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Abstract In this paper, we have extended and completed our previous work, that was introducing a new
miethod for linite differentiation. We show the applicability of the moethod for solving a wide variety of
cquations such as poisson, Laplace and Schrodinger. These equations are fundamental to the most
semiconductordevice simulators. Inasection, we solve the Shordinger equation by this method in several
casesincluding the problem ot (inding clectron concentration profile in the channel of a HEM'T. Inanother
seetion, we solve the Poisson equation by this method, choosing the problem of SBD as an example.
Finally we solve the Laplace equation in two dimensions and as an example, we focus on the VED. In this
paper, we have shown that, the method can get stable and precise results in solving all of these problems.
Also the programs which have been written based on this method become considerably laster, more clear,
and more abstract.
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INTRODUCTION

with boundary valuc conditions. There are

The study of complicated systems using compulter
stimulation has become a growing task since the
development of computers. In the electronic device
domain. in most cascs, computer simulation means

numerical solutions of partial differential equations
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numerical methods for solving these boundary valuce
problems, namely. FD mcthod and IFE method | 1.
Although both methods have beenused forelectronic
device simulation, but the FD mcthod is more con-
ventional (See References 2 and 3 for a general

review, References 7 to 11 for FD method and Ref-

ol. 13, No. 1, February 2000 - 89



crences [3and 14 for FE method). Inaprevious work
|4]. we focused on the FD method and introduced a
new matrix formulation for it based on a sct of new
formulas for finite differentiation which have high
precision and flexibility. In scction 1, we review
thosc results and in the subscquent sections we extent
their applications to a varicty of cquations that arc
important in semiconductor device simulation. In
section 2, we solve the Schrodinger equation in a
quantum well structure and compare the numerical
results with analytical results to demonstrate accu-
racy of the method. Then we solve it in o HEMT
structure as ausclul application. [n section 3 we solve
the Poisson cquation inan SBD. There, we introduce
the fist of our computer program to show how the
proposed method can cffectively reduce the size of
the program and increase its clarity. In section 4, we
solve the Laplace equation in two dimensions for a
VIED. Here the main objectis reducing the number of
variables (mesh points) and increasing the speed.

Finally in scction 5 we make some conclusions.

1. NEW FORMULAS FOR FINITE
DIFFERENTIATION

The I'D method traditionally uses these well known
formulas for finite-dilference approximation ol de-
rivatives | 1.

PR RT SR

o\ A X
.+H,?‘ﬁ.,,‘/,/:|\1=w_éf)_ (2)
dx Ax
St +dl = [(xo+Ax)-flxo-BX) (3)
o x 2Ax
R S (4)

dr | = [(vo+AN)-2f(xg)+[(xo-AX)

d A" x
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Many authors have tricd to modily these formulas.
An interesting work is introduced in Referencel 2.
We have used the formulas that come from fitting
a polynomial to objective function. An N point for-
mula uses an N-1 degrees polynomial. For example,

for a 5 point formula, we have:
y— -2 23 <
Y= a,+a x+a X+ d X a gy

For the moment, we assume that we want the deriva-
tives in the point x,;= 0. Also we take all Ax to be the
same (of course the results, arc general and not
restricted to these limitations). Several S point for-
mulas can be obtained based on various possible
arrangements ol the points in the environment of the
objective point. If, for example, we want onc point to
be on the lelt and three points to be on the right of the

objective point, we have:

| aqo
| 0 0 0 0 a Y (0)
I ax =t y(l (5)
16 as y(2)

81 .. J”J Sy (3)

Lo 3 9 27

Alter solving these equations, the coefficients a o a,
arc obtained and we get the following formulas for

{inite differentiation:

Yix)=a = 2IA [ -3 y(x,-Ax)- 10y (x) +
X

I8 y (x, + Ax) - 6y (x, + 2Ax) + vy (x, + 3Ax)| (6)

y (x) =2a,=- l = [T1y(x,-Ax)-20y (x) +

12 Ax
6y (x, + Ax) + 4y (x, + 2Ax) - y (v, + 3AY)| (7)

The accuracy ol conventional formulas is very poor

not only relatively (with the same Ax) but also abso-
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lutely (with any Av) when they are compared with the
above formulas.

By the various formulas discussed above at hand,
we can construct a number of matrix operators for
solving differential cquations in the finite dilTerence
approximation [4]. In the finite difference approxi-
mation ol differential cquations, we discretize the
cquation by dividing its domain into N (equal or not
cqual space) picces. For example if our main cqua-

tion be:

—~
oo
~—

Then after discretization, we have a set of N coupled

cqual ons as:

VO, AN A+ a (v EAY) (x + AN ) = B +iAY)
i=10,2,..,N 9)

Now we wish (o have amatrix operator for the second
order differentiation. These operators have the fol-

lowing general form:
= AVEAN (10)

"A" is the matrix operator for the sccond order
differentiation and "An" is a vector which contains
initial conditions. Suppose, for example, we know v,
and v, ‘Dirichlet Boundary conditions) and we want
to usc 5 point formulas. For the first equation, (i = 1)
we must use a furmula which contains the points
numbered 0.1.2,3 and 4. This mecans that it is a
formula with onc point on the left and 3 points on the
right of the objective 7 = 1 point. It is the formula
numbcred (7). For the sccond equation, (7 = 2) we
must use a formula which contains the points 0,1,2,3
and 4. This means thatitis a formula with 2 points on
the Teftand 2 points on the right of the objective i =2
point. These two cquations have a contribution to

initial valuc vector "An". Other cquations from i =3
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to i = N-2 use the formulas with 2 points on the lclt
and 2 points on the right ol the objective point but
have no contribution to the vector "An". Equations
i =N-1andi=N arc symmetric form ol thc cquations
i=2andi=1 which were discussed above and also
have a contribution to "An" corresponding to the
boundary valuc in y_ . If' we take all Ax, equal, the
matrix operator "A" and initial value vector "An"

have the following lorm:

0 6 4 10 0 W
6 30 16 -0 0
| 406 30 16 -0 0 j
A=—D——1 0 0 1 16 0 16 1 0 |
12Ax 0 0 -l 6 30 16 -]
0 0 116 30 16 '
0 0 a4 6 2 |
IR IRN())
-y ()
0
An = % (rn
12Ax
0
-y (N+1)
Iy N+ 1)

In casc of Ncumann boundary conditions [13], we
can find, from the first derivative formulas, the nec-
essary relation at the boundaries between the function's
valucand itsderivatives. All other things arc the same

as Dirichlet boundary conditions.

2. NUMERICAL SOLUTION OF THE
SCHRODINGER EQUATION

The Schrodinger cquations is the most important
cquation for modern nanoscale semiconductor de-

vices.

-7 e vo=Lg

2m
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AL the Tirst step, we solve this equation for the most
simple case, (V= 0) in vanishing Dirichlet boundary
conditions (correspond to inlinite quantum well). In this
case. the equation has exact analytical solutions which
we can compare our results with them. In Figure | we

gies (normalized

show the calculated cigenvalue energ
with /i*/2m) based on our method using the 5-point and
7-point formulas in comparison with the conventional
formulas and also the exact solutions. Clearly the accu-
racy of our formulas is better than the conventional

formulas, with the exact solutions as reference.

more realistic problem, we consider clectron con-
mement in the channel of @ HEMT [6]. In (his
structure, a triangular shape potential well, which is
formed at a GaAs-AlGaAs interface, confines clec-
trons. Figure 2 shows the potential profile used in our
calcutation (same as Reference 15). This potential
proflile must be added to the diagonal terms of the
matrix operator for the second order differentiation.

IFigure 3 shows the caleulated results for the
around state (consistent with Reference 15(Figure2))

and two exited states of this system.

J. NUMERICAL SOLUTION OF THE
POISSON EQUATION

Every device simulator needs (o solve the Poisson

3 T T v T T v v v
Bnergy eigenvalues {normalized)
251 ** % conventional formulas 4
. S-pomts formulas /’
__ analyuc (exact) 7
ok |- = 7-powts formulas Ryt
[ 1
L
~
1.51 ,r'//' * B
27
i
1 E
0.5F 4
o " - " n L
1 2 3 4 5 [¢] 7 8 9 10

eigenvalue's number

Figure 1. Accuracy ol various formulas.
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Figure 2. The potential profile.

cquations.
N V=- %(N“ =N, +p-nn)

This cquation was solved using scveral methods (for
example with FD in Reference 11 and with FE in
Reference 14 and in several devices before. In this
scction we want to solve it using our method in one
dimension for a SBD |6] in the cquilibrium state. [n
this case, duc to dependency of electron concentra-
tion to the potential profile, we encounter anonlincar

second degree differential cquation with Dirichlet

x 10" Fig. no.3
16 T T T T T
14 squared ampftude of wave function 1
12+ The first (solid hne), the
second (dotted line) and the
. third (dash-dot line) wave
1or S function m the channel of 1
; HEMT
8t . i
\
6 v E
\
4F \ R
\
2} b E
-
" A L
0.7 1 11 1.2 1.3
x(m) x107

Figure 3. The calculated results for the ground state.
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boundary conditions:

Jv

)

T S+ gV KT
. - ‘;}(Nn_ N(‘( i /}\[)
X )

The tollowing small and very interesting program
can do this task. Itis very clear and abstract due to the
usage of full matrix calculation and high precision
formulas. These features climinate the need to any
mesh space adjustment and normalization procedure

which arc necessary in other routines [2,3.11].

% 'Fhis Program Solves Equilibrium State of Shotcky
Barricer Diode

for i =1:50

n = ncFEexp ((ef + v-eg)/vts % Electron profile

I=a%v + (q/tepsOFepsr)*(nd-n) + an*vbound;

% N-R Objective Function

fnorm = "*f; % Norm of Error

pause ('Press Ctrl + Break if the error is sufficiently
small")

d = a - (q/(epsOFepsr)#(zeros (20,20)-diag (n,0))/vt);
Ye Derivative of “f?

v=v-inv(dD)*f; % New Value for Potential Profile

end

Physical, material and device constants like eps0,
epsicegovt, ef.g.nd | 3] and also matrix operator ‘@’
and boundary condition vector “vbound® in addition
to an nitial estimation of potential profile must be
previously defined for the program. Usually less than
1O iterations are needed for the program to be con-
verged. Figure 4 shows the calculated potential pro-

fite as the result.

4. NUMERICAL SOLUTION OF THE
LAPLACE EQUATION

I this section we solve the Lapalee equation in two
dimensions. Boundary conditions are so designed that

the device be a VED. The device's shape is shown in
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Figure 4. Equilibrium potential profile in SBD.

Figure 5. Here, we can see another important feature ol
the method. Conventional algorithms based on the IFD
mcthod, often use uniform or nonuniform rectangular
meshes [3]. This type ol discretization generates many
unnecessary points (variables) and therelore terminat-
ing in huge matrixes. In our method, having the various
formulas for finite differentiation at hand, we can elimi-
nate, as can be seen [rom the figure. unnccessary points.
This elimination reduces the required memory space
and increases the speed, although retains the matrix
sparsity. We use only 35 points for this simulation. The

obtained results arc shown in Figure 6.

CONCLUSION

In this paper we review our previously published

hot contact

Figure 5. VEQ structure.
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Figure 6. Potential contour for VED.

paper about introducing new formulas for finite dif-
lerentiation and then, apply them to the most impor-
tant cquations in the arca of clectronic device simula-
tion. These are schrodinger, Poisson, and Laplace

cquations. We choosce as illustrative examples, quan-

(um well structures, SBD. and VED. Each onc of

these three examples shows one of the three main

features of the method. The higher accuracy is dem-

onstrated in the first example while the ability of

making programs more abstract and clear is demon-
strated in the sccond example, In the third example,
we exhibit the speeding up and the required memory
reducing features of the method. In cach case this
method has obvious superiority over conventional

algorithms without almost any additional cost.

ABBREVIATIONS

141 Finite Element

D Iinite Dilference

HEMT tligh Elcctron Mobility Transistor
SBD Shotcky Barrier Diode

V9D Vacuum Lilectron Device
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