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Abstract In this paper we present a robust hybrid motion/force controller for rigid robot
manipulators. The main contribution of this paper is that the proposed hybrid control system is
able to accomplish motion objectives in free directions and force objectives in constrained
directions under parametric uncertainty both in robot dynamics and stiffness constraint constant.
Also, the given scheme is proved globally stable in the sense that the control objectives are
achieved asymptotically, when a signum function is used in the control law, though givingrise to
chattering effects. To avoid this problem a saturation function is used. In this case the motion
and force errors are proved to be bounded functions. Using the proposed control structure
there is no need to measure the derivative of the interaction forces. Some simulation results are
given to illustrate the control system performance.
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INTRODUCTION forces between the end-effector and the

environment [1]. Most assembly operations and

Control of robotic manipulators can be manufacturing tasks require mechanical

classified into two different approaches: motion interactions with the environment or with the
control and constrained motion control. Motion object being manipulated, along with fast
Control is used when the robot arm moves in a motion in free and unconstrained space. Several
free space without interacting with the controller schemes have been proposed in the
environment. Motion controlspecificationsare literature and can basically be classified as
given in terms of a desired motion trajectory. compliant motion control, pure force control,
On the other hand, Constrained Motion and hybrid motion-force control [2,3].

Control of robots is concerned with the control The dynamic behaviour of rigid manipulators
of robots whose end-effector interacts can be modelled by a set of complex nonlinear
mechanically with the environment, which leads differential equations. Most high performance
to control schemes that regulate the interaction model-based control schemesrelyon the exact
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cancellation of the nonlinear dynamics. The
uncertainty in some robot parameters, as link
inetria and payload, normally degrades the
control performance. In this context, there exist
two basic approaches to reduce the effects of
uncertainties: adaptive robot control and robust
robot control[15,16]. Adaptive controllers for
motion and constrained motion robots have
been proposed in the literature [4,5,6,7].
Regarding the robust control approach, there
exist some schemes with global stability
demonstrations to solve the motion control
problem [8,9], and a robust adaptive motion -
force controller [10].

In this paper, we present a robust hybrid
motion-force controller for robot manipulators
as an extension of the robust motion controller
in [9], using the hybrid controller structure
described in a previous work [7]. The controller
has a simple structure as a result of being based
upon robot model parameterization and the use
of switching functions. The controller isrobust
to uncertainties both in the manipulator
dynamics and the environment stiffness. This
approach does not require measurement of the
joint acceleration or the force derivative. A
global stability demonstration is given based on
Lyapunov analysis, without any linearization
assumptions. Also, boundedness of control
errors is proved when a saturation function is
used to avoid chattering.

The paper is organized as follows. In section
Il we summarize the manipulator model.
Section Il presents the problem formulation.
The proposed robust hybrid controller is given
in section I'V. In section V we describe some
simulation results, and finallyin section VI the
concluding remarks are given.

ROBOT MODEL

In the absence of friction and other
disturbances, the Cartesian-space dynamics of
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an n-link constrained rigid robot manipulator
can be written as,

Hx)Xx + C(xx)x+ G(x) + F= J"t (2.1)
where xis the nxl vector of Cartesian position
and Euler angles of the manipulator
end-effector, in a reference frame RO fixed to
the robot base; T is the nxl vector of torques (or
forces) applied to the robot joints by the
actuators; H(x) is the nxn symmetric positive
definite manipulator inertia matrix, C(x,X)X is
the nxl vector of centripetal and Coriolis forces,
G(x) is the nxl vector of gravitational forces;
J(q) is the nxn manipulator Jacobian matrix,
assumed to be nonsingular, q is the nxl vector of
joint displacements and F is the nxl vector of
interaction force/moments at the end-effector.
In case J be singular due to arm singularities or
J be non-square due to arm redundancy, it is
necessary to apply the generalized inverse based
on the singular value decomposition theorem,
so that the null space existing in Cartesian space
or joint space can be separated. The
manipulator described by Equation 2.1 is
assumed non-redundant. It is assumed that the
robot is equipped with joint position and
velocity sensors and a force sensor at its
end-effector. Although the motion Equation 2.1
is complex, it has several fundamental
properties which can be used to ease the
control system. The properties are as follows:

Property 1(See[4]). By usinga proper definition
of matrix C(x,x) (only the vector C(x,X)X is
uniquely defined), matrices H(x) and C(x,X) in
Equation 2.1 satisfy

7T [dH()/dt - 2C(xx)]z= O  "zOR"

Property 2(See[4]). A part of the dynamic
structure 2.1 is linear in terms of a suitable

selected set of robot and load parametes, i.e.
Hx)X + Cxx)x + G(x) = W(x,x,x)] (2.2)
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Where W(x,x,X)is an nxm matrix and ( is an mxI
vector containing the robot and load
parameters.

Property 3(See [6]). H(x) is an nxn symmetric
positive definite matrixand there is a constant
a=>0 such that

al AH(x) "xOR"

For revolute joint robots if, in addition, J'l(q) is
a bounded nxn matrix, then there is a
b(a<b<E) such that,

al AHx) Abl "xQOR"

PROBLEM FORMULATION

Following Raibert and Craig [3] and Slotine and
Li[4] two coordinate systems are defined. The
first one-already defined in section II- is a frame
of reference Ro fixed on the robot base, which
defines a Cartesian space called operational
space. In this space, the end-effector
configuration is represented by using a vector X,
composed of the Cartesian position and Euler
angles of the end-effector. The second is the
compliance frame R (also called constraint
frame), which is used to describe the compliant
motion task. It is naturally defined by the so
called natural constraints, so that the
coordinates be associated to the unconstrained
and the constrained directions in the task space.
Without loss of generality, we assume that both
coordinate frames R, and R  have the same
origin. In general, the R frame may be
time-varying. Task specifications can now be
given in the compliance frame: motion
specifications in the free directions and force
specifications in the constrained directions.

We digress momentarily to establish some
nomenclature used henceforth. Vectors x, X, X
are respectively the position, velocity and
acceleration of the end-effector specified in the
frame R . F is the interaction force between the
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environment and the end-effector specified in
the same frame R ;. Note that here "position”
means both position and orientation, and
"force" implies both force and torque. In the
compliance frame R , position, velocity and

X, X
C C C
respectively and force by F . Position and force

acceleration are expressed by x

reference trajectories specified in the same
frame are given by Xodr Xod? Xod? ch, ch, ch. The
forthcoming analysis needs a transformation
matrix R O R

operational coordinates. Thismatrix,arotation

nxn

between compliance and

matrix, is defined by the interaction task surface
and is given by the task planner. In general
R = R(t) is time-varying, R and R are
assumed bounded and R has its minimum
singular value bounded away from zero (thus
is bounded).
Besides, R" and R" exist and are assumed

implying that R' = RT

bounded, too. Conditions on the derivatives are
naturally satisfied for smooth task surfaces.
Therefore, the following relations hold:

X, = RT(t)x

X, = R™(t)x + RT(t)x

k.= R'(x + 2R' (X + R'(DK (3.1)
F_= R'(OF

F = R'(F + R'(H)F

C
For the problem formulation, R(t) is
assumed to be known. A constant compliance
selection matrix S=diag (nxn) {s;} specifies which
coordinates in R are under force control
(indicated by s, = O), and which ones are under
motion control (indicated by s; = 1). Matrix S
premultiplied by a vector in compliance
coordinates, preserves the unconstrained
coordinate components and zeroes the others.
A complementary effect is obtained with the
matrix S = (I, - S), where I represents the

identity nxn matrix.
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Figure 1. Control structure.

The manipulator is assumed to be equipped
with a force sensor at its end-effector. Now it is
necessary to consider the interaction model
which generates reaction forces. The
environment is modelled by a stiffness matrix K
as,

F.= K, [x-x] = K [X,-x] (3.2)
with x, (t) the position of the constraint point
which is currently interacting with the end -
effector. In this paper we consider a static

environment, so )ke = 0. K, is assumed to be

uncertain but consctant. Likewise, we could
also consider arigid environment, for instance,
the parts assembly and polish applications.
Here, a compliance model with stiffness matrix
is then associated with the force sensor.

We are now ready to formulate the robust
motion/force control problem. Let us consider
the manipulator described by Equation 2.1. The
parameter vector ( -from properties of [4]- of
the manipulator, payload and environment is
constant but unknown. The robot Jacobian
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matrix J(q) is assumed to be non-singular and
known. Knowledge of J(q) is not restrictive
because it does not depend on the dynamic
parameters. The hybrid motion/force control
specifications are given in terms of a desired
motion trajectory x 4(t) in the unconstrained
directions and a desired force trajectory F _ (t)
in the constrained directions.

The robust hybrid control problem can be
stated as that of designing a control law to
compute the joint applied torques T, so that the
following objectives be verified:

a) S(x4(t) - x (1) D0ast D E
in the unconstrained directions, and
b) S(F 4(t) -F (1) D0ast D E

in the constrained directions.

ROBUST HYBRID CONTROLLER

Robust Controller.Let us consider the control
structure of Figure 1 [7]. There, we recognize
two independent feedback loops: one for
controlling motion in the unconstrained
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coordinates of the compliance frame R, and
the other for controlling force in the
constrained coordinates.

A motion/force controller based on the
structure given in [7] with estimated values of
the robot dynamic model is,
J't=H,[u-RR'x-2RR X - RR'v] +
Colxn] + G, + F 4.1)
where HO, CO, GO have the same functional
forms as H(x), C (x) and G(x) respectively, with
estimated dynamic parameters. The signal
vectors u and v are related to the corresponding
vectors expressed in the compliance frame R |
by the transformation R as,
u= R() u, ; n=R() n, (4.2)
where u and n_are obtained from the motion
and force control loop components (see Figure
1) as,

Ue = Une + Uge )
where Ne and Ng, > u

N, = Npe t Nee (4.3)

C m
and ug are orthogonal,

mc
respectively.
Vectors u s Tmc are defined as,
N~ X4t Mm [BmeXC+ Kmexc] 4.4)
-1 . .
Npe = -LV(r + DI M M, €T By ™
K el 4.5)

Likewise, vectors ug , Ng, are calculated as,

up = SK[Fog + My B + Kpep)] (46)
B o . .

Ng. = -LV(r+ I)]SKe M, [Meq + Bpep +
Kfefc] 4.7

In(Equations4.3-4.7, €xc= S(xcd= xc)land
efcl= S'(Fcdis Fc)ldrelfhe positionland force
errofsrespectivelyexpressed in the dompliance
frame.[Also, $= In= S, r=d(.)/dt, Il is[dpositive
design[scalarfand[Mm}1Bm; Km[IMf, Bf, Kfnlare
nxn[polsitivedeffinitelandldidagonallidesign
matrices] Notefhat Xc,xc, Fc, Feareobtained

frommeasuredvalues[oflqIqand [F [byfisingthe
relation X = [f(q) between X and g, and

Equations(3.17and3.2.
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Remark 1. Vectors n,.and N in Equations
4.5 and 4.7 can be written as,

_ . 1 .
Npe = -[F/(r+ Ne -[(r+ DM (B e

m XC

+ I<I'[leXC) , ,
.= - [r/(r+ DISK, e -[/(r+ HISK,™
M. (Brep + Kep) (4.8)

The above expressions and Equation 4.1
clearly show that the computation of t requires
k n 0 \4 1 e d g e

of end-effector position X, velocity'x, force F and

its derivative F (no measurement of
a ¢ ¢ e 1 e r a t i o n

x and second derivative of force F is required).

Remark 2.To avoid measuring F, Fc in
Equations 4.6 and 4.8 can be computed as
Fc= Ke()ic - ){ec). (4.9)

Remark 3. Vectors n and n__ defined in
Equations 4.4 and 4.5 have components
corresponding only to the unconstrained task
space coordinates and vectors ug, and Ng in
Equations 4.6 and 4.7 have components only in
the constrained coordinates. This comes from
using selection matrices S and S which select
the components of the motion and force
controlled directions respectively. Consequently,

u . up as wellas N, N represent a partition

mc’
of u_ and v, respectively in Equation 4.3.
Now, considering Equation 4.6 and Remark

2, we can write
T a4 , .
Up = SK Fg+ SK M BSK, (xq-%) +
U
SK, M- Keeg
U = KoFeg T Koy (xeq - %) + K
where

K, = SK. '
el . e_1 y .

K., = S'Keh1 Mf_1 B;S K,

Ks = SK, My K

Likewise, considering Equation 4.7, Remark 1

e (4.10)

and Remark 2 yield,
N = -[/(r+ DISK, "€ + [-1/(r+ DISK,
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M By + Keg)
N, = [r(r+ DI SK." SK, (x4 -X) - [FAr+ D]
S K.,' M B;e,

- Mr+ D S K My Kpeq
Ve = -lFAr + DIK, (x4 - X)) -

[r/(r+ DIK seq - [U(r+ DIK e (4.11)

where:

_drld
Ke4 = S,Kel SK?
KeS = Serlel B,
Ke6= SKe My K,

Now, based on control law Equation 4.1,
properties of [4] and Equations 4.10 and 4.11
with parameterization of u and v signals in
terms of K , we propose the following
motion/force control law ' B
It= F,x,x g X o X g FLF g F g F o R,

R'.R"q, + F (4.12)

where ¥ O R™ is a signal matrix and ¢, G Rm
isthe uncertain robot and stiffness parameters
vector. In Equation 4.12, trepresents the
control actions, i.e. the torques/forces to be
applied to the robot joints.

Now, based on control law Equation 4.12, we
propose the following robust motion/force
control law,
It = ‘I:(X,X,xcd F .F

FF R,R",

’Xcd’xcd’ cd’ cd’ cd’
R q,-F() K sign(F'() ) + F (4.13)
where K is a constant nxm matrix to be defined

in IV.3. This control law has a similar structure
to that of [9] for pure motion robot control.

Error Model Before carrying out the stability
analysis, it isnecessary to obtain the so called
error model[11], which relates dynamicallythe
signal vector vand the parameter error vector

g= qq - . By equating robpt model of
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2.1 @ndlthle [donfrol Taw GfEquation(4.13, Wwe
obtain '
Hx+ CX+ G+ F= fq, - fKsign(f'n)

+F (4.14)

Now, by substituting Cio = a + ( into Equation
4.14 and observing from Equations 4.12 and 4.1
that,

fg= H[u-RR ' x-2RR" x-Rn ]+ C[x-n] + G
the closed loop Equation 4.14 results

Hxu) + HRn_+ cn= fq-FK

sign(F'n) (4.15)
with

u = u-RR"x-2RR k.

The evaluation of ()'('—u') now follows,
(x-u)=RR" (x-u)

where

R'xu)=R"x-R"u+ R"x+ 2R" x.

But, from Equations 3.1 and 4.2,

R'(X-u)= X, -u,

Now consider the following partitions in free
and constrained directions

X~ Xm + Xfe > U= u + Uge

c mc
with

Xme SXc ) Xfe = ch.

Then,

RT()Z - u') - .Xc Su = (ch - umc) + (Xfc -

ufc)' (4.16)

Manipulating Equations 4.4 -4.5,4.6 -4.7 and
the stiffness model of Equation 3.3, yields

Xme ™ Ume = Mme T Inmc s X Upe = Nt Infc

Then, Equation 4.16 can be written as
T .

Ri(x-u)= (nmc + nfc) + I(nmc + nfc)

and considering vector partition of Equation 4.3
T

Ri(x-u)=n + In

Now, from Equation 4.2 and

n= RN, ; Nn= RN, + R N,

it results,
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(x-0)=RR "(x-u)=R( n+In) = n+ 1 nRn.
Going back to Equation 4.15, we obtain
H(n+1In) + Cn= Fq - FK sign (F'n)  (4.17)
Equation 4.17 describes the so called error
model equation.

Main ResultsNow we state the main
properties of the proposed robust controller in
the following proposition.

Proposition 1. Considering the control law
Equation 4.13 in closed loop with the
manipulator Equation 2.1, the following holds,

aynQ L d LE

b) n_ .. N a L d LE

e'XC(]Ln2 L’JLI:E e, QOastQE

d) eg e'fcu L2 u LE s Ch @ 0 as t TE.8éé
We note that c) and d) in proposition 1 ensure

mc’

©) Cxc

that the control objectives of Equations 3.4 and
3.5 are verified.

Proof. Consider the error model of Equation
4.17, and the following non negative function of
time (remember property 3),

V(t) = 1/2[n" H n] (4.18)
whose time derivative alongthe trajectories of
Equation 4.17 is,
V=-I""Hn+ n" £q-n" fKsign (F'n)
(4.19)
Where we have used the property 1 to eliminate
the term n' (1/2H-c) n.
Taking K = diag (k) with K, A "q ", then V
in Equation 4.19 satisfies V(t) A 0. This
implies that n G LHE. Also H is lower bounded
as established by property 3. Then integrating
Equation 4.19 from 0 to T and considering T in
the limit, it verifies that n Q Lr;. This establishes
a).

Now, from Equation 4.3 and Remark 3, we
can write the following vector partition,
R'(®n=n=n_ + n.

mc
and recalling that R was assumed to be
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bounded, from a) we immediately conclude b).
Finally, as n_, n. G erl u LEn, from
Equations 4.5, 4.7 and lemma shown in Desoer
and Vidyasagar (1975), pp. 59 [13], we derive c)
and d). ééé
Remark 4 The control law of Equation 4.1
contains the signum function. As a result we
might expect 'chattering”" to occur. In order to
alleviate this situation, we can replace the
signum function by the mxl vector of the

saturation function sat h= (sat( 1), s sat(hi), e
sat(hm))T, defined as,
&l h;i>1
sat(h )U a -1<h <1 (4.20)
l -1 h<-1

where h; are the components of the mxl vector
h=f'n/e, with i= 1, ..., m and e> O, and h,
containing the bounds for the commuting
switching planes [12]. By using the saturation
function, the convergence of the control errors
can not be concluded towards zero but to their
bounds.

Proposition 2. Consider the control law

Ty .
I't= f(x,x,x X d’Xc AR d’Fc d’Fc &

R.R"RNq, - F() K sat[(F()nye] + F (4.21)

where sat(.) isdefined in Equation 4.20. Then,
the control errors are ultimately bounded.
Proof. Consider the error model of Equation
4.17, where sign(.) is substituted bysat(.), and
the following non negative time function
(remember property 3),

V() = 1/2[n"Hn] (4.22)
whose time derivative alongthe trajectories of
the error equation is

fT
V=-In"Hn=n" fq n' K sat(

)
(4.23)

When sat(h;) = h; we can rewirte Equation 4.23
as
V=-av+n f(q+ v i (4.24)

K fn

where a = 2l and u = - a
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By inspecting the second term of Equation 4.24
and recalling K= diag(K;) with K, A 1/Zqi1/4 it
follows
n"f{g+ u] An" FK sign(f' n) -
T

£ K [sign(F n) - " - (425)
n'flq+ u] An" FK sign(f' n) - Kan] A
. . " (F'ny

0T i) - —
The function defined in Equation 4.25 has a

T

T
Ko, _
e

maximum for:
“FTn = (jm =
( i m 5 )
Whose value is
e
[m ImaX(K) Z]' (4.26)

By substituting Equation 4.26 into Equation
4.24 we obtain

VA -av+r (4.27)
_ e

where 1 = [ml__ (K) I]'

Considering Equation 4.27 it is clear that, V(t)

is ultimately bounded by I/a. (4.28)
From Equation 4.22 it holds
v A % gH) ~ v (4.29)

where g(H) = infq( . (H).

From Equations 4.27 and 4.28 we conclude
that ~ v~ ° is ultimately bounded by 2r/ag (H).
Remembering that v= Rv_ -+ Rv;, then the
boundsofv, andvg are established from the

g of the
filtering operators given by Equations 4.5 and

bounds on v. Now, considering the ~ .

4.7, we obtain the bounds of motion and force

errors, 1.e.,
®me I\E'A\bl nmc E 4_1 I
with b= —5—+ —
m_ b m_ k
. m m m m
emc E A b2 Vmc E .
. _ 4le’
with bz_ I+ ——— (4.30)
m_ b
. . - . . m m
¢ E A b3 Ke nfc E 46-1 |
with b3=

T T
me by mp Ky
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igure 2. Two link manipulator and its environment.
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For the case K, = diag (k) is verified that

- -

I |‘5Ab3ke N E-

SIMULATIONTRESULTS

Computer simulations have been carried out to
show the performance of the proposed robust
controller. The manipulator used for the
simulations is a two degree of freedom arm in a
vertical plane, in contact with its environment as
shown in Figure 2.

In this particular case R is a constant matrix

given by,
@cos a sina T )
R= 1o a; with a = 0U.
1-sin a cosa a

Selection matrix is specified as S = diag [0, 1].

The manipulator is modeled as two rigid
links of unitary length with masses m; and m,
at the distal ends of the links. Friction is not
considered in the model.

Scalar g is the gravity acceleration
magnitude. Numerical values of the parameters
are m;=4 kg, m,=2 kg and K _=1000 N/m. It is
assumed that m;, m,, and K are uncertainly
known.

From Equation 4.1, the vector control law
can be written as,
t=1 Fq,+ J' FKsign(Fv)+ I'F= fg, +
Fsign(F I 'n+ J'F (5.1
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where the uncertain parameter vector, taken as
Uy =[Gy Uy Gso Uap]' =

[3  0.00375 1 0.00125]"

is an estimation of:

0= [m; m/k, m, rnz/ke]T. We must note that in
Equation 5.1, F= J" f,and K = diag [k, k,,
ks, k4l

Motion trajectory along the constraint
surface is specified as,

x (D= X p)'= [0,0.5+0.2 cos(%)]T [m]
and force normal to the constraint surface is
specified as

f4® = (foq; fch)T = [1+ 0.5cos (%t),O]T [N]

Simulation is carried out using the following
design parameters (see Equations 4.5 and 4.7):
M = diag [1], B_= diag [10], K_= diag [25],
M= diag[1], BF diag [10], K= diag[2501,1=30.

In the first simulation we consider the
signum function in the control law. Figure 3
shows the evolution of force error e in the
constrained direction and the evolution of
motion error e ., in the unconstrained
direction. For this case, torques t, t, are shown
in Figure 4. Note that motion and force errors
converge to zero, but there is chattering in the
torques applied to the joints.

In the second simulation, we consider the
saturation function in the control law in order
to avoid the chattering problem using the
signum function, which is observed in Figure 4.
For this case, torques tl’ t2 are shown in Figure
5.Note that the chattering effect is eliminated
using the saturation function, but the motion
and force errors do not converge to zero,
however theyremain bounded. In Figure 6 we
represent the module of force error in the
constrained direction 8e 8 versusthe module
ofmotion error in the unconstrained direction
8e,,8 We observe in this last figure that this
trajectory, according to Equations 4.30 and pp.
1100f[14], femainsmltimately Boundedby
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CONCLUSIONS

In this paper, a robust hybrid motion/force
controller for rigid link manipulatorshasbeen
presented. Dynamic parameters and stiffness
constant are assumed to be unknown but
constant. The robust controller was shown to be
globally stable in the sense that the control
objectives are achieved asymptotically when
signum function is used, occurring chattering
effects. When we replace the signum function
for a saturation function we avoid chattering
problems and bounded motion and force errors
are verified. The controller is based on a hybrid
motion/force structure, including nonlinear
feedback of joint position and velocities as well
as the interactive force. Force derivative
measurement is not necessary for this
controller. Some simulation results for a two
degree of freedom manipulator illustrate the
controller performance.
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