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Abstract In this study the interaction between self-excited and parametrically excited
oscillationsin two-degree-of-freedom systems with quadratic nonlinearities is investigated. The
fundamental parametric resonance of the first mode and 3:1 internal resonance is considered,
followed by 1:2 internal and parametric resonances of the second mode. The method of
multiple time scales is applied to derive four first-order non-linear ordinary differential
equations that describe the modulation of the amplitudes and phases of both modes caused by
resonance. These equations are used to determine steady state amplitudes. To determine
stability of the steady state solutions, small disturbances in the amplitudes and phases are
superposed on the steady state solutions and the resulting equations are linearized. The
eigenvalues of the corresponding system of first-order differential equations determine the
stability of the steady state solutions. The instability modes are discussed and the amplitude and
frequency response curves are presented by varying parameters of the system.
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INTRODUCTION

The response of two-degree-of-freedom systems
with cubic nonlinearities to parametric
excitation has been studied by Tso and Asmis
[1]and Tezak et.al. [2]. Nayfeh [3] studied the
response of a two-degree-of-freedom system
with quadratic nonlinearities to a parametric
harmonic excitation. Most recently, Natsiavas
and Metallidis [4,5] analyzed the dynamic
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behavioroftwo-degree-of-freedomself-excited
nonlinear systems, in the presence ofinternal
and external resonances.

It seems so far, no work has been done on
the dynamic behavior of quadratically
two-degree-of-freedom nonlinear systems
subject to both self-excitation and parametric
excitation. This study attempts to do so. The
method of multiple time scales is applied to
derive a first-order uniform expansion of the
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solution consists of four first-order nonlinear
ordinary differential equations. These equations
describe modulation of the amplitudes and
phases of the modes of oscillations. The steady
state amplitudes and their stability are studied
using these equations.

ANALYSIS

An analysis is presented of the nonlinear
response of two-degree-of-freedom
self-sustained systems with quadratic
nonlinearities to a harmonic parametric
excitation. Equations of motion are governed by

. .
Uy +ofuy +&[2c05Q (ay Uy + Oyglly) - Uy +

003 .(1)
Uy + 03Uy + & [2008Q (Cty Uy + CQgglly) — tolly +

3 2

2)

where w, , W, &, mj, b, I; are constant

parameters. The dimensionless parameter e is

assumed to be a small positive quantity, and a

dot denotes time derivative. Consider the
multiple time scales [6,7]

T,=¢1t , n=0,1,2,... 3)
Then
and ﬂd—) =Dy+eD+...

{
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%2—1 =D}+2eDyD, +... (4,5)

V{43
where D, = a—m . The solution of Equations
0T,
1 and 2 may be expressed in the form of
Un (1,€) =tpo(To, Ty, Ty) + (6)

gunl(TO’Tl’T2)+“‘ ) n:1,2

Introducing Equation 6 into Equations 1 and 2,
and equating terms of equal powers of e yields
the following perturbation equations
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The solutions of Equations 7a,b can be
written in the form

where c.c. represents the complex conjugate
terms and A, are unknown complex functions
that are determined by eliminating the secular
terms from the solution.

Substituting Equation 9 into Equations 8, the
resulting equation will be considered from
which the 3:1 internal resonance due to
self-excitation with parametric resonance of the
first mode will be investigated, followed by the
case of 1:2 internal and parametric resonances
of the second mode.

FUNDAMENTAL RESONANCE OF THE
FIRST MODE AND 3:1 INTERNAL
RESONANCE

The departure from exact internal and
fundamental resonance is expressed by the
detuning parameters S; and S; as
Q=2w,+¢0,

(10a,b)
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Eliminating secular terms from resulting
equations derived from Equations 8 and 9 leads
to the following solvability equations

i (A4 -24)- 0‘1121 exp(ieo, Ty)

. 3 3 .

iy (ugAdy-2A4,) + 5521 w3Ay exp(ied,Ty)
SiBy03AT A, =0 (11b)

To analyze Equations 11, it is convenient to
write A, in polar form as

Ay = a,(T,)exp[i6,(T;)] ., n=12 (12)
where both a, and Q, are real. Substituting
Equation 12 into Equations 11 and separating
the result into real and imaginary parts leads to
the following sets of equations

! 3,3 :
-2d\o,+pa 0 -Botal-aga siny,

=0
2a,0,0' -aa,cos7,=0 (13a,b)
2030, + 150,05~ Byy03a 5+
ﬁ%wi’af’ cosy, =0
-2a,0,0', +ﬁ3ﬁ wia}siny,=0 (13c,d)

where g; and g are new phase angles defined
as

vV =-20,+0,T,

and y,=360,-60,+0,T, (14a,b)

By combining Equations 9, 13 and 14, the

approximate solutions of Equation 6 may be
found in the form of

u (t)=a, (T, )cos[(QTy-y,)/2]+0(e)
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2 3
uz(t):az(T1)cos[(QTo‘V1—572)§]+0(5)
(15a,b)
The steady state constant solution may be
obtained from Equations 13 by setting
aly=a'y=y", =y, =0.
follows that

a;(u,o, ‘ﬁuw?af — oy siny) =0

Consequently, it

a,(w,0,-a;;cosy,)=0 (16a,b)

3

3 3,3
Mgy -3y, 0505

B2 _
+?w1a1 cosy,=0

—a2w20+%w‘;’a‘;’siny2:0 (16¢,d)

where

0=30,+20, . Equations 16 admit the trivial

solution a; = a; = 0. Also, the single-mode

response a; = 0, ap U 0 is possible. Setting a;

= 0, Equation 16c¢ yields

a,= a)i at ] . In the case of mixed-mode
2N B oo

response, a] and a, are the solutions of the

following equations, obtained by manipulating

Equations 16

at-2Ta2+T,=0 and a5-2T,a3+T,a2-T,=0

(17,18)
where
r — My r _a)% (0f +ui) -,
1= 2=
P11 07 Bl of
I — My _ﬂ%’foz _ B 03 )2 a6
e » 1= 1
B 3 ﬁ§2w3 35
(19)

It follows from E quations 17 and 19 that real

solution for a; exists when

05%1 Zw% (7% . Then two cases are possible:
o2, <w? (0% +u?)and o}, > 0? (0% + u?).For the
former case two real solutions exist and for the
later case, only one real solution is possible.
Equation 18 can be solved to obtain aj;. In this

equation, the amplitude of the first mode
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appears as the forcing function. Using Cardan's
method, it can be shown that if by, > 0 and mj
> 0, Equation 18 always have one positive real
root.

Stability Analysis The stability of the
steady state solutions are determined by
assuming amplitudes and phases as

Y1i=Y10t0V1 , V3=V +0y, (20a-d)
The steady state amplitudes and phases of the
modes are denoted by a,g and gyg, respectively,
and symbol drepresents small perturbation on
these quantities. Substituting Equations 20 into
Equations 13, keeping onlythe linear terms in
dai, dg;, day and dgp, results in

M1 3 aq
oa', =(—=-28,,0%a? -——siny,)da
1 (2 oP 110141 20, v1)0a,

Oy d A1 .

(S cosm)On o = (G siny ;)07
B M2

5a'2:(—2w w?afcosyz)éaﬁ(?—

2

3 ﬁ21 .
- 5ﬁ22w%a22)5a2 - (wwi’af’smyz)éyz
2
(21a-d)

} 3a 4
= — —siny,)oa,-
9 72) 1 (2a)

22 1

L siny;)oy,

By wia 3

Buoiai 191
H—— smyz)éaz—(—6 COSY4) 0V,
6w, 5 Wydy

Solution of Equations 21 determines stability
of the steady state responses. Let

da,=oa; exp(vT,) , oy, =0y exp(vT)

day,=oa,exp(vTy) , Oy,=0y,exp(vT,)
(22a-d)
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Then, for the first mode, using Equations 16 as
the steady state solution the eigenvalues of the
coefficient matrix becomes

V= ‘ﬁuw%a% and v, =, ‘511‘”%3%
(23a,b)

For the first mode to be stable, both

eigenvalues must be negative. Then
;>0 and u,<pB, w?a? (24a,b)

The eigenvalues which govern stability of the
second mode are given by

Via= ‘% [2522‘“%“%‘/‘2]

-2 [+ Bh0tat-o?]

(25)

The conditions for stability of the second mode
may be obtained as

Brpwial-u,) (3B w5a3-pu,)<0®

and
2,92
Ua< 2B gpw5a;

where s= 3S;+ 2s,. The eigenvalues of the

(26a,b)

coefficient matrix for the second mode are real
if 0< fy,0%aZ . It is casy to show that the
trivial solution a;= 0 is always unstable. Also,
the single-mode response a,Uo0 is stable if
my>0.

FUNDAMENTAL RESONANCE OF THE
SECOND MODE AND 1:2 INTERNAL
RESONANCE

This resonant case may be expressed as

Q=2w,+e0, and 20w,= w,+£0,

(27a,b)
Eliminating the terms which produce secular
terms, yields

. . 2
io(-24 +uA) - 1511‘1)?141 A,

+A +Ag AL exp (ig0,Ty)=0 (28a)
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. . 2 T
[0y (-2A45+uyA,) - lﬁzzw%AzAz
‘azzgzexP(ig‘ﬁTo)
+A. A A, exp(-icc,T,)=0
sA1 Ay exp( 2 To) (28b)

To study the effects of internal and
parametric resonances, introducing Equation 12
into Equations 28 and separating real and
imaginary parts, one gets

! 3,3
-2d" o, +u 4,00 - 07a5 +

Azaisiny =0

2a,0,0' +Aza%cosy, =0 (29a,b)
20,0, + Uy Ay 0, - f 0305
— gyl o SINY o —Asa a,5iny =0 (29¢)

ay,(2w,0'y+Aa,cosy,-ayyc057,)=0

v1=20,-0,+0,T, , y,=-20,+0,T,
(29d,30a,b)

Approximate solutions of Equation 6 are found
as

uy (t) =a,(Ty)cos (QTy -y -75) +0(¢)

uy (t) = a, (T, ) cos [(QTO - Vz)/2:| +0()
(31a,b)
In the steady state, Equations 29 accept
constant solutions. Hence, it follows that

3,3 247 _
pra, @, -fy oray +Azazsiny =0
20,0 (0, +ay)+Azaicosy, =0
(32a,b,c,d)
3,2 :
Ay o0y~ oy w3a5 -Azaysiny,
~ 099 5iNY 5) =0
Ao (040 +A5a,COSY| - U gyC08Y 5) =0
Equations 32 admit the trivial solution

a;=a,=0. The single-mode response a;U0,
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ap= 0 is also possible. In this case, Equations

32a,b give al:L “1 . When a;U0 and

@y 511

a,U0, Equations 32 may be combined to obtain
two nonlinear equations in the form

2
(mia,0,-p0ta3)’+ 4aiwi(o,+0,)

—12a} (33a)

3,4 3, 4 2

(-A3Bqwsa5- A wiat+Au,0,as
242

+Aspu wiay)

+ |—/1?. a1w?a§—2/15w101a%(01+02):| ’

2
= A3 a3,a3 -

Using a two dimensional Newton-Raphson
algorithm, Equations 33 may be solved to obtain

a; and aj.

Stability Analysis The stability characteristics
of the steady state solutions may be obtained by
a procedure similar to that in the preceding
section. Imposing small perturbations on the
steady state amplitudes and phases, and
eliminating steady state and non-linear terms of
the solvability conditions, a set of first-order
differential equations may be obtained. The
resulting variational equations are in the form

a =Ia, where

a=(0da;,0y,,0a,,0y7,) (34)
and

= [Cif]m , ij=1,2,3,4 (35)
where

A a,
C11:§ » Cpp=-a,0 C13:‘Ba_
2
o(1+E B(1-E

C14:0a C21:J%2 ’ C22:JT2
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Figure 2. Frequency-response curves, W@2w;, 3w; @w,.
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al

Figure 3. Frequency-response curves, W@2wy, 3w; @w,.
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Figure 4. Amplitude-response curves, W@2w,, 2w, @w;.

2a2w,A
=, 0=0,+0, (36)
2w, A
A0 944

The eigenvalues of matrix G determine
stability of the steady state solutions. If the real
part of all the eigenvalues are negative, the
steady state solution is stable.

RESULTS AND DISCUSSION

The results for the case of fundamental
resonance of the first mode and 3:1 internal
resonance due to self-excitation are shown in
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Figure 5. Frequency-response curves, W@2w,, 2w, @w;.
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Figure 6. Frequency-response curves, W@2w,, 2w, @w;.

Figures 1-3. All of the results are obtained for
W=2 and e=0.1.
amplitude-response curves for the case:
SiI=S=1, m=3, m=0.1, b11= b21= b22= 0.3,
and ajp is varied from 0 to 10. As ajp is

Figure 1 shows

increased from zero, no steady state solutions
exist until a;; reaches 0.95. Two solutions for
steady state amplitudes of a; and a; exist
between a;;= 0.95 and a;1= 3. According to
Equations 23 and 25 the higher branches of
amplitudes correspond to the stable solutions.
Beyond aj;= 3, the stable solutions are single
valued. The stable steady state amplitudes ay,
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-3 -2 -1 o 1 2 3

the directlyexcited mode and a,, the indirectly
self-excited mode, increase as a;; increases.
However, the rate of increase of aj is less than
aj. Figure 2 shows the frequency-response
curves for S,= 0 (a perfectly tuned internal
resonance), My = my = 0.1,a;;= 5,by; = by =
by, = 0.3, and sy is varied from -3 to 3. The first
mode amplitude a; increases with increasing S;.
The second mode amplitude a; experiences
jumps for S near -0.4 and 0.4. In Figure 3, the
frequency-response curves for the case of S;=0
are plotted against S, which is a measure of the
resonance due to self-excitation. All other
parameters are the same as in Figure 2. The
stable steady state value of the amplitude a; of
the directly excited mode is independent of the
detuning parameter Sy. Thismaybe seen from
Equation 17. Again, jump phenomenons exist
on the amplitude of the second mode a,, for S,
near -0.6 and 0.6.

Figures 4-6 show results for the case of
parametric resonance of the second mode and
2:1 internal resonance. The amplitude-response
curves in Figure 4 are plotted for S| = Sy = 1,
m =my= 0.1, by =byy=0313=15=1,
and ayp, is varied from 0O to 10. Both steady state
amplitudes increase as excitation amplitude ap,
increases. For apy between 0.5 and 0.9, no
stable steady state solutions exist. In this range,
the eigenvalues of matrix (35) have positive real
parts. In Figures 5 and 6, a; and ap are plotted
as functions of the detuning parameters S; and
Sy, respectively, a>=5 in both figures, Sp=0 in
Figure 5 and s;=0 in Figure 6. All other
parameters are the same as in Figure 4. As may
be seen, the stable amplitudes are not very
much dependent on the detuning parameters.
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