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Abstract An adaptive unstructured grid generation scheme is introduced to use finite volume
(FV) and finite element (FE) formulation to solve the heat equation with singular boundary
conditions. Regularigridsdould motlacheive@ccuratélsolutionlfolthis problem [T hegrid
generation scheme uses an optimal time complexity frontal method for the automatic generation
and delaunay triangulation of the grid points. The algorithm is incremental, so it is the most
appropriate for an adaptive solver. Using adaptive grids, the solution is refined to get enough
accuracy in all grid points. Two schemes are applied for the solution of the equations to show
the flexibility of the adaptive grid scheme. First a cell-vertex finite volume formulation is used.
Then, for the FE scheme, using linear shape functions, a set of linear equations are solved
explicitly, with overrelaxation. A sequence of adaptation is applied and appropriate number of
grid points are introduced in finite predetermined formats to the existent elements, till
convergence in the solution is observed. A postprocess is used to smooth the distribution of the
set of nodes. This procedure is applied to a few study cases to show that the method is
convergent, and produces accurate solution even in the case of singular boundary conditions.
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INTRODUCTION

Adaptive solution of the Laplace equation in
two dimensions has several applications in heat
transfer and many other disciplines. It will allow
to have fewer number of grid cells, and still
keep a maximum acceptable relative truncation
error in the whole computational field. Both the
unstructured grid and the adaptation procedure
have unique features to allow a flexible and
robust desirable node distribution. Many
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investigations are done in both fields of grid
generation and solution ofthe heat equation.
Attempts to introduce efficient numerical
triangulation schemes are not very old (see
[1,2]). Bowyer [3] was the first to introduce an
efficient fast Delaunay triangulation method
with optimal time complexity. Here we use
algorithms following Lawson [4] and Watson [5]
which are even better. A comprehensive review
is given by Barth [10].

Vol. 13, No. 4, November 2000 - 43




Methods used for numerical solution of Heat
equation are very diverse (see [6, 7, 8].
However, these methods are only efficient when
gradients in the temperature field are finite.
Here we introduce a method which is capable of
numerical solution of the heat equation in a
domain including regions of infinite gradients of
temperature.

In this paper, using a frontal approach, an
unstructured grid is generated in the whole
field. This grid generation scheme, requires
minimum input from the user, and works in
optimal time limits. Then finite volume and
element formulations are used to discretize the
differential equation within the framework of an
unstructured grid. Finally, the adaptation allows
to have accurate solutions in problems with high
solution gradients.

Finite volume methods have been widely
used in compressible flow computations. Their
main feature is that they conserve mass,
momentum and energy, so they provide a robust
scheme to capture flow discontinuities [9].
Although discontinuities could not propagate in
elliptic fields, the unstructured adaptive grid
used here makes it ideal for calculations with
discontinuities in the boundary conditions. Here
we first review the properties of the Delaunay
triangles used in the grid generation procedure.
Then, the frontal approach used here will be
explained, and finally, the finite volume
formulation and the adaptation methods are
presented.

GRID GENERATION PROCEDURE

Properties The space discretization could be
done in many different ways. If ew select all
elements to be triangles, different criteria could
be used to establish this discretization. The most
famous method, which has shown many
theoretical and application properties, is
Delaunaytriangulation Therefore, it isused in
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most unstructured mesh computations. It

connects each three most closest nodes, in a

cloud of points, to each other. The only

deficiency of Delaunay triangulation, which is
common tomost other methods, is that it
requires a points cloud to be given. In many
applications, generation of such a cloud of
points is not so easy. In this paper, ew will use
different ways, including a frontal approach [11]
to produce the initial grid and to adapt it to the
solution. The Delaunay triangulation is the dual
of the Dirichlet tesselation of the set of given
points. The Dirichlet tesselation is made by
determining the Voroni regions which are the
locus of the closest points of the space, to each
point of the colud In two space dimensions,
these regions are polygons, mostly with five to
seven sides. If we connect each two nodes with

neighbor Voroni regions, we will have a

Delaunaytriangulation. Delaunaytriangulation

has many different properties[12, 13, 14, 15],

which show that it is optimum or suitable for

many different applications. some of these
properties are:

E Uniqueness: The Delaunay triangulation
exists and isunique (except for degenerate
cases).

E Out-Circle condition: The circumcircle of a
Delaunaytriangle respective to three nodes
of a given set, does not include any other
grid point (except for degenerate cases).

E Max-Min property: Delaunay triangulation
maximizes the minimum angle of the
triangulation. This property optimizes the
grid for many finite element calculations.

E Nearest Neighbor: The closest grid point to
grid, is connected to it. This, in fact, shows
the solution of the famous Nearest point
problem.

E Minimal Roughness: For an arbitrary given
data set on grid points, if we project it to the
two space dimensions using a linear
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interpolation function f, the roughness of
this surface (its slope in a sense) is minimal if
the triangulation is Delaunay.

Numerical Properties to Use Frontal
Approach in Delaunay Triangulation The
above mentioned properties make it simple,
powerful, and optimum to use Delaunay
triangulation in many different applications.
Given the set of grid points, there are several
different methods to (Delaunay) triangulate
them. Bowyer [3] introduced an incremental
(recursive) algorithm which works optimallyin
time complexity (i.e. O(n log n)). It uses
Voronoi regions for its data structure and
triangulation procedure. It starts with an
(arbitrary) set of phantomnodes, including the
convex hull of the grid points set. Then each
new point is added, and necessary changes in
the cells with a circumcircle including the new
grid point are made. After finding a new
Delaunay triangulation, another grid point is
added.The algorithm used here is close to those
of Lawson [4] and Watso [5]. this uses Delaunay
triangles for its data base. It has a preliminary
procedure to generate an initial grid, using a
frontal approach, and then uses an iterative
procedure to adapt the mesh to the solution.

The procedure for generating the initial grid
follows:

E Read the data corresponding to the boundary
points.

E Make a convex hull using four phantom
nodes, including all boundary points, and
(Delaunay) triangulate it.

E Add one by one, new boundary points, and
retriangulate the field. Each triangle is
considered to be a bad triangle, except
otherwise marked.

E The common side between bad and good
triangles constructs the front. Introduce a
new candid node corresponding to each
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small side of a bad triangle, which is located

on the front, and evaluate the spacing

function at that point.

E Delete all candid nodes which are too close to
permanent nodes.

E Merge all candid nodes which are too close to
each other.

E Mark the candid nodes as permanent, and
add them one by one to the set of nodes, and
retriangulate the field.

E Find the new front, and redo the above
procedure, untill there is no front i.e. no bad
triangle.

E After construction of the final mesh, use a
Laplace filter to smooth the grid points
distribution. This involves moving each grid
point the area at the center of the
neighboring cells.

Data Structure Data structure may strongly
affect the overall efficiency of the algorithm. In
this work, our records were triangle based, and
each record included the triangle number,
number of its vertices, its neighbors, and a flag
to show if'it is a bad or a good triangle. We also
used a few small lists and stacks to reduce the
time complexity.

Retriangulation This procedure is used both
in the frontal method and in the adaptation
procedure. Whenever a new node is introduced
to the mesh, a local process retriangulate
around that new node to make sure that all
triangles preserve Delaunay properties. The
retriangulation procedure follows:

E Use a search algorithm to find to which old
triangle the newnode belongs. Walk search
is almost the simplest way and shows to be
efficient. Other tree search methods are also
equallyacceptable. Exhaustive search would
not be efficient.

E Mark sides of this triangle as the temporary
edges of the domain of influence of the new
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node (we call it TEDI).

E Recursively, check to see if any node
neighbor to TEDI satisfies the in-circle
condition for the new node and the vertices
of the common edge between new node and
the neighbor node. If so, that edge is
removed from TEDI, and the neighbor
node and the two corresponding edges are
added to the TEDL

E When TEDI does not change any more,
delete all triangles previouslyinside TEDI,
and connect the newnode to all vertices of
TEDI.

Goodness Criteria Each new triangle is
marked bad, except if the ratio of its smallest to
its largest edge is greater than a threshold value
b. In this report b ¢, 0.7. If a triangle is marked
bad, and in the first trial (firts addition of a new
point inside it), it is not deleted, it will be
accepted as it is, and will be marked ““good™.

Spacing Function Usingspacing functions is
standard in grid generation schemes. We define
the value of the spacing function for boundary
points as the average distance from the
neighboring nodes. In each triangle, we assume
a linear interpolation of the value of the spacing
function on the vertices to find its values inside
that triangle. Therefore, whenever anewnode
is introduced, the value of the spacing function
at that point could be easily calculated. Ifhy is
the value of the spacing function at a vertex of a
triangle, and s; are outward normals to the
edges, the value of the spacing function at the

new node ""a”" is equal to
1 3

h, = ho + = O h;s; (1)
2s i=1

To add a new node on each small edge of a
bad triangle, we assume that the node produces
anew good-looking equilateral triangle. One
can show that this proposes the distance
between the newnode and the previous nodes
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equal to hA/[1-(j3/4)(€h.n)] where, h is the
spacing function, hA is the average value of the
spacing function in nodes on the small edge,
and n is the normal to the mentioned small
edge. This equation may predict bad values for
the spacing function in regions of high gradient.
To ensure acceptable values, we impose
restriction b< I/hA< 1/b where b is
experimentally determined to be about 0.5.

FINITE ELEMENT FORMULATION

To solve the linear equation &*T=0 on a given
Dirichlete or Neumann boundary conditions, it
is enough to find T which minimizes the
functional

t(T) = RT.&TdW )

where W is the whole domain, which is a surface
in two dimensional problems. this functional will
allow us to be less sensitive in our solution to
differentiability of the function T. In this way, it
will be easier to work with singular solutions.
One can show that with Dirichlete or Neumann
boundary condition, this functional has the form

t(T) = B||E€T||*dwW 3)
Using the procedure explained in section 2,
we discretize the whole domain to N triangular
cells. This triangulation for a circular domain
with two cavities is shown in Figure 1. We use a
cell-vertexmethod, i.e. we assume the value of
T on all cell vertices (except probably those on
the boundary) to be unknown. Let's assume
linear distribution for function T on each cell,
i.e. T on cell i is defined as
Tix,y)=a; + bx + ¢y 4)
which satisfies values of T; on all vertices of
triangle i. Finally, the value of T on the whole
domain is found to be

N

T(X»Y) = 6 Ti(Xay) (5)
i=1

where N is the number of cells.
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Figure 1. Solution of the Laplace equation on an circular
region with two holes a) Grid made by frontal approach
after adaptation with e=0.2. b) Solution contours.

One can see that the following matrix

£ b £ b p
ai 1 Xy T;
b; |= 1 x5y Ti (6)
Ci 1 X393 Tis
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gives the coefficient values for each cell i. Here,
indices 1, 2 and 3 are corresponding to three
vertices of triangle i. One can show that
minimization of the functional introduced in
Equation 1 reduces to the equation

A T=B where

A=[Cg] T=[T¢  B=[C][T,] (7)

Here, T; is the vector of inner vertices
temperature, and T, the vector of boundary
vertices temperature. Matrix C is determined so
that:
b b

Ce Cy £
t=[T (T,] ®)

Cpf Cpp Tp

¥ g ¥

and components of matrix C could be
geometrically determined, and is a function of
the shape functions[16, 17]. To find elements
of matrices Cg or Cy, for each vertex, we should
find contribution of all cells sharing in that
vertex. Matrix C is symmetric and sparse. Also,
summation of each row and column of this
matrix is equal to zero.

Solution of Equation 2 will give the value of
T at each vertex. One way is to find the inverse
of the sparse matrix A. Another method, which
is more popular, is the family of iterative
methods. Here, we start with an arbitrary initial
condition. To have an accurate initial guess, we
use a scheme similar to the algorithm used for
finding the values of the space function. The
iterative procedure recalculates the value of the
temperature at each vertex by

-1 ~
Tj = — o TiCji (9)
i =i Uj
Since for all nodes not connected to node j the
value of c; is zero, only a few multiplications are
necessary. We save all necessary information

related to matrix C in a very efficient wayin a
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(b)

Figure 2. Stencil of computation in (a) a cell-vertex
method, (b) a cell-center method.

matrix with space complexity of O(N), and
iterate Equation 3 till convergence isacheived
(i.e. norm of T alteration is small enough).
Since C is a positive definite matrix, this method
isalways convergent [18]. This procedure is in
fact an averaging procedure for the temperature
of each vertex.

Overrelaxation is also used to increase the
convergence rate. We use

n

(o] i Ticji (10)

i=1,i Uj

T =(1-w)T & - 2
Cji

using values of 1<w<2, rate of convergence will
improve.
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FINITE VOLUME FORMULATION

To solve the conservation equations on an
unstructured grid by finite volume, we may use
cell-vertex or cell-center methods. In the first
method, ew construct our control volumes by
connecting the Voronoi vertices around each
node (Figure 2a). Integration of the Laplace
equation on this element results in

5 —1pS, =0 11
DS;; (i

j=1

Here,1is the node in the center of volume
element, and j denotes different vertices of this
element. T is the temperature, DS;; is the
distance between nodes and j, DS, is the length
of the corresponding Voronoi polygon edge and
n is the number of the edges of the polygon.

In cell-center methods, the unknown is the
temperature at center of our triangular
elements. In a first order estimation, one
assumes that the temperature is constant in
each cell,and Delaunaytriangles construct our
volume elements (Figure 2b). Integration of the
Laplace equation over these elements results in:

T-T,

Dnj,i

3
o
=1

DS; = 0 (12)

where Dn;; is the distance of centroids of two
neighboring cells with centers i and j in the
direction normal to the common edge, DS; is the
length of that edge.

In this work we have used the first
formulation. Application of this equation on
each cell produces a linear equation. Writing
the equations corresponding to all triangular
cells will result in a linear system of equations
which could be solved with standard methods.

ADAPTATION

To uniformly distribute truncation errors, cell
sizes should be made proportional to the
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Figure 3. Formats used for node addiction.

inverse of the gradient of the solution at each
cell. To do so, using a frontal method, we
produce an initial grid and solve the Laplace
equation over it to find an initial numerical
solution. Since most cells are coarse at this
stage, this solution is not accurate enough in
points with high gradients.

To find cells with highest relative truncation
error, we need a criterion for which we use

. . is|éT
dimensionless parameter T = 'ITil Here, S
0

isthe area of the corresponding cell, and T is
atypical (maximum) value of the temperature
on the boundaries. Regions with high values of
T® should be refined. We have four
predetermined formats for node addition
(Figure 3). According to the value of T", one of
these formatsis selected. Here we use k;= 1.5,
K,=s, k;=3, and these values correspond to cell
sizes in different levels, e determines how small
truncation error we wish. In regions of
indefinite solution gradients (singular points) we
restrict adaptation levels, or the smallest cell
sizes to a predetermined value.

After addition ofthese new grid points, the
retriangulation procedure is repeated, and a

TABLE 1. Criteria Used for Node Addition.

new nodes value of T'
0 T < G
1 O<T "<k ,Q
3 k,0<T "<k ,Q
7 k,0<T "<k .0
12 k,O<T ~

International Journal of Engineering

new Delaunay triangulation of the field is
constructed. Since our node addition doesnot
occur continuously, ew use a postprocessing
procedure to smooth the grid distribution. One
wayof doing this is to assume springs between
each two nodes, with stiffness coefficientsasa
function of their distance, and even the simplest
function, i.e. a constant, works very well. We
used this simple function, and repeated this
procedure two or three times A better control is
achieved if we make stiffness coefficients a
function of the spacing functions. Then, for
each node, we will locally find its equilibrium
position (under springs forces) in respect to its
neighbor nodes. Afther this process, the
Delaunaypropertymaydeteriorate,and needs
to be locally checked. A more efficient
procedure is to use locally this filter after each
node addition. The filtering postprocedure
shows to be very effective (see results).

RESULTS

Two examples are solved by each method to
show features of the method. In the first
example for FEM, we solve the Laplace
equation on a circular region with two holes on
it. The boundary condition is Dirichlete. The
temperature on the outer boundaryisequal to
one, and on internal faces is equal to zero.
Using an arbitrary initial set of grid points on
the boundaries, we use a frontal approach to
make the initial grid. Then we use the
adaptation procedure to find the final mesh
(Figure la) with the final solution shown in
Figure 1b. Here e is equal to 0.2. As one sees,
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Figure 4. Solution of the Laplace equation on the same region as Figure 1

(a) adapted grid with e=0.1 and (b) grid after filtering postprocess.

cell sizes vary smoothly and rapidly, so some of
them are as large as the internal holes.

Figure 4a is a circular domain with two
elliptical holes, which is first triangulated with
the above mentioned method, but then we have
used a Laplace filter to make the grid as smooth
as possible. Figure 4b shows the effect of the
filtering.

Next, we have solved the Laplace equation
on a square region with different constant
temperatures on lower and the other three sides
of the outer boundary by our FEM solver. The
length of each side of the square is six. This
example is solved to show both accuracy and
effectiveness ofthe algorithm. Typical solution
contours are shown in Figure 5(d). The exact
solution of this problem is

o _sin [B2 (cta2)]. sinh[2 (a/2-y)]
T(X,Y) = A 6

odd n n sinh np (13)

First, to show the solution and the effect of
the adaptation, we have solved the Laplace
equation on that square region on two different
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meshes. The first mesh is an almost uniform grid
with 270 cells. The solution is quite accurate
everywhere except the small region close to the
lower corners (singular points). The solution
contours onlynear these corners are shown in
Figure (6d). To resolve a better solution in
these regions. We use the adaptation procedure
for several times to get the grid o£2500 cells
shown in Figure (6a). The solution contours are
now much more accurate even in the regions
colse to the singular point (Figure (6¢)). This
has been verified using the exact solution,
Equation 8.

To observe the effectiveness of the
algorithm, first we compare results on two
uniform and adapted cases with same number of
cells (i.e. 970 cells). Results are shown in
Figures 5 and 7. As Figure 5 shows, the global
results are very much the same. The small
glitches on the temperature contours of the
adapted case are mostly graphical, since the grid
size is much higher in the upper region. The
difference is in fact in the lower corners (Figure
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Figure 5. Comparison of solutions on uniform and adapted meshes: (a) adapted grid, (b) uniform grid,

(c) solution on the adapted mesh and (d) solution contours on the uniform mesh.

7). Thisregion is almost one hundredth of the
total computational field. In this region, the
adapted mesh produces a result very colse to
the exact solution (Equation 8), but the uniform
grid fails to resolve in an acceptable manner.
Finally to assure the accuracy of the solution,
using L, norm of error (difference of numerical
and exact solutions)is computed, and is drawn
versus cell sizes for a uniform mesh (Figure 8).
This figure shows that the solution has a second
order accuracy (Note that the slope of the
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curve is almost two in the logarithmic scale).
Similar cases are solved by FVM solver to
show capabilities of the adaptive algorithm. The
first case is the solution of the heat equation in
a circular domain with two circular holes and
with continuous Dirichlete boundary conditions.
Again, temperatures on the outer and inner
faces are equal to zero and one, respectively.
Results are very much close to those presented
in Figure 1, not shown here to prevent repeated
similar figures. Since the boundary conditions
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Figure 6. Solution of Laplace equation on a square with constant zero temperature on upper and side boundaries

and temperature equal to one on lower side: (a) adapted grid, (b) initial grid, (c) solution on the lower corner

in the adapted case and (d) solution contours on the lower corner in the initial mesh.

are continuous, this solution is found to be
satisfactory. Many sweeps of adaptation were
applied to that solution, and the final grid and
solution did not differ in this simple case.

Case two for FVM, is a circular domain, but
with temperature equal to 1 on the upper part
of the boundary, and equal to zero on the lower
part. The grid is several times adapted to the
new solution and afterwards it is postprocessed
(Figure 9). One can see that how effective the
adaptation procedure is in this more difficult

52 - Vol. 13, No. 4, November 2000

case. The solution contours are not reported
here.

CONCLUSIONS

An adaptive grid generation scheme was used in
a finite element and volume formulation of
numerical solution of the Laplace equation.
Adaptive grids were used to resolve the best
possible solution using a finite number of grid
cells. The grid generation scheme starts with a
frontal approach to generate mesh points, and
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Figure 7. Comparison of solutions on uniform and adapted meshes: (a) lower corner of adapted grid,

(b) lower corner of uniform grid, (c) solution on the lower corner in the adapted case,

and (d) solution contours on the lower corner in the uniform mesh.

to Delaunay triangulate them. Appropriate
merge, delete, and postprocessing procedures
were applied to improve the grid quality. After
using standard finite element or volume solution
of the problem, a criterion is used to find
regions with high relative truncation errors.
These regions are refined, and after
retriangulation, and using filtering process,
computation is repeated. The Dirichlete
boundary conditions are applied by determining
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the nodal values on the boundary. The whole
processisrepeated a few times, until required
accuracy, or allowed number of levels of
refining is achieved. The method was applied to
a few test cases and showed to be convergent,
and resulting in an accurate solution with finite
number of grid cells, even in the case of singular
boundary conditions. This work is going to be
extended to other physical equations and three
dimensions.
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