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An adaptive unstructured grid generation scheme is introduced to use finite volumeAbstract
(FV) and finite element (FE ) formulat ion to solve the heat equation with singular boundary
con  dit  ions.  R  egu  lar  gr  ids  cou  ld  not  ach  e  ive  a  ccu  r  a  t  e  solu  t  io  n  t  o  t  his  pr  oble  m  .  T  he  gr  id
generation scheme uses an optimal time complexity frontal method for the automatic generation
and delaunay triangulat ion of the grid points. The algorithm is incremental, so it is the most
appropriate for an adaptive solver. Using adaptive grids, the solution is refined to get enough
accuracy in all grid points. Two schemes are applied for the solution of the equations to show
the flexibility of the adaptive grid scheme. First a cell-vertex finite volume formulation is used.
Then, for the FE scheme, using linear shape functions, a set of linear equations are solved
explicitly, with overrelaxation. A sequence of adaptation is applied and appropriate number of
gr id poin ts a re introdu ced in finite predetermined formats to the existen t e lements, t ill
convergence in the solution is observed. A postprocess is used to smooth the distribution of the
se t of nodes. This procedu re is applied to a few study cases to show tha t the method is
convergent, and produces accurate solution even in the case of singular boundary conditions.
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INTRODUCTION

Adaptive solution of the Laplace equation in
two dimensions has several applications in heat
transfer and many other disciplines. It will allow
to have fewer number of gr id ce lls, and st ill
keep a maximum acceptable relative truncation
error in the whole computational field. Both the
unstructured grid and the adaptation procedure
have unique feature s to allow a flexible and
robust de sir ab le node dist r ibu t ion . Many

invest igat ions are done in both fie lds of gr id
generation and solution of the heat equation.
At tempts to in t roduce e fficien t numerical
t r iangulat ion schemes are not ve ry old (see
[1,2]). Bowyer [3] was the first to introduce an
efficient fast Delaunay tr iangulat ion method
with opt imal t ime complexity. H ere we use
algorithms following Lawson [4] and Watson [5]
which are even better. A comprehensive review
is given by Barth [10].
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Methods used for numerical solution of Heat
e qua t ion a re ve ry dive r se ( se e [6, 7, 8].
However, these methods are only efficient when
gradients in the temperature fie ld are fin it e .
Here we introduce a method which is capable of
numerical solut ion of the heat equation in a
domain including regions of infinite gradients of
temperature.
In this paper , using a frontal approach, an

unst ructured grid is gene rated in the whole
fie ld. This grid generation scheme , require s
minimum input from the user , and works in
opt imal t ime limit s. Then fin ite volume and
element formulations are used to discretize the
differential equation within the framework of an
unstructured grid. Finally, the adaptation allows
to have accurate solutions in problems with high
solution gradients.
F in ite volume methods have been widely

used in compressible flow computations. Their
ma in fe a t u re is t h a t t h e y conse rve mass,
momentum and energy, so they provide a robust
scheme to capture flow discont inu it ie s [9].
Although discontinuities could not propagate in
ellipt ic fie lds, the unstructured adaptive gr id
used here makes it ideal for calculations with
discontinuities in the boundary conditions. Here
we first review the properties of the Delaunay
triangles used in the grid generation procedure.
Then, the frontal approach used here will be
e xp la in e d , and fin a lly, t h e fin it e vo lume
formulation and the adaptat ion me thods are
presented.

GRID GENERATION PROCEDURE

The space discretizat ion could beProperties
done in many different ways. I f ew se lect all
elements to be triangles, different criteria could
be used to establish this discretization. The most
famou s me th od , wh ich ha s sh own many
the o re t ica l and app lica t ion p rope r t ie s, is
Delaunay triangulation Therefore, it is used in

most unst ru ctu red me sh compu ta t ion s. I t
connects each three most closest nodes, in a
cloud o f po in t s, t o e ach o the r . The on ly
deficiency of Delaunay triangulation, which is
common tomost o the r me thods, is th a t it
requires a point s cloud to be given . In many
applicat ions, gene rat ion of such a cloud of
points is not so easy. In this paper, ew will use
different ways, including a frontal approach [11]
to produce the initial grid and to adapt it to the
solution. The Delaunay triangulation is the dual
of the Dirichlet tesselation of the set of given
poin ts. The Dir ich let t e sse lat ion is made by
determining the Voroni regions which are the
locus of the closest points of the space, to each
poin t of the colud In two space dimensions,
these regions are polygons, mostly with five to
seven sides. If we connect each two nodes with
ne ighbo r Vo ron i r e gion s, we will h ave a
Delaunaytriangulation.Delaunaytriangulation
has many different properties [12, 13, 14, 15],
which show that it is optimum or suitable for
many diffe rent applicat ions. some o f these
properties are:
É Uniqueness: The Delaunay triangulation
exists and is unique (except for degenerate
cases).

É Out-Circle condition: The circumcircle of a
Delaunay triangle respective to three nodes
of a given set , does not include any othe r
grid point (except for degenerate cases).

É Max-Min property: Delaunay triangulation
maximize s t h e min imum angle o f t h e
triangulation. This prope rty optimizes the
grid for many finite element calculations.

É Nearest Neighbor: The closest grid point to
grid, is connected to it . This, in fact , shows
the solut ion of the famous Nearest poin t
problem.

É Minimal Roughness: For an arbitrary given
data set on grid points, if we project it to the
two sp a ce d ime n sio n s u sin g a lin e a r
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in te rpolation function f, the roughness of
this surface (its slope in a sense) is minimal if
the triangulation is Delaunay.

Numerical Properti es to Use Frontal
Approach in Delaunay Triangulation The
above ment ioned prope rt ie s make it simple ,
powe r fu l, and op t imum to use D e launay
tr iangulation in many diffe rent applications.
G iven the set of gr id points, there are several
different me thods to (De launay) tr iangulate
them. Bowyer [3] int roduced an incremental
( recursive) algorithm which works optimally in
t ime comp le xit y ( i.e . O ( n log n ) ) . I t u se s
Voronoi regions for it s dat a st ruct ure and
t r iangula t ion p rocedu re . I t sta r t s wit h an
(arbitrary) set of phantom nodes, including the
convex hull of the grid point s se t . Then each
new point is added, and necessary changes in
the cells with a circumcircle including the new
grid po in t ar e made . Aft e r finding a new
Delaunay triangulat ion, another grid poin t is
added.The algorithm used here is close to those
of Lawson [4] and Watso [5]. this uses Delaunay
triangles for its data base. It has a preliminary
procedure to generate an init ial grid, using a
frontal approach , and then uses an ite rat ive
procedure to adapt the mesh to the solution.
The procedure for generating the initial grid

follows:
É Read the data corresponding to the boundary
points.

É Make a convex hull using four phantom
nodes, including all boundary point s, and
(Delaunay) triangulate it.

É Add one by one, new boundary points, and
re t r iangula te th e fie ld. E ach t r iangle is
conside re d t o be a bad t r iangle , exce pt
otherwise marked.

É The common side between bad and good
tr iangles constructs the front . In troduce a
new candid node corr e sponding to each

small side of a bad triangle, which is located
on the fron t , and evalu a te t h e spacing
function at that point.

É Delete all candid nodes which are too close to
permanent nodes.

É Merge all candid nodes which are too close to
each other.

É Mark the candid nodes as permanent, and
add them one by one to the set of nodes, and
retriangulate the field.

É Find the new front, and redo the above
procedure, untill there is no front i.e. no bad
triangle.

É After construction of the final mesh, use a
Laplace filt e r to smooth the grid po in ts
distribution. This involves moving each grid
p o in t t h e a r e a a t t h e ce n t e r o f t h e
neighboring cells.

Data structure may stronglyData Structure
affect the overall efficiency of the algorithm. In
this work, our records were triangle based, and
each reco rd included the t r iangle number ,
number of its vertices, its neighbors, and a flag
to show if it is a bad or a good triangle. We also
used a few small lists and stacks to reduce the
time complexity.

This procedure is used bothRetriangulation
in the frontal me thod and in the adaptat ion
procedure. Whenever a new node is introduced
to the mesh , a local proce ss re t r iangu la te
around that new node to make sure that all
tr iangles prese rve Delaunay prope rties. The
retriangulation procedure follows:
É Use a search algorithm to find to which old
triangle the new node belongs. Walk search
is almost the simplest way and shows to be
efficient. Other tree search methods are also
equallyacceptable . Exhaustive search would
not be efficient.

É Mark sides of this triangle as the temporary
edges of the domain of influence of the new
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node (we call it TEDI).
É Recursively, check to see if any node
ne ighbor t o TED I sat isfie s the in-cir cle
condition for the new node and the vertices
of the common edge between new node and
the ne ighbo r node . I f so , t h a t e dge is
removed from TEDI, and the ne ighbor
node and the two corresponding edges are
added to the TEDI.

É When TEDI does not change any more,
delete all triangles previously inside TEDI,
and connect the new node to all vertices of
TEDI.

E a ch n e w t r ia n gle i sGoodness Criteria
marked bad, except if the ratio of its smallest to
its largest edge is greater than a threshold value
b. In this report b ¿ 0.7. If a triangle is marked
bad, and in the first trial (firts addition of a new
poin t inside it ) , it is not de le ted , it will be
accepted as it is, and will be marked ¨¨good¨¨.

Using spacing functions isSpacing Function
standard in grid generation schemes. We define
the value of the spacing function for boundary
po in t s a s t h e ave rage d ist an ce from the
neighboring nodes. In each triangle, we assume
a linear interpolation of the value of the spacing
function on the vertices to find its values inside
that triangle . Therefore, whenever a new node
is introduced, the value of the spacing function
at that point could be easily calculated. If h0 is
the value of the spacing function at a vertex of a
t r iangle , and si are outward normals to the
edges, the value of the spacing function at the
new node ¨¨a¨¨ is equal to

3
(1)ha = h0 + __ õ hisi

-1
2s i=1

To add a new node on each small edge of a
bad triangle, we assume that the node produces
a new good-looking equilateral tr iangle . One
can show tha t th is p ropo ses t h e dist ance
between the new node and the previous nodes

equal to h Å / [1-(¡3/4)(êh.n)] where, h is the
spacing function, hÅ is the average value of the
spacing funct ion in nodes on the small edge,
and n is the normal to the ment ioned small
edge. This equation may predict bad values for
the spacing function in regions of high gradient.
To ensu re acce p t able va lue s, we impose
r e s t r i c t i o n b< 1 /h Å< 1 /b wh e r e b i s
experimentally determined to be about 0.5.

FINITE ELEMENT FORMULATION

To solve the linear equation ê2T=0 on a given
Dirichlete or Neumann boundarycondit ions, it
is e nough t o find T wh ich min imize s t h e
functional

(2)t(T) = ßT.ê2TdW

where W is the whole domain, which is a surface
in two dimensional problems. this functional will
allow us to be le ss sensitive in our solution to
differentiability of the function T. In this way, it
will be easier to work with singular solutions.
One can show that with Dirichlete or Neumann
boundary condition, this functional has the form

(3)t(T) = ß||êT||2dW

Using the procedure explained in section 2,
we discretize the whole domain to N triangular
cells. This triangulation for a circular domain
with two cavities is shown in Figure 1. We use a
cell-vertexmethod, i.e . we assume the value of
T on all cell vertices (except probably those on
the boundary) to be unknown. Le t ' s assume
linear distribution for function T on each cell,
i.e. T on cell i is defined as

(4)Ti(x,y)=a i + bix + ciy
which satisfies values of Tj on all ver t ice s of
triangle i. Finally, the value of T on the whole
domain is found to be

N
(5)T(x,y) = õ Ti(x,y)

i=1

where N is the number of cells.
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(a)

(b)
Figure 1. Solution of the Laplace equation on an circular
region with two holes a) Grid made by frontal approach
after adaptation with e=0.2. b) Solution contours.

One can see that the following matrix

-1£ Þ £ Þ £ Þ
ai 1 x1 y1 Ti1

(6)bi = 1 x2 y2 Ti2
ci 1 x3 y3 Ti3

¥ ø ¥ ø ¥ ø

gives the coefficient values for each cell i. Here,
indices 1, 2 and 3 are corresponding to three
ve r t ice s of t r iangle i. O ne can show tha t
minimization of the functional int roduced in
Equation 1 reduces to the equation

whereA.T=B
(7)B=-[C fp][Tp]T=[T f]A=[C ff]

H e re , T f is t h e ve ct o r o f in ne r ve r t ice s
temperature , and Tp the vector of boundary
vertices temperature. Matrix C is determined so
that:

£ Þ £ Þ
Cff Cfp Tf

(8)t =[T fTp]
Cpf Cpp Tp

¥ ø ¥ ø

a n d compon e n t s o f ma t r ix C co u ld be
geometrically determined, and is a function of
the shape functions [16, 17]. To find elements
of matrices Cff or Cfp for each vertex, we should
find cont ribut ion of all ce lls sharing in that
vertex. Matrix C is symmetric and sparse. Also,
summat ion of each row and column of th is
matrix is equal to zero.
Solution of Equation 2 will give the value of

T at each vertex. One way is to find the inverse
of the sparse matrix A. Another method, which
is more popu la r , is t he family of it e ra t ive
methods. Here, we start with an arbitrary initial
condition. To have an accurate initial guess, we
use a scheme similar to the algorithm used for
finding the values of the space funct ion . The
iterative procedure recalculates the value of the
temperature at each vertex by

n
(9)Tj = ___ õ TiCji

-1
Cjj i=1,iÚj

Since for all nodes not connected to node j the
value of cji is zero, only a few multiplications are
necessary. We save all necessary informat ion
related to matrix C in a very efficient way in a
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Figure 2. Stencil o f computa t ion in (a ) a ce ll-ve r tex
method, (b) a cell-center method.

mat r ix with space complexity of O (N) , and
iterate Equation 3 till convergence is acheived
( i.e . norm of T alterat ion is small enough) .
Since C is a positive definite matrix, this method
is always convergent [18]. This procedure is in
fact an averaging procedure for the temperature
of each vertex.
Overrelaxation is also used to increase the

convergence rate. We use
n

(10)Tjk+1 =(1-w)T j
K - __ õ Ticji

w
cji i=1,iÚj

using values of 1< w<2, rate of convergence will
improve.

FINITE VOLUME FORMULATION

To solve the conse rvat ion equat ions on an
unstructured grid by finite volume, we may use
cell-vertex or cell-center methods. In the first
method, ew construct our contro l volumes by
connecting the Voronoi ve rt ices around each
node (Figure 2a) . Integration of the Laplace
equation on this element results in
n

(11)õ _____ DSv = 0
Ti-Tj
DSi,j

j=1

Here , i is the node in the center of volume
element, and j denotes different vertices of this
element. T is the temperature, DSi,j is the
distance between nodes and j, DSv is the length
of the corresponding Voronoi polygon edge and
n is the number of the edges of the polygon.
In cell-center methods, the unknown is the

t empe r a t u r e a t ce n t e r o f o u r t r ia ngu la r
e lement s. In a first orde r e st ima t ion , one
assumes that the temperature is constant in
each cell, and Delaunay triangles construct our
volume elements (Figure 2b). Integration of the
Laplace equation over these elements results in:

3
(12)õ _____ DSj = 0

Ti-Tj
Dnj,ij=1

where Dnj,i is the distance of centro ids of two
ne ighboring ce lls with cente rs i and j in the
direction normal to the common edge, DSj is the
length of that edge.
I n t h is wo rk we h ave u se d t h e f ir st

formulat ion . Application of this equation on
each cell produces a linear equation. Writ ing
the equations corresponding to all triangular
cells will result in a linear system of equations
which could be solved with standard methods.

ADAPTATION

To uniformly distribute truncation errors, cell
size s shou ld be made p ropo r t iona l t o th e
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12731

Figure 3. Formats used for node addiction.

inverse of the gradient of the solu tion at each
ce ll. To do so , using a fronta l me t hod, we
produce an init ial grid and solve the Laplace
equat ion ove r it to find an in it ia l numerical
so lu t ion . Since most ce lls are coarse at th is
stage , this solution is not accurate enough in
points with high gradients.
To find cells with highest relative truncation

e rror , we need a cr iter ion for which we use

dimensionless parameter T* = _______. Here, S¡s|êT|
T0

is the area of the corresponding cell, and T0 is
a typical (maximum) value of the temperature
on the boundaries. Regions with high values of
T * sh o u ld b e r e f in e d . W e h a ve fo u r
p re de t e rmine d format s for node addit ion
(Figure 3). According to the value of T*, one of
these formats is selected. Here we use k1= 1.5,
K2=s, k3=3, and these values correspond to cell
sizes in different levels, e determines how small
t r un ca t ion e r ro r we wish . I n r e gion s o f
indefinite solution gradients (singular points) we
restrict adaptation levels, or the smallest cell
sizes to a predetermined value.
After addition of these new grid points, the

re tr iangulation procedure is repeated, and a

TABLE 1. Criteria Used for Node Addition.

value of T*new nodes
T* < û0

û<T *<k 1û1
k1û<T

*<k 2û3
k2û<T

*<k 3û7
k3û<T

*12

new De launay t r iangu lat ion of the fie ld is
constructed. Since our node addition does not
occur continuously, ew use a postprocessing
procedure to smooth the grid distribution. One
way of doing this is to assume springs between
each two nodes, with stiffness coefficients as a
function of their distance, and even the simplest
function, i.e . a constant, works very we ll. We
used th is simple funct ion , and repeated this
procedure two or three times A better control is
achieved if we make st iffness coe fficien t s a
function of the spacing functions. Then, for
each node, we will locally find its equilibr ium
position (under springs forces) in respect to its
n e ighbo r node s. Aft he r t h is proce ss, t h e
Delaunaypropertymay deteriorate, and needs
t o be loca lly che cke d. A more e fficie n t
procedure is to use locally this filter after each
node addit ion . The filt e r ing postprocedure
shows to be very effective (see results).

RESULTS
Two examples are solved by each method to
show fe a tu re s o f t h e me thod. In t h e first
e xamp le fo r FEM , we so lve t he Lap lace
equation on a circular region with two holes on
it . The boundary condition is D irich lete . The
temperature on the outer boundary is equal to
one , and on in te rnal faces is equal to ze ro .
Using an arbitrary init ia l set of grid points on
the boundaries, we use a frontal approach to
make t he in it ia l gr id . Th en we u se t h e
adaptation procedure to find the final mesh
(Figure 1a) with the final so lut ion shown in
Figure 1b. Here e is equal to 0.2. As one sees,
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Figure 4. Solution of the Laplace equation on the same region as Figure 1
(a) adapted grid with e=0.1 and (b) grid after filtering postprocess.

cell sizes vary smoothly and rapidly, so some of
them are as large as the internal holes.
F igure 4a is a circula r domain with two

elliptical holes, which is first triangulated with
the above mentioned method, but then we have
used a Laplace filter to make the grid as smooth
as possible . F igure 4b shows the effect of the
filtering.
Next, we have solved the Laplace equation

on a squa re region with diffe ren t constan t
temperatures on lower and the other three sides
of the outer boundary by our FEM solver. The
length of each side of the square is six. This
example is so lved to show both accuracy and
effectiveness of the algorithm. Typical solution
contours are shown in F igure 5(d). The exact
solution of this problem is

sin [___ (x+a/2)]. sinh[___ (a/2-y)]np
a

np
aT(x,y) = __ õ _________________________________4

p n sinh npodd n (13)
First, to show the solution and the effect of

the adaptat ion , we have solved the Laplace
equation on that square region on two different

meshes. The first mesh is an almost uniform grid
with 270 ce lls. The solut ion is quite accurate
everywhere except the small region close to the
lower corners (singular points). The solut ion
contours only near these corners are shown in
F igure (6d) . To reso lve a be t te r so lu t ion in
these regions. We use the adaptation procedure
for seve ral t imes to get the grid of 2500 cells
shown in Figure (6a). The solution contours are
now much more accurate even in the regions
colse to the singular poin t (Figure (6c)). This
has be en ve r ifie d using the exact so lu t ion ,
Equation 8.
T o o bse r ve t he e ffe ct ive n e ss o f t h e

algor ithm, first we compare re sult s on two
uniform and adapted cases with same number of
ce lls ( i.e . 970 ce lls) . R esult s ar e shown in
Figures 5 and 7. As Figure 5 shows, the global
re su lt s ar e ve ry much the same . The small
glitches on the temperature contours of the
adapted case are mostly graphical, since the grid
size is much higher in the upper region. The
difference is in fact in the lower corners (Figure
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(a)

(c)

(b)

(d)

Figure 5. Comparison of solutions on uniform and adapted meshes: (a) adapted grid, (b) uniform grid,
(c) solution on the adapted mesh and (d) solution contours on the uniform mesh.

7). This region is almost one hundredth of the
to tal computat ional fie ld. In th is region, the
adapted mesh produces a result very colse to
the exact solution (Equation 8), but the uniform
grid fails to resolve in an acceptable manner.
Finally to assure the accuracy of the solution,

using L2 norm of error (difference of numerical
and exact solutions)is computed, and is drawn
versus cell sizes for a uniform mesh (Figure 8).
This figure shows that the solution has a second
orde r accuracy (Note that the slope of the

curve is almost two in the logarithmic scale).
Similar cases are solved by FVM solver to

show capabilities of the adaptive algorithm. The
first case is the solution of the heat equation in
a circular domain with two circular holes and
with continuous Dirichlete boundary conditions.
Again , temperatures on the outer and inne r
faces are equal to ze ro and one, respective ly.
Results are very much close to those presented
in Figure 1, not shown here to prevent repeated
similar figures. Since the boundary conditions
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(a)

(c)

(b)

(d)

Figure 6. Solution of Laplace equation on a square with constant zero temperature on upper and side boundaries
and temperature equal to one on lower side: (a) adapted grid, (b) initial grid, (c) solution on the lower corner

in the adapted case and (d) solution contours on the lower corner in the initial mesh.

are cont inuous, th is so lu t ion is found to be
satisfactory. Many sweeps of adaptation were
applied to that solution, and the final grid and
solution did not differ in this simple case.
Case two for FVM, is a circular domain, but

with temperature equal to 1 on the upper part
of the boundary, and equal to zero on the lower
part . The grid is several t imes adapted to the
new solution and afterwards it is postprocessed
(Figure 9). One can see that how effective the
adaptat ion procedure is in this more difficult

case. The solut ion contours are not reported
here.

CONCLUSIONS

An adaptive grid generation scheme was used in
a fin it e element and volume formulat ion of
numerical so lu tion of the Laplace equation .
Adaptive gr ids were used to re solve the best
possible solution using a finite number of grid
cells. The grid generation scheme starts with a
frontal approach to generate mesh points, and
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Figure 7. Comparison of solutions on uniform and adapted meshes: (a) lower corner of adapted grid,
(b) lower corner of uniform grid, (c) solution on the lower corner in the adapted case,

and (d) solution contours on the lower corner in the uniform mesh.

to Delaunay t r iangulate them. Appropriate
merge, delete , and postprocessing procedures
were applied to improve the grid quality. After
using standard finite element or volume solution
of t he problem, a cr it e r ion is use d to find
regions with high re lat ive t runcation errors.
T h e se r e gio n s a r e r e f in e d , a n d a f t e r
re tr iangulat ion, and using filte r ing process,
compu t a t ion is r e pe a t e d . The D ir ich le t e
boundary conditions are applied by determining

the nodal values on the boundary. The whole
process is repeated a few times, until required
accu racy, o r allowed numbe r o f le ve ls o f
refining is achieved. The method was applied to
a few test cases and showed to be convergent,
and resulting in an accurate solution with finite
number of grid cells, even in the case of singular
boundary condit ions. This work is going to be
extended to other physical equations and three
dimensions.
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Figure 8. L2 norm of er ror ver su s ce ll sizes for the
uniform mesh computations.

Figure 9 . Grid on a cir cu la r domain with singu la r
boundary condition /
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