 
 The simultaneous determination of flow direction 
and locations of pickup/delivery stations in a given 
facility has also been addressed by several researchers. 
Goetz and Egbelu [19] presented a zero-one 
integer-programming model for determining the 
location of pickup/delivery stations based on a finite set 
of available sites. Riopel and Langevin [20] presented a 
penalty-based heuristic method for locating 
pickup/delivery stations. In a conceptual study, Kiran 
and Tansel [21] presented a strongly polynomial 
solution for the problem of locating a pickup point on 
a material handling loop network where the locations 
of the network-centers are fixed. In another study Kiran 
et al. [22] presented evidence suggesting that in solving 
the problem of locating stations on a unidirectional 
loop network, LP relaxation solutions are optimal. 
Kouvelis and Kim [23] later proved that assigning 
machines to candidate locations in a unidirectional 
loop network to minimize total material handling 
cost is NP-complete. 
 The work by Tanchoco and Sinriech [7] specifically 
addressed the problem of simultaneously determining 
the shortest single loop layout and the locations of the 
pickup/delivery stations. For solving an integer program, 
they provided a five-part procedure to find an initial 
valid loop, generating all valid loops, discarding 
all inferior loops, solving a mixed integer program to 
find optimal locations of pickup/delivery stations, and 
ending with a lower-bound calculation. In a follow up 
paper, Sinriech and Tanchoco [8] provided mathematical 
procedure for solving the single loop layout problem. 
 Empty vehicle travel influences blocking/congestion, 
the number of vehicles needed and the required 
storage space at pickup/delivery stations. It is also 
directly affected by the dispatching rules used in 
the system. Egbelu [24] and Kaspi and Tanchoco 
[3] have assumed the amount of empty vehicle 
travel time the same as the loaded-vehicle travel 
time. But, the accuracy of these models was 
inevitably undetermined by them. In 1991, 
Venkataramanan and Wilson [4] developed their 
algorithm, which has been designed for determining the 
optimal flow-path, by considering empty vehicles. 
 Vehicle dispatching research emphasizes 
consideration of both vehicle- and work center- 
initiated dispatching rules in operating an AGVS [25]. 
When a system is in the vehicle- initiated situation all 
the time, the number of vehicles is not sufficient 
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for the load requests, and the materials have to 
wait to be removed. On the other hand, when the 
system is always in the work center-initiated situation, 
there are too many vehicles in the system. As the 
number of vehicles in the system decreases, the 
impact of the vehicle- initiated dispatching rule on the 
waiting time for load requests increases. Although the 
dispatching rules used in atypical system are usually a 
combination of both work center- and vehicle-
initiated rules [14], an ideal environment is to have 
as few vehicles as possible while at the same time 
keeping the proportion of time in which the system 
uses the vehicle- initiated rules as small as possible. 
This can be accomplished by choosing an appropriate 
work center- initiated dispatching rule [26]. 
 Few researchers have used analytical methods to 
explore the relationships between vehicle dispatching 
rules and other decision variables. For example, the 
empty vehicle-dispatching rule developed by Srinivasan 
et al. [27] considers only one vehicle, which is unrealistic 
in real-life situations. In 1998, Kobza et al. [28] used a 
discrete time Markov chain based on vehicle location 
and represented dispatching rules in the one-step 
transition matrix, and considered empty vehicle travel. 
 This paper presents an especial branch-and-bound 
algorithm to determine flow-path in conventional form. 
The objective is to find the flow path that minimizes 
the total travel of loaded vehicles. We use an algorithm 
and call it Revised- DFS algorithm, for finding only 
feasible solutions, because we have made it by 
changing DFS algorithm in graph theory. 
 
 

DEFINITION OF PROBLEM 
 
A network can easily represent the flow-path design 
problem [4]. For example you consider block layout of 
a production plant partitioned into p polygonal zones 
Z1, Z2, …., Zp; as illustrated in Figure 1 a block layout 
with 11 departments. These zones need not be convex, 
but they only contain 90 and 270-degree angles. 
Suppose you have a block layout, say output of 
CRAFT or any other software. 
 In this network, the set of vertices, denoted as V, 
represents corner and intersections of the given facility 
layout. Some of these vertices are pre-specified to be 
picking up (P) and delivery (D) stations and some are 
intersection points. The possible directions of travel 

between vertices are represented by a set of edges, 
denoted as E (Throughout this article the word edge 

will be used to indicate an undirected edge, and the 
word arc will be used for a directed edge). 
 
Figure 1. Production plant partitioned into eleven level. 
 
 

Figure 2. Production plant partitioned into three zones with 
pickup, delivery and intersection points. 
 
Figure 3. Production plant in Figure 2 without any difference 
between nodes. 
 
 
     Thus the facility layout can be regarded as a 
graph G = (V,E). For example you can suppose 
block layout in Figure 2, regarding to type of 
nodes. We define, hereafter, edges with e, nodes of 
graphs with N, degree 2 nodes with dotted boxes 
and the other nodes with filled boxes. The reason 
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will be explained. 
 In Figure 2, the length of each edge is shown. 
This example can be generalized as a form with no 
difference between pickup and delivery stations. 
We knew that in From-To chart the total of picked 
up loads equals to the total of dropped off loads. 
By our definition for layout graph, consider Figure 
3 as another example in which all of nodes are 
similar. 
 Now, if we consider Table 1 as a From-To 
chart, we will see that all types of the nodes are 
similar to each other, although in nature these are 
different. 
 Gaskin and Tanchoco [2] presented the general 
mathematical formulation of this problem. The 
objective function is to minimize the sum of the 
loaded travel. Constraints must ensure that the 
travel between any two adjacent vertices is 
unidirectional and layout graph must be strongly 
orientable graph. 

In summary our problem is converting layout 
graph to a digraph in which there is at least one 
way between any two points in order to travel the 
load (in From-TO chart). In this digraph every 
edge must be unidirectional. We call this digraph a 
strongly connected digraph. 

Since there is more than one way for converting 
a graph to strongly connected digraph, we must 
choose the one in which objective function be 
minimized. The definitions that follow are adapted 
from Minieka [29]: A graph G is called strongly 
connected if for any vertices i, j ∈V a path from i 
to j exists. 
 Up to this point, only movement of loaded 
vehicles have been considered. In some 
circumstances, the travel of empty vehicles is a 
secondary concern in flow-path design. In others, 
however, empty- and loaded- vehicle travels are 
equally important. Both of these cases will be 
considered in this section. If empty vehicles are a 
secondary concern, the objective function is 
 
Min M L S L Rpd pd dp dp

p d
[ * ( * ) * ]

,
+

∀
∑  

 
M = preemptively large weight associated with 
loaded- vehicle travel ratio to empty vehicle, 
 

Lpd = number of loads shipped per unit time from 

pickup station p to delivery station d (normally 
equal to Ldp, the number of times that empty 
vehicles travel from delivery station to pickup 
station), 
 

Spd = shortest path from p to d given eij’s, 
 

Rdp = shortest path for return of empty vehicle 
from d to p given eij’s.  
 
 
 Now, in previous example you suppose, M=3, 
and Lpd is transpose of elements in Table 1 as 
Table 2. 

 
 

DEPTH-FIRST-SEARCH (DFS) 
 
The algorithm, which will be presented, is based 
on DFS method. The DFS method has designed for 
testing connectivity of a graph. It has developed to 
convert a connected and bridgeless graph to a 
strongly connected digraph. The algorithm is as 
follows [30]. 

Let the vertices of the graph G be 
v v vn1 2, ,... , . Select an arbitrary vertex and label 
it as 1. Pick any vertex adjacent to 1. This is not 
yet labeled, so label it as 2. Mark the edge {1,2} as 
a used edge so that it will not be used again. 
Proceeding similarly, suppose that we label vertex 
Vi with integer K. Search among all the unlabeled 
adjacent vertices of this vertex, select one of them 
and label it as (K+1). Mark the edge {K, K+1} as 
a used edge. Now it may be the case that all the 

TABLE 1. From-To chart for layout graph in Figure 3. 
  To 

 N5 N7 N8 
N1 0 0 10 
N2 0 20 0 
N3 30 0 0 

 
TABLE 2. Transpose of From-To chart in Table 1 for 
Figure 3. 
         To 

 N1 N2 N3 
N5 0 0 30 
N7 0 20 0 
N8 10 0 0 

 

From 

From 
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adjacent vertices of K are labeled. If so go, back to 
vertex (K-1) and search among its unlabeled 
adjacent vertices. If we find one such vertex, label 
it as (K+1) and mark the edge {K-1, K+1} as a 
used edge. Continue the process until all the 
vertices are labeled or we are back at vertex 1 with 
at least one vertex unlabeled. If it is not possible to 
label all the n vertices by the DFS technique, we 
conclude that the graph is not connected. 
 
 

If G is connected and bridgeless, consider G is 
a graph model in which the vertices are the street 
corners of a large city. Two vertices are joined by 
an edge if there is a street joining them. 

We are now interested in converting all streets 
in the city into one-way streets. Since G is strongly 
orientable graph every corner can be reached from 
every other corner after. How is this conversion 
carried out? We again resort to the DFS procedure 
and label all vertices. If {i, j} is a marked edge 
where i < j, convert this edge into an arc from i to 
j. On other hand, if {i, j} is an unmarked edge where 
i < j, convert this edge into an arc from j to i. The 
resulting digraph G’ is a strong orientation of G.  
 
 
 

THE ALGORITHM 
 
Recall that, using the DFS algorithm for making a 
connected digraph had three phases: 
(a) Labeling all of nodes and marking some edges: we 
saw that in this stage, for every type of labeling we 
will have one spanning tree. Then, if the layout graph 
has n nodes, there will have n-1 marked edges. 
(b) Directing all of the marked edges from label 
with less value toward label with greater value. 
(c) Directing all of remaining edges from label 
with greater value toward label with less value. 
 We know that above procedure creates some 
feasible solutions. In fact, for every situation of 
labeling (the nodes) and marking (the edges), we 
will have one feasible solution. Now, we propose 
Revised-DFS method. In this method, for every 
situation of labeling and marking, we can find 
more than one feasible solution, and we can find 
better solutions. Revised-DFS method will work in 
following way: 

(a) Labeling all of nodes, marking the edges 
(similar to the Phase (a) in normal DFS). 

(b) Directing all of the marked edges from label 
with less value toward label with greater value 
edges (similar to the Phase (b) in normal DFS). 

(c) Finding all of walks in the directed spanning 
tree obtained from Phase (b), from every leaf (leaf 
is every nodes with indegree = 1 and outdegree = 
0) to the root (the root is the node labeled 1 with 
indegree =0 and out degree = 1). 

(d) Directing all of remaining un-directed edges in 
every (two) possible direction. 
 We will prove that, every resulting digraph 
with above procedure will be one strongly 
connected digraph (feasible solution). Now, we 
show the procedure through one example. 
 Suppose after Phases (a) and (b), we will have 
following directed spanning tree in Figure 4. 
 After doing Phase (b), we know that the node 1 
is root and the nodes 6 and 8 are leaves. Now, 
based on Phase (c), we should find every walk 
from 6 to 8 and from 8 to 1 (these walks cannot be 
opposite with the directed edges). For example, the 
walks 6-4-1, 6-2-3-4-1 and 6-2-7-8-1 all can be 
used. Suppose we use 6-4-1 for the leaf 6 and 8-1 
for the leaf 8. Regarding to this, we will have 

 
 
Figure 4. An example of Revised-DFS after running phases a 
and b. 
 
 

 
 
Figure 5. Figure 4 after running phase c in revised-DFS. 
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Figure 5. Then, with respect to Phase (d), directing 
as 2-6 or 6-2 creates two feasible solutions. We 
will show that, this procedure makes only feasible 
solutions (but we are not sure that it covers all of 
feasible solutions). 
Theoream: Revised-DFS method output, 
results only feasible solutions. 
 

Proof: If resulting digraph will be strongly 
connected, we will have a feasible solution. 
We must show that there is at least one walk 
from i to j and vice versa (for all i,j). 
Case 1- There is walk from 1 to every j, for 
every j, because of DFS nature. 
Case 2- There is walk from every i to every j, 
if i<j and i is not a leaf, because of DFS 
nature. 
Regarding to above case, following situations 
can be occurred: 
 

Situation 1 - If i is a leaf, there is at least one 
walk from i to root 1 (because of Phase (c) in 
Revised-DFS). Now, we have walk from i to 1, 
and based on Case 1, there is walk from 1 to 
every j. Then, there is walk from i to every j (if 
i is a leaf). 
 
Situation 2 - If i is not a leaf, we can move 
from i to j (i<j) because of Case 2, as j is leaf. 
Now, via situation 1, we can move from j (a 
leaf) to every node. 

In summary, there is at least one walk from 
i to j and from j to i for every i,j. 
 By above procedure, we can enumerate 
(probably some of) feasible solutions, and we 
can find the best between these feasible 
solutions. Then, we are not sure that Revised-
DFS covers all of feasible solutions, and for 
testing efficiency we use computer 
programming. 

 
 

Figure 6. Especial Branch - and - Bound for the example. 
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BRANCH AND BOUND APPROACH 
 
The specific technique used in the branch and 
bound with depth-search first and backtracking 
rather than jump-tracking type of approach. 
Using the backtracking method a feasible 
complete solution (not necessarily optimal) is 
obtained very quickly and the required memory 
is much less than for jump-tracking method. 
The proposed approach involves eight steps. 
Each of these steps is described below. But 
first, some additional definitions are needed. 
 

{D} : the set of directed arcs 
{U} : the set of undirected arcs 
{A} : the set of all the arcs, i. e.  {U} ∪ {D}   
  = {A},  {U} ∩ {D} = φ 
UB : upper bound, i.e. the current (known) best 
value of the objective function. The initial 
value of UB is set at infinite. Any time a 
feasible complete solution is obtained with a 
value less than UB, the value of upper bound 
UB is updated. 
LBk  : lower bound of branch k is the best 
value of the objective function with all arcs in 

{U}. The lower bound LBk  is used to label the 
branches in the search process. Any time a 
lower bound of a certain branch is greater than 
(or equal  to) upper bound UB, this branch is 
bounded. 
 For clarity’s, the proposed branch - and - 
bound method is explained through a simplified 
numerical example. The departmental layout, 
graph layout and the material flow From-To 
chart are given in Figure 3, and Table 1. 
 

Step 1.   Initialization   Figure 3 is the 
corresponding graph of the layout graph shown 
in Figure 2; this graph is equivalent with node-
arc network in which every edge can be 
changed to two arcs in opposite directions. The 
procedure is initiated by determining set {A}. 
Initially, {A} = {set of all 20 arcs in Figure 3, 
which can be in every direction}. Since all the 
arcs are currently undirected {U} = {A} and 
{D}= φ. The upper bound UB =  ∞.  
 
Step 2.   Branching   Branching process, has 
three stages: (I) Phases (a) and (b) of Revised-
DFS. (II) Phase (c) of Revised-DFS. (III) Phase 
(d) of Revised-DFS. 
Step 3.   Calculating LB   For each branch, 
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Figure 7. Optimal solution for the example. 
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we know direction of the edges in {D}. The 
other edges {U}={A}-{D} should be 
considered bi-directional. In stage k, we 
calculate LBk  = f Ylm lm∑  that regarding to 

these directions, is shortest path between node 
l and m, and flm is delivered load between l and 
m (in From-To chart). 
 
Step 4.   Setting Bounds   In this algorithm 
there is no infeasible solution. Then branch k 
is bounded if: (I) lower bound LBk >upper 
bound UB and (II) all nodes are labeled and we 
have found a complete feasible solution. 
 
Step 5.   Branch Selection   Considering the 
all-new branches (see the branching 
procedure), the one with lowest LB is selected. 
The information on the other branch (LB, {U}, 
{D}) is recorded. If both branches are 
bounded, the backtracking procedure (step 7) 
is evoked. 
 The lower bound of branch k = 1 is LB1  = 
410 and for branch k = 2, LB2 = 410, ... . Now, 
in stage one, we have 10 new branches, the 
branches 1, 2, 3 or 5 can be selected (Figure 
6). The branching process is continued with 
LB1 = 410. 
 
Step 6.   Updating of Upper Bound   In a 
branch, when all of the graph nodes are 
labeled, all walks are found, and all remaining 
undirected edges are directed, value of 
objective function for this feasible solution, 
LBk , is less than UB (the current best value of 
the objective function), then UB is updated; 
i.e. UB = LBk. For example, LB16 = 440 is a 
feasible solution. Up to now, UB has been 
equal to ∞ so UB is updated to be equal to 440. 
 
Step 7.  Backtracking   The backtracking 
procedure is invoked any time a feasible 
complete solution is obtained. The backtracking 
returns to the source branch. If a previously 
not selected branch of the source, i.e. a sibling 
branch is available (i.e. it is not bounded and it 
has not been selected before), then the 
procedure continues through this branch. If 

sibling branches are not available, then 
backtracking is performed again. Referring to 
Figure 6, the branch k =17 represents a 
feasible complete solution, so the procedure 
returns to its source, the branch k=2, the 
sibling branches are k=18, 19.  
 
Step 8.   Termination   When backtracking 
reaches the root (k =0 ), and all branches are 
ended or bounded (Step 4), then the search is 
terminated. The optimal flow path layout for 
the example problem (of B&B, not real 
problem) is shown in Figure 7.  

 
 

COMPUTATIONAL RESULTS 
 
In this algorithm, we saw that every solution 
obtained from the algorithm is feasible, but we 
can’t prove that we can find all of the feasible 
solutions by this method. In worst case, we 
suppose this algorithm checks only some of 
feasible solutions, and branch-and-bound help 
us for finding the best solution between only 
those feasible. Then, this algorithm is a 
heuristic and for testing its efficiency we have 
solved about 100 different problems and you 
can see the results, in Table 3. Here, we have 
compared the result with the last Sinriech and 
 
 
 
 
 
TABLE 3. Comparing the Computational Results. 
 
 
 

Elapsed Time 
(sec); 

(Revised-DFS 
algorithm) 

 

Elapsed Time 
(sec) 

(Tanchoco) 

 

No. of 
Solved 

Problems 

 
No. of 
Depts. 

9 10 20 5 

50 87 20 9 

135 189 20 12 

424 675 20 15 

1077 1430 20 20 



IJE Transactions A: Basics Vol. 15, No. 1, February 2002 - 89 

Tanchoco optimal algorithm [31]. The results 
show that this algorithm can solve the 
problems in shorter time without error. Up to 
now, we have not found any difference between 
objective functions in both algorithms. 
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