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Abstract An approximate analytical solution is obtained for hypersonic flow past a slender
elliptic cone using second-order perturbation techniques in spherical coordinate systems. The
analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free
stream, the perturbations stemming from the small cross-section eccentricity. By means of
hypersonic approximations for the basic cone problem, closed-form second-order approximate
solutions for the perturbation equations are obtained within the framework of hypersonic
small-disturbance theory. Results for the shock shape, shock-layer structure, and surface
pressure are presented for all ranges of Mach numbers, together with comparisons with
experimental data. Also a complete vortical layer analysis is presented to prove the suitability of
the surface boundary conditions.
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INTRODUCTION curve around the body toward the leeward

A curious singularity appears at the surface of a plane of symmetry. Though the entire flow field

circular cone inclined at a small angle to an is rotational, a thin layer of intense vorticity lies

inviscid supersonic stream. This phenomenon near the surface. Ferri called this the vortical

was unknown to Stone [1] who expanded the layer. All streamlines approach the top ray, and

flow quantities formally in ascending powers of consequentlythe entropyin thatneighborhood

the angle of inclination and found the first and is many-valued. Ferri called this the vortical

second-order perturbations. Hisresults served
as the basis for extensive numerical
computation by Kopal [2]. The singularity was
discovered by Ferri [3] who gave a physical
description of the flow near the surface. He
deduced that streamlines crossing the shock
wave at any circumferential location eventually
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singularity. Munson [4] solved the problem of
flow over a circular cone inclined slightlyto a
uniform stream using the technique of matched
asymptotic expansions. He found that the outer
expansion is equivalent to Stone's solution of
the problem and the inner expansion, valid in a
thin layer near the body, represents Ferri's
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vortical layer. They also showed that the
solution to first order in angle of attack so
obtained is uniformly valid everywhere in the
flow field, but in the second-order expansion an
additional non-uniformity appears near the
leeward ray. They showed that this defect can
be removed by inspection and that density,
radial component of velocity and entropy are
onlysecond-order quantities which are singular
on the surface of the cone.

The problem of supersonic flow over circular
cone isonlyone ofthe occurrences of vortical
singularities. Indeed, they are present in any
conical flow without axial symmetry. For
supersonic flows past bodies without axial
symmetry, the elliptic cone is a basic body
shape. Although numerous papers have been
directed towards supersonic flows past elliptic
cones, their goals have been specific, and no
general or comprehensive flow field calculations
have been set forth. Work of Doty &
Rasmussen [5] was to partially remedy this
situation and to present an approximate
analytical solution that illustrates the general
flow field features of hypersonic flow past a
slender elliptic cone with small eccentricity. The
analyses were cast in the form of hypersonic
similarity theory and the first-order results were
presented in appropriate similarity form. There
is also the study by Jischke [6], but it does not
deal with the vortical layer and the study by Lin
et al.[7] is only an inner solution for circular
cone case.

In this undertaking, we start with the
small-perturbation equations for perturbed flow
past an elliptic cone with eccentricity € and
examine the quantities expansions for
second-order approximation. Using hypersonic
similarity theory, an analytic solution up to
second-order approximations are presented.
Here the shape and location of shock and
coefficient of pressure on the surface of the
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Figure 1. Spherical coordinate system.

cone for all Mach numbers are calculated.
These results are compared with the existing
numerical and experimental results of Zakkay
and Visich [8] and Martellucci [9]. Also it is
shown that the outer expansion of pressure for
any order of € is uniformly valid and is not
singular on the surface of the cone.

FORMULATION OF THE PROBLEM

Governing Equations A spherical coordinate
system is chosen as shown in Figure 1. The
velocity components u*, V*, and w are in the
directions of increasing r, , and T, respectively.
The pressure and density are P and r’. The
cone half-angle is d. Dimensionless variables are

defined as
* * *
\% W
u: 2 prd 2 W el
Vg Vg Vg
* * *
p r (s” -sg)
p = ‘—Z b r = b S = = @@ L7
reve re S

where Vg is the velocity at infinity.

The pressure, density, and velocity are
governed bythe equations of change for mass,
momentum, and energy, plus appropriate
equations of state. Here we assume the flow s
inviscid,nonconducting, steady,and behaves as
a thermally and calorically perfect gas.
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Substituting the dimensionless variables into
these equations yields:

0
2ru+ —(rv)y+ cotqr
u aq(V) cot g rv

1 0 B
* Sing of (M= 0 @

u w  ou _
Vqugr sin q 6f-V2-W2_0 ®)

ov W OV
V% mﬁ"' UV-WZCth
1 op
———=0 4
) r o ] “4)
W W W
aq sin q a1=+uw+ vw cot
1 op _
rsinq of )
0s W 0s _
Voq " sing of ©
s=lnl( g[MZEp ) -9 Inr (7)
1 2r 21 g (pil 1
- (u + v WZ[)JF%]‘*GlT_?
A ®)
g Mg

These equations are not all independent.
Indeed, any one except (2) can be eliminated. It
is convenient, however, in the subsequent
analysis, to consider all of them, and at certain
points to particularize to a given set of five.

Body And Shock GeometryConsidering
Figure 2, the equation for perturbed cone and
its conical shock wave attached to it for no
angle of attack is assumed to have the form:

0. = d flelcos2F+ e%E(%grD%%osElf) 9
2
g = bl eglicosjﬂ[l%_mgmj gi2icos[4F)

+ 0 (%) (10)
infwhich dispecifies the[semivertex angle oflthe
bakicdirciilaticonklabbufiwhic¢hlaperinrbation
analysis(isfo belperformed, Dlis the semivertex

angle ofthe basic circular shock corresponding
to the basic body with semivertex angle d, and
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Figure 2. Perturbed cone and shock.

the g factors represent the deviation of the
shock eccentricity from the body eccentricity
and they are to be determined from the
perturbation analysis. The parameter € is a
measure of the eccentricity and is the
appropriate perturbation parameter to be used
in the subsequent analysis.

Expansions For The Flow Variables T h ¢
velocity vector for conical flowis presented in
spherical coordinates by

g A A A
V=u(@. e + v F) eqg+ w@FHer (A1)

The Fourier representation for the body and
shock shapessuggest that anyquantities of the
velocity components, pressure, and density
represented here as q(q,F,e) can be expanded
in the following forms, valid outside the vortical
layer adjacent to the body surface, for no angle
of attack:

q(qafae) = %6}) + Eq@q)EOSQfEr
e? [q,(D+qp(@)cos 4F+00EY  (12)

The lowest-order terms, with the subscript
naught, pertain to the basic circular-cone
solution, which is persumed known.

Perturbation Equations Substituting (12)
into (2)-(8) for any related quantity and
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equating coefficients of like powers of € gives
the following systems of ordinary differential

equations:
eo:
2rpug+ (rovg) '+ rgvpecotg= 0  (13-a)
U= Vo (13-b)
rOVOV(’) + roug vo + P(’) =0 (13-¢c)
Sg= 0 (13-d)
Sp = In (g MEPy) - g In 1 (13-d)
—(u02+ V012)+ gg—ll;_z-%

Q- ME (D
el:

20rpuptugrp )+ (rovi+ vorp )=

2y wi
+( revi + vo ) cot g +—;

= 0 (14-a)
U=V (14-b)

ro(vovi) + rvov + Fougvy + vo (( Fout Fu g

r ) + Prl =0 (14_C)
W’1+ EWl'f' w; cot  —; & =0 (14—d)
Vo sin q Fyvg
S; =0 (14-¢)
Py r
Si= 5 -9 (14-1)
Po 0 ro p
—(uo2 + Voz) + —(U—Oul + vovi) + 9 1
. . r g-1nr
- - = 14-
2 (g- DME (42
82:

|
2(rpupy + S rpu+ ug M) + (g vip™

1 , 1
+=Fivi+ vorm) ™+ (rovim + _rl Vit
2
m 4 Fyw +2 o wi
TV i, ) cot g+ — ( B )
2 sin q

=0 (15-a)
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wi (Zujt+w 1 sin )

Vim = ulr;l+(m -1) (15-b)

2v, sin g
ro Vo Vim +— ( rovi+t vorp) vi+ (rovipt

Fowivi
+

+ L rv, + Vo M Vot (m - 1)
2 sin

+ Fougviy, + —(r0u1+u o Frovy + (roup,™

+ 5 r1u1 + Ug rlm)VO % r()Wl cot q+
+ Pm=0 (15-c)
[W1m+ N (V1+ rl) Wl + E Wim
2 Vo To V() sSin g Vo
by Bl g s cot gt o (Ut
2 Vo Vo I 2 Vo
r 4p
+ Ywicotq-—™m 1=0  (15d)
rO roVO Sin q
= (1 -m) 3 (15-¢)
Vo smq
S - g =2 L o o A
Py Iy
(15-f)

1 Fo 1
—(u02 + Voz) + P [uouy, + — (1112 + V12+
2 4

Im

(1 -m) w2 + Vovim 1+ = (uou 4 vovy)

Im

g le 1 1 _
+ -9 Dim_ =0 15-
0-1rm 2 (g-1) ME (159

with m = 0,2 in each case.

In each of the systems of equations above all
the variables are calculated in terms of the
radial velocity component (u) and then
substituted into the continuity equation ofthe
corresponding systems of equations. The

following differential equations are obtained:
, 2 .
\
Uy + ugy cot q-+ 2110 = —02— (uO + uO) (16)
a0

utcotqu'+ 2-—)u =

_ 4F1 Ho(9) "
1 0
0 sin%g " Hl(q) (17)
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8m

UppHU 'cot g+ (2 - —2—) U = Him(Q)
= 2m D12 m
+ H - + *
1m(9) I sin %q I sin %q
Bb [— I(9) Q2(q)] dg (18)

where I(CI) Ho(9), A(9), B(a), C(q), Qi2(a).
H(Q), Hi(q), are known functions_of g and

D, is a constant. The functions H;(q) and
Hi;n(qQ) are in terms of the variable
coefficients includingu; and u;,, which cab
be neglected with not much of loss of
accuracy.

BOUNDARY CONDITIONS

Boundary Conditions At The Shock T h e
shock jump conditions for flow properties across
the shock are well-known Rankine-Hugoniot
relations. The dimensionless form of these
relations are:

1 (9-1) Mg2 + 2

r (G+rDM > 7
. 29 2
Mg?P, = 1 + M,? -1
g ME"P; 0+ TM," - 1)

S, =In (g Mg2P,) + glIn (—i)
%) %) 5
V., 1 vg 9
ng=— (=E n,
Ve r, Vg
D - . O
s % _ E %
- 19
Ve ng (VE ng ) (19)
D

where ng is the unit outward normal on the
shock given as:

71 - Cosdf

m=w¥&—ffﬂw

[2eg

sin2 F+ ez(—glz - g12 - )sin 4f]ef (20)
d s1nb

Since the location ofthe shock isunknown,

using boundary conditions at the shock becomes

very complicated. To circumvent this situation

the shock angle is expanded in terms of powers

of € and by using of a Taylor series the flow
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variables are transferred to the basic
unperturbed shock (e = 0).

The boundary conditions at the shock are
obtained from these relations.

Surface Boundary Conditions At the body
surface, Q = (., the normal velocity must

vanish:

g O
V.ln.,= 0 (21)

Bysubstituting the unit outward normal vector
on the elliptic cone surface and the velocity
expansions into (21) and transferring the
boundaryconditions to the basic circular cone
surface leads to the surface boundary
conditions:

vo(d) = vi(d) = vip(d) = vip(d) = 0 (22)

Rigorously, we should have obtained (22) by
matching the outer expansion with an inner
expansion for the vortical layer adjacent to the
cone surface. Later we will show that (22) is
indeed proper.

APPROXIMATESOLUTION

Basic Cone Flow Approximations For
hypersonic flow in the limit ME@E and sin q@
0 such that the combination KUMEsinq
remains finite, the basic cone flow can be

approximated accurately by:

um—ww—lv@=WS=
-q(13§7) 5= % I gzl éf (23)

where Kq= MEgd is the hypersonic similarity
parameter. Also from basic cone solution,
following relations are obtained:

N = s%a,2(b) , J = a2(d)/ay2(b) 24)

First-Order Approximate Solution A
solution to Equation 17 is u;(Q) = xl(q)/Sin2 q
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and by substituting this solution into the
differential equation and integrating twice
yields:

' q
xi(q) = xy(b) + Xl_égﬁ Bb q3 dq - %*
q q
Bb {o Bb [H—(‘;gq—)] dg}dqg

with the assumption of q and b being small,
x1(g) can be calculated and by the definition of
z= Q/d, first-order components of velocity are
obtained.
The shock eccentricity factor, g; , can now be
determined from condition (22), as follows:
- 3/{3COS (l/s) 6(s® + s?) N

- 1) (g+1)

+3s-52-5} (25)

Second-Order Approximate Solution T h e
second-order solution not only provides a better
approximations with respect to the first-order
solution, it also shows the singularity in flow and
vortical layer near the body surface. Clearly,
from (15-b) and (15-¢) the second-order
cofréftionfolbothlthelradial velocity [and
entropylis SingularfdttheSurface[llt¢anbe
shown thatthelsingularity [in[éxpressions for(¥y,

& Pimraremotreal andithese [quantitiesare
finiteon[the bodylsurface. Tolshow(this[and[to

getlrid[oflthel Singularity[in[Vimrand P imr;[Stone
suggested[thefollowing changelofVariables

U @0 (@ m -1 [0 H(gdg o)

Substituting [This mew Variable int ol I[¥) e
obtain:

U1m+COt q Ulm&tz % ) UlmE_Tmmﬁq)
(27)

where T;,,(q)lis[a known[functionof g.

Following[thesameldiscussionlaslin(the case[of

the first-order solution, we assume:
U 10((])% Xlo(Q) [Cos qEﬂoﬂﬁnE[O BEEMU[Z(QE=
x12(q) (6/5sin*q - 1/sin®q ) for m=2.
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Substituting these solutions into (27), yields:
x10(0) = x0(b) + sin b cos?h x;4(b)*

1 1
+
Bb ( sin ¢ cszq) aq Bb { sin ¢ coszq

Bb [T,0(q) sin g cos g]dq } dq
_ ' ) B a.3
x12(0)= X12(b) + x12(q) / sin“b 19 sin °q dg

q
'Bb {sin 3q[T,,(q) /sin q]dq }dq

To assume small angles in above relations, the
following results yield:

Uo(2) /d2 ﬂz@ X10 (b)Ll’l (z/s)+

d
Z Z
Lnz BS [zTo(z)]dz- BS [zZLnzT ;((z)]dz
U 15(2)/ 0% =x 13(b) /(d*z%)- x5(b) (z*-s") /
Z
(4b3722) +1/(4z 2){2483 [Tx(2)/z]dz -

z
B, 2@ (28)
and[thereforel lit[¢an[be[¥written:

' z
vio(z)/d= s/z. éqzﬂgrDl/zBS [ZTIO(Z)]dZ

Via(2)/di= 2 d’iléz(?) D%‘;EE’)Q BDT) 1

z
ZBS [T%(Z)]dz-FEIZ% BS [23 T12(2)]dz} (29)

The quantities x;0(b) and x,,(b) are calculated
using boundary conditions at the shock and then
g10 & g, are obtained using (22).

Pressure Calculation On The BodyKnowing
the extent of pressure on the body surface is
necessary for calculation oflift and drag forces
for design and manufacture of flying objects.
From the perturbation equations, expressions of
pressure perturbations are obtained as follows:

P, = F,Py - ro(upu; + vovy) (30)
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Pim = — (uou; + vovy)~ - B Fi (uou; +

4210
VOV1) -y [uoulm + VOV1m+ % (u12+ V12 -
F2 PoSi
Wil + =Py — = 31)

The pressure coefficient, C, , is defined by:
*
Cp = (PT-PE)/((1/2) reve?) (32)
Thus we can write:

Cp= Cpo+ eCp; Cos 2F + & (Cpyo +

Cp 1, Cos 4F) + o(&) (33)
where
1
Cpo = 2 [Po(d) - W]a Cp, = 2 P,(d),
Cpi2 =2 Pyy(d) (34)
using the basic cone solution, we have:
Cyo 52 Ln 52
=1+ = 35
_d%_ (s -1 (33)
Cpld? = 2gN DUV & 00Dy )
_2gN po(d) pim (d)

C,,y, /d? =28 Po 37

pim J &> d®r, (d) 37

As mentioned earlier since vy(d)= 0 then S,
and U,,, are singular on the surface. From (31)
it seems that Py, is also singular on the surface.
But noting the change of variable (26) it can be
shown that the singularity in S, and U,
cancel each other out in (31) in a way that Py,
is finite on the surfacTSPaying attention to

b Wi81/vpsin ¢ dq is
the cause of singularity in entropy. After

(15-e), the expression

simplification it can be shown that the
coefficient of this expression in Sy, is 4(m-1)*
F, a02(q)/gd? and in U, is 4(1-m) F,J/N g.
Calculating these two coefficients by using (24),
it is seen that on the surface they are equal with
different signs. Therefore, Py, is finite on the
body and Cp;, can be calculated from (37).
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VORTICALLAYER ANALYSIS

Here through asymptotic matching, it will be
demonstrated that the boundary conditions on
the body as were derived in section (3-2) are
indeed correct. New independent variables that
are of order unity in the vortical layer are
defined according to

Q=(q-d)y, F=f (38)
To exhibit the zero in the velocity we define:
V=v/(q-d) (39)

This makes V of O(1) in the region of interest.
The other independent variables are defined
according to:

U=u, W=w,P=p,R=7r1 (40)

The expansion of the inner variables in
ascending powers of € are according to

a(Q.F9 = qo + & ¢.(QF) + &

92(Q.,F) (41)
where q(Q,F,) represents U(Q,F,) and

V(Q,F,¢) and W(Q,F,¢) and P(Q,F,¢) and
R(Q,F).

The zeroth-order variables simply express the
fact that these quantities are not functions of
Q,meaning that theydo not change across the
layer.

The inner expansion is valid only in a thin layer
near the body and cannot be expected to satisfy
the shock conditions. Therefore, the boundary
conditionsare obtained by matching them with
the outer expansion. We apply the following
matching principle:

m-term inner expansion of (p-term outer
expansion) = p-term outer expansion of
(m-term inner expansion) (42)
Here the application ofthe matching principle
considers the three-term outer and inner
expansions for the normal velocity component.
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Three-term outer expansion of v is:
v(@) = vo(@) + &vi(q) cos 2F + &[vio(q) +
vi2(q) cos 4F]

We write the functions in inner variables:
v(@)=v o(@+Q)+ ev,(d+Q)cos 2F

+ 2[vig(@+ Qv 1y(d+Q)cos 4F]
Expanding this function in powers of gup to
three terms gives

v(@)=v o(d)+ evi(d) cos 2F + &X[vio(d)+

+ vi»(d) cos 4F ] (43)
Three-term inner expansion of v is :

v(@) = QUEIV, + eV (QF) +

+ £V,(Q,F)]

writing the functions in outer variables:

v(@) = (g—d) {Vo + &V [(q—d)%F] +

+ &V,[(q—d)%F]}

Expanding this function in powers of & gives:
v@) = [QUPv,+ 0= 0 (44)
Equating (43) and (44) follows

vo(d) = vi(d) = vyo(d) = vip(d) = 0

which is indeed the same as (22).

PRESENTATION OF RESULTS

The shock eccentricity factors, g's , are plotted
in Figures 3 - 5 as a function of kq for
g= 7/5. For d@0, which corresponds to the
limit of linearized theory, the eccentricity factor
tends to zero, g0, that is, the shock tends to a
circular Mach cone. For the limiting hypersonic
flow, d@E, g approaches the asymptote
g=0.955, and the shock tends to embrace the
elliptic cone body. When kq@E and @1, then
the body, in agreement with hypersonic

30 - Vol. 13, No. 4, November 2000

&

Q 2 4
Figure 3. Shock eccentricity factor. Ks

035 v - -
0.3

Q2§

3

1
o
(o]
a

Ks

Figure 4. Shock eccentricity factor.

a2 - - v

orsh )

o1}
0.05

Si2
0.1}

-0.15}
-02}f
-0.25p

;
J
-0.05¢ ]
1
1

0 2 y. 6 8
Ks

Figure 5. Shock eccentricity factor.

International Journal of Engineering




- €-38_

B-3

Figure 6. Radial perturbation velocity components.

Newtonian theory [10].

The radial velocity component is plotted in
Figure 6. The hypersonic similarity form gives u
as a function of z, kg, and ¢. Because the
thickness of the shock layer varies as a function
of kg, the shogk layer is normalized by means of
the variable ( = (z-1)/(S-1). The body surface.
corresponds to = 0 and the shock surface to (
= 1. At the body surface u is insensitive to
variations in kg, having approximately the value
unity. At the shock surface, it is quite sensitive
to variations in kq. In the hypersonic limit
kg= E, u increases only slightly from the shock
to the body.

The polar velocity component vis shown in
Figure 7 as a function of Q and various values of
kg.The variation of vacross the shock layer is
analogous to the variation of u.

The azimuthal velocity companent w is
shown in Figure 8 as a function of (, g=7/5,
and various values of kg. At the shock, w;
increases as kg increases. For kq= 2, variation
of w across the shock layer is very slight. At the
body surface it decreases as kg increases. The
factor u(c)(d)/u(o)(d) is shown in Figure 9 as a
function of kg and g = 7/5. This is the ratio of
the radial component of velocity when the
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Figure 8. Azimuthal perturbation velocity components.
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Figure 10. Perturbation pressure coefficient on the body

surface.

variable coefficients in Equations 16-18 have
not been neglected to when they have been
neglected. In the hypersonic flow range, we can
expect the approximation obtained by
neglecting u(c), to be very accurate. In fact, this
is true for kgAl. For kg=1, the approximation
is less accurate. We note,however, that the
correct limiting results for kg= 0, which
correspond to the limiting case of linearized
theory, are recovered.

Figures 10,11, and 12 show cpl/dz, cplo/dz,
and cplz/d2 plotted as a function of kg for
g=7/5. Surface pressure were measured on two
different elliptic cone models, at free stream
Mach number 3.09,by Zakkay and Visich [8].
The geometric properties of these models are as

follows:
Model 1 Model 1T
e/d =0.155 e/d=0.266

d=16.64 °=0.2904 rad/ d=16.28 °=0.2841 rad

These two models have the same cross
sectional areas for the same station along the
elliptic-cone axis. The experimental data are
compared with the results of the present
analysis and also with the analysis of Martellucci
[9]. Figure 13 shows the pressure-distribution
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Figure 11. Perturbation pressure coefficient on the body
surface.

data on model I for Mach number Mg=3.09 for
which d= 0.900. The present results give good
agreement with the data on the semi-major ray,
but the data are lower otherwise. The results of
Martellucci give a little better agreement with
the data between the major and minor rays.

Figure 14 shows the pressure-distribution
data on model II for Mg= 3.09, for which
d=0.888. The agreement with the present
analysis is fairly good near the major and minor
rays, but poor in between. For this large value
ofeccentricity, higher-order perturbation terms
are probably required. Martellucci's result
shows somewhat better agreement with the data
between the major and minor rays.

CONCLUSIONS

General flow field results for the hypersonic
flow past an elliptic cone have been obtained.
The results are valid for large Mach numbers
and small stream deflections such that the
hypersonic similarity parameter, Kq= Mgd, is
fixed in the limiting process. The results are
more accurate for large kg, but the proper
linearized theory result is recovered when
kq@0. Second-order perturbation analysis

International Journal of Engineering




o J
s} .
Th r
st .
a} .
3t ]
2% 2 a 3 8
Ks

Figure 12. Perturbation pressure coefficient on the body
surface.

proves the existence of vortical layer and
singularityofentropyand radial component of
velocity and density on the body surface. This
layer does not show itselfin the zeroth-order
and first-order perturbation analysis, since the
integration of Equations 13-d and 14-e produces
finite and constant values of entropy. It is the
second-order entropy that shows the singularity
of this quantity on the body and that is because
of the term vy(d) = 0 at the denominator of
Equation 15-e. It is proved here that in spite of
the existence of the vortical layer on the body,
the second-order pressure is finite and
therefore, the pressure expansion would not be
divergent. By proving the validity of the
boundary conditions on the surface in the
process of vortical layer analysis, our solution
procedure here renders the fact that an inner
and outer expansions of the quantities are not
needed and can be avoided. This is a great
simplification and circumvention to the
mathematically rigorous inner and outer
solutions of the same problem.
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