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Abstract  Power system stabilizers have been widely used and successfully implemented for the
improvement of power system damping. However, afixed parameter power system stabilizer tends to be
sensitive to variations in generator dynamics so that, for operating conditions away from those used for
design, the effectiveness of the stabilizer can be greatly impaired. With the advent of microprocessor
technology an adaptive controller, a controller which adapts itself to the changes in system dynamic
characteristics, offers an attractive proposition in power system control. The heart of the so-called an
adaptive self-tuning power system stabilizer is its identification scheme by which unknown system/
controller parameters are estimated. This paper addresses some of the basic issuse in implementation of
arecursive least square estimator, when applied to an unknown power system. Digital simulation results
are presented.
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"INTRODUCTION

Synchronous generators are equipped with Automatic
Voltage Regulators (AVR) to maintain the voltage close to
the desired value as operating conditions and system load
change. The general trend towards constructing larger unit
sizesand longer transmission lines, mainly due foreconomic
reasons, hassignificantly reduced transient stability margins
[1}] so that the use of high gain, low time constant voltage
regulators in synchronous machines employing thyristor
excitation is the common industrial practice [2].
Nevertheless, the approach has a detrimental effect on
system damping [3] so that to compensate for its effect and
to improve the system damping behavior during transient
conditions, an additional control signal via the so called
power system stabilizer (PSS), may be superimposed on
the normal voltage error signal of an automatic voltage
regular [4]. Since the generator dynamics change
significantly with the operating conditions and system
configurations, it is very difficult or even impossible via a
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 priori design to determine a single set of controller (PSS)

parameters which provides satisfactory performance for
all conditions [5]. It is for this reason that an adaptive self-
tuning power system stabilizer, i.e., a stabilizer which
adapts itself to changing dynamic characteristics has so
much potential to improve power system performance.
A self-tuning controller is capable of adjusting its
controller parameters. A computer, as the heart of the
controller, may be used to evaluate the system dynamic
characteristics on-line, and adjust the regulator parameters
according to a prespecified strategy (see Figure 1), Self
tuning algorithms may be divided into two main categories

{6):

Implicit types: where the controller parameters are
identified directly.

Explicit types: where the system parameters are
identified on-line and used to calculate the controller
parameters.

In either of the aforementioned types, a self tuner
contains a recursive parameter estimator. Many different
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estimation schemes have been used, for example stochastic

approximation, least squares, instrumental variables,
extended Kalman filtering and maximum likelihood
methods. These are covered in some surveys [7,8] and
books [9,10,11].

For high signal/ noise ratio (say > 10), which is typical
of the systems studied in this paper, the recursive least
squares algorithm is suggested. In the section which follows,
this algorithm is described in some detail. Thereafter, basic

issues in implementation of the algorithm, namely
persistently of excitation, sampling period selection and

model order selection and validation are discussed and
digital simulation results of a typical power system are
presented and the capabilities of the algorithm are
appreciated.

'RECURSIVE LEAST SQUARES
IDENTIFICATION

When a digital computer is used for control, it is
convenient to design and analyze the system in terms of a
discrete model. A single-input/ single-output randomly
disturbed system can be described as:

A Q") yO=q*B@") u(t) + V(g") E®) (1)
“where
Al@)=1+agq'+..+a, q" )
B(@)=b+bq'+..+b, q" (3)
Ci@Y=1l+c q'+..+c q™ 4)
Design Parameter
calculation estimatlion
Regulator
parameters
OUTER
Command
——{ Ri lat I
e 3
INNER LOOP

7Figure 1. Block diagram of a self-tuning regulator (design
calculation block is eliminated for implicit types)-
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k: system time delay in sample instants

q': backward shift operator, ex., g*u(t)= u (t-k)

y(t), u(t): system output and input, respectively,
corresponding to the sampling instant

&(t): an uncorrelated random sequence of zero mean which
disturbs the system

As no pure delay is involved, for the deterministic (or near
deterministic) system studied in this paper, the governing
equation is:

A(QY) YO =q" B@) u® (5)

If the system order is known, then the knowledge of the

input disturbance and the output response can be used fo
determine the parameters of the system model via least
squares identification as follows:

Equation (5) can be written in difference form as:

YO =-a, y (t-1) -a,y(t-2) ... -2,, y(t-na) +

b, u(t-1) + ... + b, u(t-nb) (6)

“or in vector / matrix form as:

Yy =x ()80 M

“where

0"=[a,..,a,b,...b,] (8)

XO=[y @1, ,-yt-na),u(-1), ..., u(t-nb)] 9

‘As time progresses and additional samples are available,

the following set of relationships can be established:

Y@ 1 x(® |
CyeD o x@D g (10)
YN L xEN)
or
Y =X6 7(11)

where Y and X are left hand side and right hand sidé
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vectors, respectively.
Consider now, how an estimate of the parameter vector 9,
canbe obtained by aleast squares approach. Using estimate
8, the prediction of the system output Y is given by:

Y =X6 (12)
and the prediction error € by:

e=Y-Y=Y-X6 “(13)

The value of 3 which minimizes the squares of the error can
be found as follows:

s:e?a:(Y-x'é)T (Y-Xa) (14)
ds = 2X7(Y-X0) = 0 (15)
de

hence

8= (X"X)" XY (16)

So by providing the observation matrices X and Y to the
estimator, an estimate of 0 can be obtained provided (X'X)
is non-singular. If steady state values are used for the data
record, rows of X become equal, making (X"X) singular.
To avoid this occurrence, the system variables should be
changing sufficiently. This can be ensured by employing
a persistently exciting input.

The previous formulation is suitable only for off-line
estimation. It is possible, however, to convert it into a
Lecursive form whic!l enables old estimates (denoted by
0 (1) to be updated as 8 {t+1) as new databecomes available
giving anon-line facility. Appropriate rearrangements and
manipulations result in the following recursive scheme:

i) Form x (t+1) using the new data

SN

GEN

Equ.: Re+JXe
7 Figure 2. Single machine infinite busbar system under study.
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Vref

i) Form € (t+1) using

e (tHl)=y (1+1) - x (++1) 0 (1

iii) Form P (t+1) using:

Pus)= P/l X EDXGEDPO |
P

\" 1+x@)POXT @)/

(where P(t) = (X™X)" is introduced)

iv) Update 6(t) obtain 0 (1+1) as:

6 (t+1) =6 © + P (t+1) X" (t+1) € (t+1) (19

Initially 8(t) may be set to zero and P made a large
diagonal matrix (say 10°I). Astime increases, the elements
of the covariance matrix, P, will decrease in size as the
estimates become more accurate. If, therefore, the system
parameters change, the ability of the recursive estimator to
respond will be limited by the small size of the P (t) matrix
elements. Toovercome the difficulty, the forgetting factor,
p (.97-1.0) is introduced which serves to progressively
phase out the effects of the past data. The covariance
matrix does not reduce to zero now and the tracking of time
varying parameters can be accommodated.

BASIC ISSUES IN IMPLEMENTATION OF A
RECURSIVE LEAST SQUARES ESTIMATOR

Continuous and Discrete System Representation

‘The continous system under study is a single machine

'SYSTEM UNDER STUDY

- Transaission Systel__

= sal AVR and Exclter and Generator Ea

Por w
L)

[vshout

B’

IDENTIFIER |A

CONTROLLER

COMPUTER

‘Figure 3. System representation with a self-tuning PSS
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“connected 10 a large power system (represented by an
infinite busbar) via two parallel transmission lines as
depicted in Figure 2. All dataand information are available
from Reference 12. The system representation with the
adaptive PSS is shown schematically in Figure 3.

The discrete system prediction model representing the
system behavior between points A, and B, in Figure 3 is
given by:

A (@") y(®=gq" B (q"u (t) "(20)
where y(t) and u(t) are the values of the output and input at
each sampling time instant and:

A@@Y=1l+aq'+ +a q™

‘B(q)=b,+b,q'+ +b,q™ L)

Basic Issues

System identification is carried out through the standard
recursive least squares method. In estimating system
parameters, the persistence of the disturbance, the sampling
period and model order selections are of great concern to
the analyst.

Persistent Excitation

As described above an estimate of the parameter vector can
be obtained provided the system variables are changing
sufficiently, For the deterministic or near deterministic
system considered in this paper, this can be ensured by
employing a persistently exciting input. Two signals are of
interest here:

White noise
Pseudo - Random Binary Sequence (PRBS)

Although both of them have been effectively used,
white noise suffers from the disadvantage that its generation
is more difficult. Moreover, it may result in a longer
converge time. The PRBS can be more easily generated in
adigital computer. The signal can take on only two states,
say +aand-a; the state can change only at discrete intervals
of time At; the change occurs in a deterministic pseudo
random manner and the sequence is periodic with period
NAt where N is an integer. The effective frequency band
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‘covered by a PRBS is [13]:

“from  1/NAt to 1/3A Heniz (23
“The power of the signal can thus be controlled for the
frequency range of interest. For the studies conducted in
this work, either a white noise signal generated by a
computer system library or a PRBS of 0.1 sec bit width
(At= 0.1 sec). and 6.5 sec. sequence (N= 63) duration is
used so that the frequency covered is from 0.16 to 3.3 Hertz
which is the normal frequency range of interest [14]. The
amplitude is normatly chosen such that the system output
(input to the computer) deviation from the operating
condition is within +1%.

“Sampling Period Selection

“The choice of the sampling period is of great importance.
If is too large, the sampled-data representation may be

entirely erronecus. If it is too low, the process computer
may be unable to perform the required task in the given

period. A study conducted by Lee [15] shows that a
sampling period of up to 100 msec may be considered
acceptable for a digital power system stabilizer operating
at a natural frequency of around 1 Hz. This sampling
period is used throughout this work.

‘Model Order Selection and Validation

"To sufficiently represent the system dynamics, the

“TABLE 1. Various System Parameters/ Operating Conditions

Under Study.
7 Reative Ext. . )
Condition | Active power| power .| Reactance | Ve
p.u. p.u. pu. p.u
5 P 3eie g 94
2 10 S5 08 10
3 v S5 5 1 10
4 T8 S5 b2t |10
s | vw ] e a0 o
6 *5 ko 0. 10 1
7 10 -7 15 1.05
8 s 3 efiwm B Al B "“'95_1
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prediction model order (Equation 20) should be chosen
with great care. The order should be chosen as low as
pussible to save computational time but not so low as to
sacrifice the accuracy of the system dynamic representation.

As an aid in choosing the model order, eigenvalue
analysis may be employed. Digital simulation studies are
carried out by using Advanced Continuous Simulation
Language (ACSL) [16]. Extensive eigenvalue analysis is
performed by linking ACSL with a linear analysis package.
Eight different operating conditions / system parameters
are considered (see Table 1). The general pattern of all
eigenvalues shifts is shown Figure 4 whenever the gain of
a conventional PSS of the form given by:

7G(S)=K(1+O'ISS) lOS' (24
, 1+0.09s (]+10sf @

varies over a wide range (for details see Appendix A). The
first mode observed is associated with rotor oscillations
while the second one is primarily associated with the ficld
voltage. The results clearly demonstrate that the latter
(normally called exciter mode) is highiy damped in open
loop conditions (notice where the open loop eigenvalues
are located). This suggests that the system dynamic, being
mainly dictated by the local mode, may be estimated by a
second order prediction model.

To actually confirm the validity of the assumption, the
open-loop identification results for a typical system
condition (P=1.0p.u.,Q=0.0p.u. and Xe=0.1 p.u.), with
the electrical power as the input are shown in Figure 5,
when a Gaussian noise or a PRBS signal perturbs the
system. With faster convergence for the PRBS case, all
parameters converge to their final values with an associated
large reduction in the trace of the covariance matrix.
Another test shown in Figure 6 further confirms that the
estimated system output closely follows the sampled data
output when a PRBS is applied to the voltage reference
junction. Tests were also carried out with the speed as the
input to the stablizer with similar conclusions. For all eight
conditions, the estimation results are summarized in Table
2.

Comparing the natural frequency and the damping
ratio (dictated by the system pole locations) as calculated
from the estimated model with those of the simulated
system will further demonstrate how the system dynamics
are closely predicted by the estimated model. The validity
of the estimated zero locations, is, however, checked by
comparing the system phase lag (between output, namely,
electrical power or speed, and input, i.e., the V_ junction)
atthe frequency of the mostinterest (i.e. natural frequency)
as predicted from the discrete model with that of the
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"TABLE 2. System Parameters for All Conditions

ip! CONDITIONS
INPUT [ - -
NEREE NN R KRR

11

[2)-161 ]-1.831-1.12 J-1.40 [-1.18 1-1.68 I-L.461 -1.60
'SPEED }a,|0.98 [L.It 10.75 10.90 |0.81 ] 0.98 |0.98] 0.95
b,]0.11 | 020|021 043 (046 [0.123]053| 0.08]

b, [ 035 | 0.65 j0.55 [124 [125 [odof1ea] 0.22
TET T3 -TOT LR T T8I a5 155
IELEC. 2,1 098 | 1.10] 0.83] 090] 0.8 | 0.94§0.98] 0.92
I b,10.29 | 0.3810.48 [ 0.97( 1.011 03411261 0.19

" — L — L} T T
POWER (b |.0.30[ 0.481 0381 -0.62 -0.711 029 0.811 -0.17
PO 1 1 1 1 1 M|

~ simulated system, the following procedure is followed:

*For the estimated model, the undamped natural
frequency (w ) and the damping ratio (€) are calculated
using the standard procedure [17]. The phase lag produced
is calculated from the prediction model with q replaced by
exp (j , T"), where T" is the sampling period.

*Forthesimulated (continuous) system, the eigenvalue
analysis yiedls the natural frequency and the damping
factor. An analytical approach presented in Reference [3]
is then employed to calculated the phase lag at the natural
frequency.

Theresults are summarized in Table 3 with the following
conclusions:

*The natural frequencies, damping factors and the
phase lags are in close agreement. While the former two are
dependent upon the a parameters, the phase lag is sensitive
to all system parameters (i.e. a’s and b’s). Being more

dependentupon the parameters, the discrepancies observed

TABLE 3. Comparison Chart of Simulated (Continuous)
System and Estimated Model.

SYSTEM CONDITION: P=1.0p.u., Q = 00p.u.Xe= 0.1 p.ui.,
Veo = I p.u.

| "ESTIMATED |REALSYSTEM '
|

a [a|b | b|o £ Jllag“‘|;u)u E I|lag"“‘
| | |

|
1 | ]
Speed -1.]8|0.81| 0.46| 1.25| 137 |0.122| 127°| l.36| 0.16|106°
as input
|
Electri.
power
as input

-1.1410.8001.011 -71] 1.410.126] 42°| 1.36] 0.16] 16°

“*Phase Lag of the Estimated Model at Natural Frequency

** Phase Lag of the Continuous System at the Natural
Frequency
(Between Speed or Power and the V_, Junction)
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Figure 4. Eigenvalue analysis for PSS of Eqn. 24
a) general pattern for conditions 1,2,6 and 8
b) general pattern for conditions 345and 7
(For definitions, see Table A, Appendix A)

inthe phase lags are mainly due to the inaccuracies involved
in the identification process. However, as suggested by de
Mello andConcordia, as long as the difference between the
machine phase lag and the phase lead produced bv the PSS
is within 30°,acceptable performances should be achieved.
Reference [18] serves to show that for the self-tuning
stablizer tuned based on the aforementioned estimated
model, this criterion is well satisfied.

*The 90° shift between the speed and electrical power
suggests the system phase lag between either of these
outputs to the system input (V junction) as predicted by
the estimated model should be 90° out of phase. The results
in Table 3 demonstrate that in the natural frequency of
interest, this is closely satisfied.

'DISCUSSION
Simulation results of the typical power systcm studied

show how effectively an identification routine may be
employed to predict system dynamic characteristics. The
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Figure 6. Comparison of the actual and estimated system output
Solid: estimated output,
Dashed: actual output (sampled data)-
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scheme has been effectively employed in a self-tuning
power system stabilizer as described in References [19-
24]. However, the capabilities discussed are not limited
only to self-tuning applications, but to predict power
system dynamic characteristics when system data are not
available or models are not accurate.

It should be mentioned, however, that if a greater
accuracy and asaresultabetter matching between estimated
model and real system are required, a third order model
may be employed. These results in an estimation of an
additonal pole and extra burden on the process computer
and if can be tolerated, is justified [25]. In multimachine
cases, higher model order should be definitely employed
to predict interarea as well as local modes [26].

'CONCLUSION

The paper described basic issues in implementation of
an identification routine of a self-tuning power system
stabilizer. The scheme is quite fast and well suited for real
time applications. On-line results together with some
practical issues in real time conditions will be published
soon, The authorisin the process of analyzing identification
routines in multimachine situations.
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“APPEDNIX A

" With electrical power as the input to the PSS, the required phase

"TABLE A. Summary of Eigenvalue analysis.

; 1 1 1 ] - T 1
con.l' con.2 Jcon.3 | cond | con.5 | con6l con. 7| cond

k! I s| w25 |28 |26 4 |28 ) 4

kK2 |90 | 58 [75 [ 33 133 |75 27 [130

“ns [41.01 400 [500.] 450 [470 | 400 !450 F 40.0
1

44

‘ +.54 [-2.14 [-1.04 §-1.4%5 -O?ij|02:tj 0.5 .
i]se

s1 08173 ] 84 15371
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Sio | 15| o33 | 65 |65 | 65 | 103 | 62 |14

gs 62 | 340 | 65 | .65 65 82 | e |70
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lead is normally low so that a single stage lead PSS is generally ' 3. The frequency corresponding to instability gain in radisec.

sufficient. The gain, K (in eqn. 24) is varied over a wide range. 4. Local mode poles for K =0

For the general pattern shown in Figure. 4, the detailed results are 5. Local mode poles for the optimum value of K
shown in Table A (see also ref. [5]). 6. Damping factor for local mode at K = 0

1. Optimum vaiue of K 7. Dampt:ng Jactor for loca'l mode at optim.um gain.
2. The value of K corresponding o instability 8. Damping factor for exciter mode at optimum gain
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