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Abstract This paper presents a theoretical derivation and computer simulation of an optimal
speed controller for a brushless dc motor using feedback from a linear model running in parallel
with the inverter-fed model. The intent of the feedback from the linear model is to eliminate
torque ripples from the inverter drive. A nonlinear model of such a motor, transformed into a
linear model by a local dipheomorphism (defined in section 2) and a new model is introduced in
order to eliminate the undesirable effects of the inverter harmonics.
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INTRODUCTION

Rapid progress in microelectronic and power
electronic devices have created a remarkable
change in the control and applications of
electrical motors. Permanent magnet
synchronous motor (PMSM) drives progress
have been due to the progress of power
electronics. There are, of course, many
advantages such as high efficiency and reliability
in such motors. A high energy PMSM is ideal
for a drive with a large torque, because of high
efficiency and low cost. Using a rare earth
permanent magnet material in PMSM leads to a
large stator current with no demagnetization
effect.
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The present technological tendency is toward
a full digital control of speed and position of
brushless dc drives [1,2]. The advantages of
microprossesor lie in computation ability and
data storing capability which can be used for
modification, and prediction of the feed-forward
loops. A good dynamic performance and
stability of PMSM can be acheived by a digital
control technique.

In a low speed drive, torque pulsation may
render difficult to control. In recent years more
attention has been paid on eliminating the
pulsating torque of drives. A method has been
described in [3] in order to eliminate the
harmonic torques of the motor design. Two

Vol. 13, No. 2, May 2000 - 19



methods have been proposed in [4]: the first is
based on the state space and the second is
based upon the theory of the variable structure
systems.

This paper presents a speed control
technique for a brushless dc motor which
eliminates pulsating torque. The proposed
technique is a simple and at the same time an
efficient one. A nonlinear model of brushless dc
motor is transformed into a linear model by a
local dipheomorphism (defined in section 2)
and state feed-back; then a voltage source
inverter is added to the model. To eliminate the
undesirable effects of the inverter harmonics, a
new model is introduced. It will be realized that
the torque ripples diminish and the speed
approach steady state mode with optimum
performance.

NONLINEAR MODEL OF STATE
VARIABLES

A brushless dc motor (BDCM) consists of a
PMSM itself, an inverter and a position sensor.
Generally a BDCM is supplied by an ac source,
its performance is similar to a shunt dc motor. A
typical BDCM is shown in Figure 1. Three
windings of the stator are arranged 120 degrees
apart, each supplied from one phase of a
three-phase supply. Interaction between the
resulted rotating field and the rotor field
developeselectromagnetic torque on the shaft
of the motor. The state equations of the BDCM
are as follows [5,6]:
dg,/dt= w;
dw,/dt=(1/7)(P/2)[(3/2)(P/2)(  Wniqs'+(L 4—Lg)
idsriqsr) _Bm(z/p) w,—T) (t)]
diqsr/dt:[V qu —I'Siqsr —Lqw,igs"™— IAmWr]/Lq
digs"/dt=[v g¢"—rig"+L qWrigs']/Lg (1)
In order to transform the nonlinear
equation, into exact linear equations, change of
variables are required. The state equations are
as follows:

x=f(x)+G(x)V )
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Figure 1. A typical BDCM.

To simplify it, the state variables are defined
as X, Xp, X3 and X4, the inputs as u; and u, and
coefficients as k;:

ki =(1/1)(P/2)(3/2)(P/2) 1A,

ko=(1/1)(P/2)(3/2)(P/2)(L 4—Lg)

k3=(1/7)B 1

k4=(1/J)(P/2)

ks=r (/Lq

ke=L 4/Lq

k7= lhy/Lg

kg=r (/L4

ko=L 4/Lg

qi=1/L 4

q=1/L 4 3)
The system of state equations will be:

pPX1=X 2

pxo=k 1X3+K 2x3%4—k3x0—k4T (1)

pPx3=q 1u;—Kksx3—kexoxq—k7%

PX4=q 2uz—Kgxstk 9Xpx3 “4)
The exact linearization technique is now

applied to the nonlinear state equations. There

must be some sufficient and necessary

conditions for transforming a nonlinear system

into a linear system [7]. Before expressing the

above mentioned conditions, some definitions
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from differential geometry are noted [8].

Definition 1: Let fand g be two vector fields on
R™, the Lie bracket of fand gis third vector
field defined by:

[f,g]=ég.f—éfg (5)
where ég and éf are Jacobian matrices of f and
g.

Definition 2: A linearly independent set of
vector fields {fi,b,,....f;} is said to be involutive,
if, there are scalar functions a;;(x):R"@R such
that:

[fi.5]= S ajjr(x) (%) "jj (6)

Definition 3: A function &R*R?", defined in a
region W, is called a dipheorphism if it is smooth
and if its inverse &! exists and is smooth.

The following necessary and sufficient
conditions must be satisfied for the existence of
transformation [7,9,10]:

Theorem 1: The nonlinear system of Eq. 2 can
be transformed into the following linear system:

y=Ay+BV (7)
where
0100 00
A 0010 and B — 00
0 00O 10
0100 01

and the state variables X;, X5, X3, X4 lie in a
sufficiently small open neighborhood U ofthe
origin in R4, if, and only if, the following
conditions hold on UJ[10]:

a) The set C= {g;,[f,g1],(ad?f,g;),g>} has full
rank.

b) The set C1={g 1,[f,g1],2.[f.2]} is involutive.
c) The span of C; is equal to the span of C;GC.

It can be proved that all three conditions of
theorem 1 have been satisfied for BDCM. It is
now possible to construct a non-unique
transformation for the same variables using the
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second theorem.
Theorem 2: If the nonlinear system 2 is
T-related to the system on U, then:
a) ATj/Au=0, for j=1,2,3,4 and k=1,2.
b) the 2x2 matrix [ATj/Auy], j= 5,6 and k= 1,2 is
nonsingular on U.
<dT ,, g>0, m=1,2 and i=1,2, where
<dT p,g>= AT /Axi—g;
and <dT .,,>=T 41, m=1,2
<dT 3,f+Gu>=T 5
<dT 4,f+Gu>=T

Solution of these equations leads to the
vector field T, which can non-uniquely
transform the nonlinear equations 4 into the
linear equation 7:

T(e) = 4 kot 5 (Gottg - kgt 4 + kgxpx 5)+(ky ®)
+hox 5(qyt -k 5t 5
~kgtox - koxy) -dT,jdt - kyx,
[ ~Galty — kgt y+kgX X5

The final linear equations of the motor are
as follows:
S’lzy 2
S’z=y 3
5’3:V 1
5’4:V 2

The mathematics associated with the control

©)

theory may be left out with only final results
(Egs. 8 and 9) given as applicable to the motor.
If this mathematical part of the paper is not
interesting for some readers, they can leave it
and keep in mind that Eqs. 8 and 9 are
linearization of Egs. 1.

SPEED CONTROL

The obtained system of linear equations 9 has
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four state variables and two inputs. To define
the feedback loop gains, a 4x2 matrix must be
determined. By poles placement, there are only
four options closed-loop feedback gain matrix.
Therefore a method must be chosen such that
the eight elements of the matrix can be
determined by a systematic and optimal
technique. An optimal control theory method
[11], which is applicable in linear systems, is
used here in order to obtain the feedback gain.
For such a system, a quadratic performance
criterion in term of the states and inputs must
be always minimized. Using this constraint, the
feedback matrix can be uniquely defined. The
performance criterion of the system is:

J=0.5 fT (x! Ox + u'Ru)dt (10)
0

where Q=diag (q; q2 q3 q4) and R=diag (r; r).
Using the elements of the two latter matrices,
the locus of the poles of the closed-loop system
can be varied. To control the speed, the largest
weight is given to the first state variable. It
means that the variations of the speed integral
has been minimized, and the final response is
achieved. The fourth variable ofthe matrixQ,
weighted i44%, is independent of remaining
variables and its eigenvalue can be varied with
any weight. Consequently the matrix Q isused
to control the system:

Q=diag [107 1 1 10%] (11)
Matrix R is chosen as unit matrix. The
reason is to limit inputs, in order to keep them
in the reasonable and acceptable limits. Using
these two matrices, the Riccate's matrix can be
obtained for the optimal control.
—K=KA+A IK+KBR -'BIK+Q (12)
From this matrix, the feedback gain matrixcan
be determined for optimal control of the

system:
= —R"IBIK (13)
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TORQUE

Inverter-fed electrical motors contain various
harmonics which produce ripple on the shaft of
motor. Many have paid attention to eliminating
this ripple. Here a new method is introduced for
eliminating the ripple. As the following
equation indicates:
T=I2/P)p wtB n(2/P)w,+T 4 (14)
The electromagnetic torque is the sum of
angular acceleration, angular speed and load
torque with constant coefficients. Performance
put limits on the variations of the angular
acceleration and speed of the motor and it is
always required to minimize the range of these
variations. Consequentlythe electromagnetic
torque also has a limited variations.

SIMULATION RESULTS

Block diagram of Figure 2 is the base for
simulation of the optimal speed control. The
sampled speed and currents are multiplied by a
gain G, obtained from the optimum control, and
suitable inputs v; and v, of the system are
determined to control the motor. As shown in
Figure 2, coefficient x; in matrix Q, denoting
the motor position, is chosen a large number
which puts limit on the torque to be variations.
By inverse transformation of this set of
variables, the main variables of the motor
control the speed.

In the block diagram the upper part is taken
as a model without noise and the lower part as a
real inverter-fed motor. The inner loop is the
inherent feedback loop of the motor, the middle
loop is the linearizing feedback loop and the
outer loop is the speed control loop having gain
G. Using such a system, the undesirable effects
of the inverter harmonics upon the performance
of the system are eliminated and an optimal
system is obtained.
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Figure 2. Block diagram of the optimal speed control of
inverter-fed motor.

The BDCM, with the parameters given in
Table 1, is simulated.

The three phase (as, bs and cs) output
voltages waveforms of inverter for no-load
condition have been presented in Figure 3. To
control the speed, it is assumed that at
steady-state mode of operation all state
variables are zero. The aim is to obtain a speed
equal to 160 rad/s. To achieve this the reference
signal is set on the speed equal to 160 rad/s.
The speed raises until a required level and a
load torque equal to 0.14 Nm is then applied on
the shaft of the motor. Applying the load motor
reduces the speed up to the reference speed.
Gain matrix, G, for the proposed motor is [12]:

3194.9 453.67 38.23 O
G=

0 0 0 3
For the sake of comparison, the output

TABLE 1. The Simulated BDCM Parameters.

R, L, L, Ly I, P 1J B,
Ohm mH mH mH Wb
334 733 0

— kgm? Nms/rad
1.10 0.0826 4 0.0001 O
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Figure 3. Output voltage waveforms of inverter for
no-load condition.

characteristics of the open-loop system are also
sketched on the same figures. It is clear that:

1. Applying a load torque on the open-loop
system causes a large speed drop;

2. Variations of the torque amplitude and
currents are larger than those of the similar
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Figure 4. Torque/time characteristic for optimal speed
control, including extended scale curve.
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Figure 5. Torque/time characteristic for open-loop system.

variables in the closed-loop system.
Performance of the optimal system can be
realized by comparing the two sets of the
curves. Figure 4, electromagnetic torque/time
for optimal control shows very large torque
variation immediately after t=0up to t=0.15
seconds, the extended scale figure is also shown
in order to clarify this. Figure5, electromagnetic
torque/time for open loop shows no such torque
variation but a continuous torque ripple. This
comparison between open- and closed-loop
performance must be made between Figure 5

24 - Vol. 13, No. 2, May 2000

250
10
200}
-~
o ot
100 Pk 10 f
4
Aw 50| . 20 " 1
0 ;' \ J ]
i -30! v
(rad sol ZJ; ﬂ/ L v —
TSN 05 1
-100f ﬂi"' -
-150} ‘
200}
-250L— : : ‘ :
0 02 04 06 08 1 12

time ()
Figure 6. Speed error curve for optimal speed control,
including extended scale curve.
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Figure 7. Speed/time characteristic for open-loop system.

and the extended scale curve in Figure 4. It is
evident that the controller offers overall
operating improvement for starting and
steady-state performance of the motor.

Figure 6 presents the speed error versus
time. This error initially was 160 rad/s which
must be diminished. In comparison with the
speed waveform of the open-loop system,
Figure 7, this curve approaches the final state
slightly later, but there is no ripple. Variation of
the currents due to the open-loop and
closed-loop systems indicates the elimination of
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Figure 10. Stator g-axis current for open-loop control
system.
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Figure 11. Stator d-axis current for open-loop control
system.

the current ripple during the steady-state mode
of operation which is a significant result
obtained using this control system.

Figure 8-11 present the currents variations
for optimal control and open-loop systems.
Comparison of these figures indicates the
advantage of the optimal closed-loop system
from eliminating the ripple and approaching the
required speed points of view.

Although it seems that a simplistic view of
the torque ripple issues has been taken in
BDCM, the obtained model can somehow
follow a behaviour of the real machines. For
instance such a model has been used in [10] and
[13], and confirmed by the experimental results,
to our best knowledge, eliminating the torque
using an optimal control in BDCM has not been
presented in the literature and comparison with
others work is not possible.

CONCLUSIONS

The attempt has been made for an optimal
controlofa BDCM. The nonlinear system of
the motor was transformed into a linear and
controllable system using a local
dipheomorphism andnonlinear controltheory.
The optimal control algorithm was then applied
upon the linear system. To eliminate the effects
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of the inverter harmonics, a model without
noise was used with an inverter-fed real motor
model. This leads to the elimination of the
harmonic effect on the system output. The
ripple of the motor diminished and motor kept
the constant speed.
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NOTATION
Or rotor angle
W, rotor angular speed
t time
J moment of inertia of motor
P number of poles
I, magnetization flux-linkage
g", 1ds” q and d axis current of stator
Lq4 d—axis inductance
Lg q—axis inductance
T, load torque
Vgs » Vds q and d axis voltage of stator
respectively
Ts stator resistance
Bm damping coefficient
G feedback gain matrix
T, electromagnetic torque
p operator (d/dt)
Lis leakage inductance of stator
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