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Abstract This paper proposes a simplified solution procedure to the model presented by Akinc 
and Roodman. The Benders’ decomposition procedure for analyzing this model has been developed, 
and its shortcomings have been highlighted. Here, the special nature of the problem is exploited 
which allowed us to develop a new algorithm through surrogating method. The two methods are 
compared by several numerical examples. Computational experience with these data shows the 
superiority of the new approach. In addition, the required computer programs have been prepared by 
the authors using TURBO PASCAL 7.0 to execute the algorithm. 
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 ـد   چكـيده چكـيده چكـيده چكـيده  ريزي توليد ادغامي ارائه  ن مقاله يك روش حل ساده براي حل مسئله اكين و رودمن در برنامهر اي
و كمبودهاي   سي مجدد قرار گرفته است و نواقص      روش تجزيه بندرز براي تحليل اين مدل مورد برر        . مـي شود  

طبيعـت خـاص اين مسئله باعث شد كه الگوريتم جديدي تحت عنوان الگوريتم    . آن مدنظـر واقـع شـده اسـت        
نتايج اين . ل عددي مختلف مورد بررسي قرار گرفته اند   ئهـر دو روش توسـط حـل مسا        . جانشـيني ارائـه شـود     

علاوه در اين تحقيق به برنامه هاي كامپيوتري متعددي نياز          ب.  مي دهد  محاسـبات برتري الگوريتم جديد را نشان      
 .نوشته شده اند) روايت هفتم(توربوپاسكال توسط نويسندگان مقاله با استفاده از بود كه 

 
 

INTRODUCTION 
 

Aggregate Production Planning (APP) is an 
intermediate range production problem (the 
planning horizon is generally three months to two 
years), in which one attempts to achieve a (cost–
effective) balance between productive capacity, on 
one hand, and forecasts of fluctuating demand, on 
the other. The production manager typically has at 
his disposal a set of production options with which 
to achieve the balance. Despite the strong interest 
that has been shown in APP models reported 
examples of successful implementation have been 
rare [1]. Akinc and Roodman [1,2], first suggest 
several reasons for this failure, and then introduce 
a mixed integer-programming model for aggregate 

production planning that attempts to address the 
limitations they have listed. The reformulation of 
APP by Akinc and Roodman may be seen in the 
modeling framework of this paper. 
 Bender’s decomposition [3] is a well-known 
constraint generation approach for problems where 
certain variables make the problem more difficult, 
for example Mixed Integer Linear Programming 
(MILP) problems that is the nature of the problem 
here. A disadvantage of this approach is that the 
Benders’ master problem is often very hard to 
formulate which can make the method inefficient. 
Possibilities of solving the Benders master problem 
by speeding up the procedure have been dealt with 
by, for example, Cote and Laughton [4]. 
 Akinc and Roodman [1] proposed a specialized 
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version of Benders’ decomposition for analyzing 
this model. The salient features of this complicated 
procedure are listed in [1]. For complete 
description, the reader is referred to Akinc and 
Roodman [2]. 
 Various papers, e.g. Paula jr. and Maculan [5] 
and Rana and Vickson [6] use Benders’ 
decomposition with Lagrangean relaxation applied 
to the Benders’ cuts [3] in the master problem. 
 Diaby [7] presented an implicit enumeration 
procedure for solving pure integer 0/1 minimax 
problems, which arise in the context of Benders’ 
decomposition for mixed integer 0/1 linear 
programming problems. 
 However, Holmberg [8] gave some small 
counter examples of MILP problems, which this 
approximations (of Benders’ master problem), fails 
to solve, i.e. yields bounds worse than the LP 
relaxation or even fails to find any feasible 
solution. 
 Aryanezhad [9] proposed a new algorithm for 
solving a special version of this aggregate 
production planning with zero-one variables. In 
this procedure the master problem of the APP was 
not an optimization problem, but the subproblems 
were basically transportation models. The 
transportation structure of subproblems, and the 
non-optimal nature of the master problem, made 
the new approach quite superior to the previous 
mixed integer programming routines. 
 A branch and bound method based on a dual 
ascent and adjustment procedure is developed by 
Holmberg [10] and compared to application of a 
modified Benders’ decomposition method. 
 In this paper the full model of APP has been 
reconsidered and a new algorithm is proposed. The 
procedure we propose for analyzing this MILP 
model is a modified version of Benders’ 
decomposition that exploits the intricacies of both 
the restricted master problem and the related 
subproblems. Here, the restricted master problem 
will be developed by surrogating method (Glover 
[11]) that is a binary variable problem (BVP). We 
will show that the optimal solution of this BVP is 
straightforward. This result and the proposed 
incumbent solution to initiate the new approach 
will speed up the procedures. In order to show the 
superiority of the new algorithm the authors 
developed all the required programming codes 
through TURBO PASCAL 7.0 for Gomory’s all 

integer dual method [12], Balas zero-one additive 
algorithm [13], strongest surrogate constraint 
[11,14], Benders’ decomposition [3] and so on. 
Several numerical examples have been generated 
and solved by the new algorithm and Benders’ 
decomposition. The results are tabulated and the 
execution time and number of iterations have been 
compared. 
 

THE MODELING FRAMEWORK 
 

To state the model, it is useful to distinguish 
between two types of production strategies, which 
we shall call production modes (PM), and capacity 
adjustments (CA). Production modes will refer to 
the alternative methods that can be used to produce 
units of output. They will be distinguished from 
one another by their cost structures and/or the 
technology that they employ. Typical production 
modes would include regular time scheduling, 
overtime scheduling, use of a more labor-intensive 
production method, subcontracting, substitution of 
lower quality raw materials, etc. Capacity 
adjustments, in contrast, will refer to the choices 
that determine the levels at which the production 
modes operate. Capacity adjustments might 
include changing the size of the workforce, 
activating idle equipment, re-scheduling preventive 
maintenance, etc. 
 In the model that follows, a binary variable, yikt 
will be used to denote whether the kth CA is used 
with mode “i” in period “t”. In order to avoid 
introducing additional variables, we will denote the 
use of a mode “i” in period “t” by yi1t, (the first 
CA). The function of properly counting any mode-
related fixed costs will be performed by yi1t. To 
illustrate the relationship between yi1t, and yikt, k≠1, 
consider overtime production as mode “i” which 
can be scheduled in two increments with known 
capacities 6-8 P.M. weekday program or a 
weekend program. One would model this situation 
by representing the existence of any overtime 
production by yi1t and the two CA’s by yi2t and yi3t. 
Constraints: 
 
yi1t ≥ yikt and k = 2,3 

 
would force yi1t = 1 and properly incur any fixed 
costs associated with any overtime before the two 
CA’s may be employed. In this case, yi1t itself has 
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a capacity adjustment of zero but it represents a 
precondition for the use of CA’s. 
 In some cases, a mode may be associated with 
a primary CA. For example, in regular time 
production, the capacity due to the existing work 
force has priority over any CA’s due to hiring 
programs; likewise, in subcontracting there may be 
a preferred supplier who is resorted to first before 
any other supplier (CA’s) is activated. In such 
cases, the capacities of these priority adjustments 
can simply be associated with the variable yi1t. This 
scheme of representing modes and CA’s gives a 
certain degree of modeling flexibility, whereby the 
overall capacity level can be represented by a 
y-vector: 
 
y = < yikt> 
 

 The model can be stated as follows: 
 
Minimize:  
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yikt ≤ yi1t               i = 1,…,M 
 
                     k = 2,…,Kit          (5) 
                    t = 1,…,T 
 
Linear Configuration Constraints on y including 
those representing desired end conditions. 
 
Xitl ≥ 0                 (6) 
 
yikt, Z+

ikt, Z−
ikt = 0,1 

 
where 
 
M = the number of production modes, 
T = the number of time periods,  
Kit = the number of capacity adjustments for

 production mode “i” in period “t”, 
Fl = forecast demand in period “l” (FT+1 desired 

ending inventory level), 
Citl = the variable cost to produce one unit of 

output using production mode “i” 
(regardless of its capacity level) in period 
“t” to meet demand in period “l”. 

Xitl = the number of units produced using 
production mode “i” in period “t” to meet 
demand in period “l”, 

aikt = the fixed cost to first establish capacity
 adjustment “k” for production mode “i” at 
the beginning of period “t”, 

bikt = the fixed cost to remove capacity 
adjustment “k” for production mode ”i” at 
the beginning of period “t”, 

fikt = the fixed cost to operate  capacity 
adjustment “k” for production  mode “i” in 
period “t”, 

Z+
ikt= 1, if capacity adjustment “k” for production 

mode “i” is started at the beginning of 
period “t”, 0, otherwise, 

yikt = 1, if capacity adjustment “k” for production 
mode “i” is in use during period “t”, (yik0 
initial condition) 0, otherwise, 

Ζ−
ikt = 1, if capacity adjustment “k” for production 

mode “i” is removed at the beginning of 
period “t”, 0, otherwise, 

Rit(y)= the capacity of production mode “i” in 
period “t” (a linear function of y), and 

Lit(y)= a lower bound on output of production 
mode “i” in period “t”. 
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 In general, additional production modes will 
lead to additional constraints in the framework, 
where as additional capacity adjustment will 
change the form of the Rit (y) and Lit (y). 
 Constraints 1 specify that total production 
cannot exceed available capacity for each mode in 
each period, while Constraints 2 establish 
minimum quotas on total production for each mode 
in each period. Constraints 3 require that demand 
be met in each period (although they do not 
necessarily preclude back-ordering). Then (4) 
specifies the relationship that must exist among 
“start-up”, “shut-down”, and “operating” variables 
for each production mode and/or capacity 
adjustment (Z+

ikt, Z−
ikt and yikt, respectively). 

Finally, constraints (5) as discussed earlier, require 
that the mode “i” is in place before any further 
capacity increment can be employed. 
 The constraints in (6) are those which might be 
required, depending on the particular problem 
characteristics, to establish logical relationships 
among PMs and, CAs as well as desired end-of the 
period conditions for PMs and CAs. 
 
 

MODEL ANALYSIS 
 
Surrogating Method    Here, we show that the 
main constraints of the master problem will be 
replaced by the strongest surrogate constraint. The 
surrogate constraints are the non-negative linear 
convex combinations of the main constraints and 
the objective function [11,14]. The generated 
problem with the strongest surrogate constraints is 
a valid relaxation of the main problem with zero-
one variables. 
 
DEFINITION 1: Suppose Ay ≤ b is the 
constraints of a special problem. Suppose V≥ 0 is 
given. Then the surrogate constraint for this 
problem is VTAy ≤ VTb, [11,14]. 
 
DEFINITION 2: Suppose the objective function 
of a given problem is a minimization problem. 
Suppose there exists at least two surrogate 
constraints the strongest surrogate constraint is the 
one, which implies less value for the objective 
function. 
 Consider a linear mixed integer programming 

with zero-one variables: 
 
Min dx + cy 
S.t.  Dx + Ay ≥ b           (MIP )       
      1 ≥ y ≥ 0                    (MIP) 
  x ≥ 0  

y integer  
 
The dual of (MIP) for a given y = y  is 
 
Max U0 = U (b-A y ) 
S.t.  UD ≤ d 
  U ≥ 0 
 
Let us define: 
 

 
 

 
 

Suppose iUk  is an extreme point of the following 
constraint (1) for all i=1,2,…,|K|. 
 
{UD ≤ d, U ≥ 0}               (1) 
 
 Now, the integer problem of Benders’ 
decomposition (1962) is as follows: 
 
Min Z 
S.t.  Z ≥ cy + Uk

T (b-Ay), k=1,2,...,p           (IP) 
  1 ≥ y ≥ 0 and integer 
 
Then in terms of this notation, any Benders’ 
integer subproblem like (IP) can be formulated as 
follows: 
 
Min Z 
S.t.  Z1 ≥ (1c) y + UK

T(b-Ay)    (BIP K)   (BIPK) 
  1 ≥ y ≥ 0      
  y integer  
 
Suppose VK ≥ 0 is a given vector, then the 
surrogate constraint for (BIPK) can be written as: 
 
VK

T(1Z) ≥ VK
T(1c) y + VK

TUK
T(b-Ay)                (2) 

 
 Then, the strongest surrogate constraint for 
zero-one variables y, which maximizes VK ≥ 0 will 

{ }p,...,2,1P,PK,Kk,...,k,k

),U,...,U,U(U

K21

kkkK K21

=⊂∈

=
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be: 
 
Max{Min{[VK

T1]-1[VK
T(1c) y+VK

TUK
T (b-y)]}} (3) 

VK ≥ 0     y = 0,1 

 
 Since VK’s are the convex combination 
vectors, therefore VK

T1 should be equal to one, or 
VK

T1=1. In other words (3) is equivalent to (4). 
 
Max         {Min{[c-VK

TUK
TA] y + bT(UKVK)}} (4) 

VK ≥ 0,VK
T1=1      y = 0,1 

 
 Since y is a binary variable, then optimization 
of the relationship inside bracket in (4) is 
straightforward. In the other words: 
  
  1, if (c- VK

T UK
T A) i < 0, 

yi = 
  0, otherwise. 
 
 Now, let us define a new vector W such as 
Wj = max {0, -(c- VK

T UK
T A) j}. 

 Then, (4) may be changed to a linear 
programming model with the help of new vector 
W. That is, 
 
Max bT UK VK – 1TW 
S.t.  AT UKVK – W ≤ c 
  1T VK = 1        (BSPK) 
  VK, W ≥ 0 
 
 The optimal solution of (BSPK) would imply 
( KV ), to be the strongest surrogate constraint for 
Benders integer programming (BIP). 
 Now, let us consider (BIP K), and write its dual 
problem: 
 
Max bT UK VK – 1TW 
S.t.  1T VK =1                (5) 

ATUKVK – cT VK – W ≤ 0                        (6) 
VK, W ≥ 0    

 
Since 1T 

VK=1, Then, cT  
VK =1(cT  VK)=(1cT) VK= 

(c1T) VK = c (1T VK) = c, the Constraint 6 will be 
replaced by (7): 

 
AT UK VK –W ≤ c               (7) 
 Therefore, the dual of (BIP K) will be as 

follows: 
 
Max bT UK VK - 1TW 
S.t.  AT UK VK – W ≤ c 
  1T VK = 1     (DBIP K) 
  VK, W ≥ 0 
 
 Here, we see that (BSPK) and (DBIP K) are the 
same. In other words, the optimal solution of the 
dual problem of (BIP K) would imply KV  which is 
the strongest surrogate constraint for (BIPK). 
Therefore, the strongest surrogate constraint would 
be as follows: 
 
Z ≥ cy + KV UK

T (b-Ay)              (8) 
 
Trivial Solution of (BIP)    The biggest obstacle 
associated with Benders’ decomposition is the 
solution of master problem. However, the special 
structure of the APP problem in conduction with 
the strongest surrogate constraint method, make 
the master problem to have one constraint with 
zero-one variable. So, in each iteration, we have 
the following optimization problem: 

 
Min Z 
S.t.  Z ≥ (c - � A) y + � b 
  y = 0,1 
 
The optimal solution of this problem is 
straightforward. Hence, 
 
  1, if (c - � A) i < 0, 
yi =          
             0, otherwise. 
 
The Initial Solution   Let us consider Benders’ 
final integer programming when all of the 
constraints are generated: 
 
Min Z 
S.t.  Z ≥ cy + UP

T(b-Ay)   (BIP P)        (BIPP) 
  1 ≥ y ≥0  
  y integer  
 
 The strongest surrogate constraint could be 
derived through the solution of (BSPP), which is 
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the dual problem of (BIP P). 
 
Max bT UP VP – 1TW 
S.t.  AT UP VP – W ≤ c 

W ≥ 0         (BSPP) 
  1T VP = 1 
  VP ≥ 0 
 
 The strongest surrogate constraint would be: 
 
Z ≥ cy + (UPVP*)T(b-Ay)              (9) 
 
 Let us write the dual problem of MIP , which 
is: 
 
Max bTπ -1Tα 
S.t.  ATπ - α ≤ c 

α ≥ 0       (DMIP ) 
DTπ ≤ d 
π ≥ 0 

 
 Now, let us prove that (DIMP ) and (BSPP) are 
equivalent. 
 
Theorem. (VP*, W*) is an optimal solution for 
(BSP P), if and only if π* =UPVP* & α* = WP* is 
an optimal solution for (DMIP ). 
 
Proof. The objective function and the first two 
constraints will be the same if we do the desired 
transformation. The remaining constraints will be 
the same if we show that the two sets of (10) and 
(11) are equivalent. 
 
   DTπ ≤ d              (10) 
   π ≥ 0 
   
   1TVP =1              (11) 
   VP ≥ 0 
 
 The set (10) is always feasible and bounded. 
So, if we suppose that π = UP VP is its vertices then 
the linear convex combination of its vertices is also 
its solution. Therefore, (11) is satisfied. 
Conversely, suppose (11) is true. Then by 
reconsidering (11) we have, 
 
   DTUP ≤ d 
   UP ≥ 0              (12) 

 Multiplying (12) by VP ≥ 0 and summing it up, 
we will have DTUPVP≤ d (1VP). 
Since (1VP) =1, then 
 
DTUP VP ≤ d              (13) 
 
 By considering the transformation π= UPVP in 
(13) we have DTπ ≤ d. 
Since VP ≥ 0 and UP ≥ 0 then π= UPVP ≥ 0 and the 
proof is complete. 
 
 If (π*, α*) solve (DMIP ), then the strongest 
surrogate constraint for (BIPP) will be as follows: 
 
Z ≥ cy + π* (b-Ay). 
 
 Then the trivial solution of the following 
surrogate integer problem (SIP) will yield y . This 
y  will be an initial value for starting the new 
algorithm. The objective value of Z will be a lower 
bound for the objective value of MIP. 
 
Min Z 
S.t.  Z ≥ cy + π* (b-Ay)          (SIP) 
  y =0,1 

 
 

THE NEW ALGORITHM 
 
In this section we are in a position to introduce a 
new algorithm based on the above analysis. We 
will also mention some properties, which reduce 
the computational efforts. 
 
Step 1 (Initialization): Solve the linear program 
(DMIP ) and derive π*. Then derive the 
straightforward binary solution of (SIP) and call it 
y . 
Put Z = Zl , Zu = +∞, and k=1. GO TO STEP 2. 
 
Step 2: Solve the following linear program: 
 
Max U0= U (b-A y ) 
S.t.  UD ≤ d 
  U ≥ 0 
 
Put ←kU U. Then update Zu =min {Zu, U0 +c y }. 
GO TO STEP 3. 
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Step 3: Construct the main constraint Z ≥ cy 
+Uk(b-Ay) with the help of Uk in step 2. If this 
inequality is a redundant constraint, then GO TO 
STEP 6. Otherwise, GO TO STEP 4. 
 
Step 4: Suppose K={ }k,...,2,1 . If k=1 then KV =1 
and GO TO STEP 5. 
Otherwise solve (DBIP K). Find the optimal VK. 
Then put ←KV  VK, and GO TO STEP 5. 
 
Step 5: Construct the strongest surrogate constraint 
as the following: 
 
Z ≥ cy + KV UK

T (b-Ay) 
 
For k=1 this constraint is unique. Develop the 
surrogate integer problem (SIP) as follows: 
 
Min Z 
S.t.  Z ≥ cy + KV UK

T (b-Ay)                   (SIP) 
  y =0,1 
 
The optimal solution of (SIP) is straightforward: 
 





 <−

=
.otherwise,0

,0)AUVc(if,1
y

i
T

K
T

K
i  

  
Put y  equal to the optimal y. If y  is a repeating 
value, then GOTO STEP 6. Otherwise, find 
Zl = c y + T

KV UK
T (b-A y ) and GO TO STEP 7. 

 
Step 6:  Solve the following integer program: 
 
Min Z 
S.t.  Z ≥ cy +Ui (b-Ay), i = 1,2,…,k 
  y =0,1 
 
This is the only integer programming problem that 
should be solved only once in this new approach. 
Put  y  equal to the optimal value of y, and Zl = 
min Z. Then GO TO STEP 7. 
 
Step 7:  If Zl < Zu, then 1kk +←  and GO TO 
STEP 2. 

Otherwise, Zl =Zu and y  is the final optimal y. For 
finding the final optimal x, solve the following 
linear programming problem. 
 
Min dx 
S.t.  Dx ≥ b-A y  
  x ≥ 0 
 
Then x = x , y = y , Zl = Zu  = d x  + c y  are the 
final optimal solution of the original MILP. 
 
 

NUMERICAL EXAMPLE 
 
For purposes of illustration, we have solved several 
examples based on the example given by Akinc 
and Roodman [1]. One of the illustration problems 
has the following parameters: 
 There is a three period planning horizon with 
forecast demands of 800, 950, 1250 units of 
output. Production data is summarized below: 
1. Regular Time Workforce. Initial regular work 
force is 20 workers where each worker contributes 
35 units to output. An additional increment of 10 
workers is available. Hiring/firing and incremental 
payroll costs associated with this option are $400, 
$250 and $700 per worker, respectively. 
2. Overtime. Actual overtime production is 
restricted to no more than 20% of regular time 
production. With this constraint, the company can 
employ overtime increment at capacity of 70 
units/period. The variable overtime penalty is $6 
per unit for the overtime increment. In addition, 
there is a $30/period incremental fixed overhead 
expense. 
3. Inventory-Backlog. Inventory carrying cost is 
$5/unit/period while demand can be backlogged at 
a cost of $20/ unit/period. 
 In order to represent this problem within the 
framework given earlier, we may define 
production modes of (1) regular time, (2) overtime, 
and hiring-firing, as capacity adjustment to regular 
time production. The following zero-one variables 
will be required to model these: 
 
Mode 1.Regular Time Production 
Adjustment: 
Incremental Labor (Hire/Fire)             y11t 
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Mode 2. Overtime Production 
Adjustment: 
Overtime Increment (Use/Not Use)             y21t 
 The cost parameters for the problem will be as 
follows: 
 
Inventory/ Backlog/ Operating 
 
 
       5 (l - t)  l ≥ t 
C1tl = 
       20 (t - l)  l < t 
 
 
 
       6 + 5 (l - t)  l ≥ t 
C2tl = 
       6 + 20 (t - l)  l < t 
 
 
Hiring/Firing 
 
a11t = 400, all t (hiring) 
f11t = 700, all t  (additional payroll, etc.) 
b11t = 250, all t  (firing) 
 
Overtime 
 
a21t =0,  all t 
f21t =30, all t 
b21t =0,  all t 
 
The Model. The model is then 
 
Minimize: 
 

∑

∑∑
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Xikt ≥ 0, yikt, Z+

ikt, Z−
ikt = 0,1  

 
 Optimal Solution. The optimal solution of this 
problem in summary form is to schedule overtime 
production mode in period 3, and to hire 10 
workers in period 1 and let them work in periods 1-
3. The cost of this solution is $3750 consisting of 
$1220 of variable (inventory, backordering, overtime 
penalty) and $2530 of fixed costs (hiring, firing, 
and fixed wages of 10 employees, and incremental 
overhead due to overtime). 
 This problem was solved by Benders’ 
decomposition technique, through solving four 
linear programming problems and four integer-
programming problems. However, the new approach 
solved this problem by solving ten linear programming 
problems, but one integer programming. 

 
 

COMPUTER PROGRAMMING CODES 
 

To compare, the new approach and Benders’ 
decomposition technique, the authors prepared the 
following computer programming codes through 
TURBO PASCAL 7.0. 

1. Revised Simplex Method. 
2. Dual Simplex Method. 
3. Gomory All integer Dual Method. 
4. Balas Zero-one Additive Algorithm. 
5. Strongest Surrogate Constraint Method. 

 
 

COMPUTATIONAL EXPERIENCE 
 

In order to test the solution algorithm and the new 
approach, a large number of problems were 
generated based on the numerical example of 
Akinc and Roodman [1]. 
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TABLE 1. Comparison of Time reduction in the New Approach with Respect to Benders’ Decomposition. 
 

 
 
 
 These problems were solved by Benders’ 
decomposition and by our New Approach (NA) on 
a 486 DXII computer with 8MB Ram. The 
dimensions of the problem, number of iterations, 
time of computation, number of LP and IP, and 
percent of computational time reduction of the NA 
with respect to the Benders’ decomposition are 
tabulated in Table 1. In this table we can see that 
computation time of the new approach is smaller 
than Benders’ decomposition algorithm. The 
number of integer program problems in the new 
approach was always only one problem, while in 
the Benders’ procedures it varies with the number 
of iterations i.e., twenty integer program problems 
in the largest example. 
 
 

CONCLUSION 
 
In this research a new approach was developed for 
solving more flexible kind of aggregate production 
problems as formulated by Akinc and Roodman 

[1]. Some of the advantages of the new approach 
compared with Benders’ decomposition procedure 
are listed below: 
• Replacing the integer subproblems by linear 

problems. 
• Reduction of the number of integer programming 

problem, to one. 
• Generation of a good initial solution. 
• Finding a good lower bound for the objective 

function in the first step of the NA. 
• Reduction of the computational time. 
 The new approach was applied to the new 
formulation of aggregate production planning 
problem with zero-one variables. However, the 
application of the new algorithm for general mixed 
integer programming is an open question. 
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