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'ABSTRACT

Finding the best weights of the state variables and the control variables in the| objective flpdtion| o
a linear-quadratic cantrol problem is considered, The weights of these variables are consjdefe o diagiana
matrices with appropriate size and so the objective function of the control problem become o | of [this
diagonal elements of these matrices. The optimization problem which is discussed in this papet|is|t imjzethe
objective function of the control problem as a function of these diagonal elements, when these|eldments el poisitive
and the their sum in each matrix is a constant. This problem is named "the substitution| between dbjadtives!|in
ecocnomic planning literature. In this paper, it is proved that the optimal solution of this pridbldm [is [in dne|of thid
extreme points of the feasible set subject to the positive definiteness of these diagonal |matrices] |A |methad| {d
selecting this extreme point is offered and then the unconstrained optimization problem is gd by (the steepest
descent method. The resulting optimal solution is the selected extreme point. Finally, the procedure is|used ta salvie
a numerical example,
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INTRODUCTION

The objective function of a linear-quadratic
tracking problem is usually considered as the
sum of squares of the differences between the
state and control variables from their desired
values with different weights. These weights are
entered in the model as two diagonal matrices
with appropriate size, one for the state variables
and the other for the control variables. The
diagonal elements of these matrices show the
relative importance of their corresponding
variables in the objective function; i.c., the more
this coefficient, the less the difference between
the corresponding variable from its desired value
in the optimal solution. So changing these
coefficients will change the optimal solution and
the minimum value of the objective function of
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“the control problem, and the question is how the

optimal values of these weights are computed.
This problem is named the substitution between
objectives in economic planning literature, since
the diagonal elements of these matrices
determine for reaching one of the objectives,
how much we are ready to be far from the other
objectives. In practice, this problem is solved by
the trial and error method; i.e., the diagonal
clements of these matrices are selected according
to the policy-maker preferences and if the
solutions are not favorable, the appropriate
change will take place in the coefficients of the
variables which have unfavorable values. This
procedure is repeated as much as all of the
resulting solutions become favorable from the

policy-maker’s point of view.
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In this paper, the problem of finding the best
diagonal elements of these weighting matrices is
formulated and solved as an optimization
problem. In this manner, the decision variables
of this optimization problem are the same as the
stated diagonal clements, its objective function is
the same as the control problem objective
function, and its constraints are the sum of the
diagonal elements of each matrix being a
constant and these elemenis being nonnegative.
Since the objective function of this problem is a
concave function of its variables which should be
minimized and the problem feasible set is a
convex set, so the optimal solution is located at
one of the extreme points of the feasible set.
This extreme point is guessed using a method.
Then using necessary changes, the optimization
problem will change to an unconstrained
problem and will be solved by the steepest
descent method. The resulting optimal scolution
agrees with the guessed extreme point.

'PROBLEM STATEMENT

Few papers relating to this subject can be
found in the literature. Here, we refer to some
of them which have a limited relation to the
corresponding subject. Sengupta [1] and Pindyck
[2] formulate and solve the economic
stabilization policy as a lincar-quadratic control
problem. The problem of optimal economic
stabilization policies under decentralized control
and conflicting objectives is discussed in Pindyck
[3], and the same problem with multiple
objectives is considered in Deissenberg [4L The
problem of the substitution between objectives is
studied more than elsewhere in Rustem,
Velupillai and Westcott [5]. They start with an
initial weighting matrix and offer a method to
update this matrix according to the policy-maker
points of view. This iterative procedure continues
until the optimal solution which is acceptable to
the policy-maker is found for the problem. The
method of updating the objective function
coefficients is developed in Rustem and
Velupillai [61
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Consider the lincar-quadratic control problem
for a discrete-time system in steady state with
the system equation

x (k +1) = Ax (k) + Bu (k) (1

" and with the objective function

I= éotx' ®Qx®+v @Ry ®

which should be minimized, when x (k) is the
n-dimensional state vector, u(k) is the
m-dimensional control vector, and A, B, Q and
R are constant matrices of appropriate size.
Suppose x (0) is given, the system (1) is
controllable, and both of Q and R are diagonal
positive definite matrices. Tl}en as it is known
[7), the optimal control in stage k is
u(k)= -Kx (k)
when K is an mxn constant gain matrix which

_satisfies

K=(R +BPB) -! BPA
and P is an nxn symmetric positive definite
matrix which is the solution of the following
Riccati equation:

P=Q+APA-APB(R + BPB) -! BPA (3
Equation (3) can also be written as a function of
the matrix K; ie.,

P=Q+ A'PA - A’PBK @
Also, the minimum value of the objective
function can be written in terms of the matrix P

as

Min. J = x’(0) Px (0) (5)
Now, we want to obtain the best values of
the diagonal elements of the matrices Q and R
by solving an optimization problem. Suppose the
i-th element of the matrix Q main diagonal is
denoted by o; and the j-th element of the
matrix R main diagonal is denoted by B,— ; e,
Q = diag [o, 0y, ooy 0ta),
R = diag [8,.B,, - Pm].
In addition, the column vectors ov and B with the
dimensions n and m, respectively, are defined as
o =0, 0, e
B =@, By o ).
Then the matrices P and K, and so the objective
function J are all functions of the vectors & and
B and the optimization problem of this paper is
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to compute the vectors o« and B in the following:
Min. J (o, B) = x* (0) P (o, B) x (0)

n
> oi=a
=1
s.t. E Bi=b ©®
=1

o 20, Bj2o, for all L j

when a and b are positive constant vaiues.

As seen in the model (6), the sum of the
diagonal elements of each of the matrices Q and
R is considered equal to a positive constant.
Because without adding these two constraints, the
problem has the trivial solution ¢; =B;= 0. Also,
for modeling the problem of substitution
between objectives; i.e., for reaching one of the
objectives how much we are ready to be far
from the other objectives, it is necessary to add
these two constraints. On the other hand, since
the matrices Q and R should be positive definite,
the sign constraints should be stated as o, >0,
B,->0- But since the feasible set of the problem
is an open set in that case, and the extreme
point is not defined for such a set, at present the
problem is exactly considered like the model (6)
for the mathematical solution in the next section.
Then, the positiveness of o, and B; will be
provided in the numerical solution of the
problem.

'MATHEMATICAL SOLUTION OF THE
OPTIMIZATION PROBLEM

Since the objective function of the model (6)
should be minimized and its feasible set is
convex, if we show that the objective function is
concave respect to o and B then it is proved
that the optimal solution will be located at one
of the extreme points of the feasible set.

Proposition- The objective function of the
model (6) or J(o, P) is a concave fucntion of
o and B.

Proof- Suppose the feasible set of the model
(6) is denoted by F. Then by definition, J (e, B)
is a concave function of ot and B if for every o,
B! € F and o?, B2 € F, and any real number
0 ¢ 8¢ 1, we have
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X' (0) P(Boxl +(1 —B)oe2, 681 4-(1—6)B2)x (0)

20x{0) P (au!, BL)x(0)+(1—6)x (0) P(ce2, B2)x(0) (7)

Suppose the diagonal matrices corresponding
to the coefficient vectors o', o?, B! and p? are
denoted by Q, Q,, R, and R, respectively. Also,
the solutions of the Riccati equation (3) for the
weighting matrices (Q,, R)) and (Q,, R)) are P,
and P,, respectively. In addition, the solution of
this Riccati equation is denoted by P for the
weighting matrices (Q,+Q,, R,+R,). By the
Riccati equation properties, its solutions will be
8P, and (1-6) P, for the matrices (6Q,. 6 R,)
and ((1-6) Q, (1-18) R,), respectively.
Therefore, the inequality (7) will be satisfied if
we can prove

PP +P, @®

The inequality (8) is proved by induction, In
practice, the solution of the Riccali equation is
obtained by using an iterative procedure; i.e., the
last value of the matrix P is put on the right
hand side of this equation in order to compute
the next value of this matrix in each iteration,
starting with P!'=Q, when PK denotes the value
of the matrix P in the k-th iteration. Then
according 1o the induction method, assuming

k k [N
P ;Pl +P2 ,

‘we want to prove

Pkt 3 Plk*l + pzkﬂ
The following equations show P K1, p k*!
and PX*! in terms of Pk, P ¥ and Pk,
respectively:
PK1=Q +Q,+ A’'P¥A - A’PFB (R,
+ R2 + B PEkB) 1 B PkA,
Pk1=Q +AP¥*A-APFKB (R,
+B'PXB) T B'PKA,
P11 =Q, + A'P*A - A'P,fB (R,
+ BP,XB) 1 B'P KA,
So for proving the inequality (8), it is sufficient
to show the following inequality:
A'PFB(R, + R, + BP*B)™! B'PkA
{A'PYB (R, + B'P ¥B)'B'P *A
+ APFB (R, + B'P,*B) I B'PA )
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According to the induction assumption, we have
k k k
PE3 PS5+ PS5
and so the following inequalities are resulted one
after the other:

B'P'B ; B'PXB + B'P'B,

R, +R,+ BPP*B; (R, + BP’B) +
(R, + B'P,*B),
(R, + R, + BREB)I¢ [(R, + B'P¥B) +
(R, + BP}BI ¢ (R + BPXB) T +
(R, + BP,kB) 7,

A'P¥B(R, + R, + BP¥B)" B'PKA ¢
A'(-PYBR, +BPFB) I B(-PHA+
A’ (-PY)B(R, + BP,B) ' B'(-PK) A (10)

On the other hand, we can write P¥ 3 P ¥ and
P¥ 3 P¥, which result -P ¥ ¢ -P.¥ and -P¥ ¢
_sz' In the first and second terms on the right
hand side of the inequality (10), we put -Plk and

-P X instead of -Pk, respectively:

A'PKB(R + R, + BPKB) 1 B'P¥A ¢
A'-P¥)B(R, + BP*B) B (-PM) A +
A(-PY)B(R, + BP}B)! B'(-P,) A an

The inequality (9) is obtained by multiplying
the negative signs by each other in (11). In
addition, the following equalities hold in the
first iteration of the iterative procedure for
solving the Riccali equation: P! = Q, + Q,,
Pl1 =Q, and P,' = Q,; ie., for k =1, the
inequality P! , P! + P,! holds. So the proof of
induction is complete.

To the best of the knowledge of the author,
the formulation of the problem (6), the
mathematical and the numerical solutions of this
problem, and the above proposition with its
proof are the original contributions of this paper.
As stated before, the substitution between
objectives problem is considered in [S} and [6],
but their approach to the problem is different
from the one we used above; i.e., instead of
solving an optimization problem like (6), they
used an iterative procedure to improve the
values of the objective function coefficients in
each iteration, converging to the best values of
these coefficients. Therefore, they did not need
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‘to prove the concavity of the objective function

respect to o and B.

Therefore as stated before, the optimal
solution will be at one of the extreme points of
the problem (6) feasible set. of course, in the
numerical method for finding this extreme point,
the positive definiteness of the matrices Q and R
should be taken into account; i.e., none of the
diagonal elements of these two matrices can be
equal to zero. In practice, a very small positive
number will be used instead of zero for these
diagonal elements.

'NUMERICAL SOLUTION OF THE
PROBLEM

"For solving problem (6) by the usual numerical

methods of solving unconstrained problems like
stecpest descent, its constraints should be
climinated somehow. First, we can be sure of
satisfying the practical form of the sign
constraits; i.¢., o;>o and B;>o, for all i and j,
by adding a conditional statement to our
computer program. Second, for eliminating the
equality constraints, one of the coefficients in
each constraint is computed in terms of the other
coefficients and this coefficient in company with
the corresponding constraint is sent out of the
model; for instance, if we want to send the
coefficients o, and Bl out of the model, we will
write the following equations:

70lk =a—_=2k0(,- 7(12)
Br=b -3 Bj (13)
j=1

‘In this manner, the constraints of the problem

are eliminated and the minimization of the
problem objective function is taken place respect
to the coefficients ¢;, ik and B;, j#1. Then out
of the model, the optimal values of o, and B,
are computed from equations (12) and (13),
respectively.

About the selection of the eliminated
coefficients from the model, it can be argued
that: any extreme point of the problem (6)
feasible set has the property in which in the
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first constraint, one of the coefficients o; is
equal to a, while the other coefficients are equal
to zero, and in the second constraint, one of the
coefficients B; is equal to b, while the other
coefficients are equal to zero. These nonzero
coefficients are actually the same as the
eliminated coefficients from the model and the
selection of them determines the corresponding
extreme point. Now, if the numerical value of
the gradient vector of J (o, B) respect to o¢ and
B can be computed somehow, the eliminated
coefficients from the model or o, and B, will be
selected such that

(o )= miln (o) (14)
J(B1)=min J(Bj} (15
}

‘when J'(ot;) denotes the first partial derivative
of J with respect to o;, and so on. Because, for
example, J'(ot;) shows the change in the value of
the objective function for a unit change in o
Since we want to increase the value of o, up to
the constant a, for minimizing J, it is better to
select the element of the gradient vector which
has the minimum value. The same argument
applies to the gradient vector of J with respect
to B. Of course as stated before, for preserving
the positive definiteness of the matrices Q and
R, any zero coefficient is taken to be equal 10 a
small positive number.

For making sure of the optimality of the
'selected extreme point, the unconstrained
optimization problem is solved by the steepest
descent method. As known, the numerical values
of the objective function, the gradient vector and
the step size are needed in each iteration of this
method, which are computed as follows. First,
the Riccati equation (3) should be solved for
computing the numerical value of the objective
function. As stated, this equation is solved using
an iterative procedure in the following manner:
initially, the matrix Q is put instead of the
matrix P in the righthand side of this equation,
then in each iteration, the computed value of P
is put instead of this matrix in the righthand side
and this procedure is continued until the
convergence is obtained. The solution of the
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“equation is the matrix to which P converges, and

the minimum value of the objective function is
computed by setting this matrix in the equation

(5.

Second, for computing the numerical value of
the gradient vector, the Riccati equation (4)
is written in terms of o and P as

'P(o,)=Q(cx) + A'P(c, B) A — AP(ct B)BK (o, B) (16)

If the derivative is taken with respect to
o; from both sides of equation (16), when the
derivative of the matrices P and Q with respect
to o; are respectively denoted by P_; and Q,;, it
will result in

Po; =Qu; + A"Po;(A— BK)
— APB(R +BPB)-1B'Po;(A — BK) (in

Similarly, if the derivative is taken with
respect to B, from both sides of equation
(16), when the derivative of the matrices P and
R with respect to B; are respectively denoted by

PBi and Rﬂf, the result will be

Pgj=A"Pgj(A — BK)
— A'PB(R + B'PB)-1[B'Pgj(A —BK)—RgiK] (18)

For computing the matrices P,; and Py,
from equations (17) and (18}, an iterative
procedure similar to the procedure of computing
the matrix P from the Riccati equation (3) is
used, when the initial conditions are P; = Q,; in
(17) and Py; = O in (18). Taking the derivative
from the ob]ecuve function of the problem (6)

with respect to o and B;, it results in

Jo; =x(0)Pet; X(0) (19)
Ipj=x(O)Pgj x(0) 20
when J; and J denote the derivatives of the

objectwe funcuon J with respect to o; and Bj,
respectively. The numerical values of the
gradient vectors are computed by setting the
matrices Py; and Py; in equations (19) and (20).
Third, the cublc fit method [8] is used for
computing the step size in the steepest descent
method. Since in this method, in addition to the
numerical values of the objective function at two
different points, the numerical values of this
function first derivative at these two points are
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“also needed, the method of computing the
objective function first derivative with respect to
the step size at a particular point is stated here.
In the steepest descent method, the vector o
proceeds as follows:
g =0 a8
when o, g, and a, are the values of the vector
o, the gradient vector and the step size in
iteration k, respectively. The objective function J
can be expressed as a function of the step size a;
1.C.,
© J(@)=x(0)P(xx, —ag, )x(0)
Then, J(a) is differentiated with respect to a and
the numerical value of the derivative at a
particular point a, or J(a,) is computed as
J(ao)=—VI(ao)g, (1)

Now, it is time to state the numerical solution
algorithm of the problem using the steepest
descent method. The following steps are used in
each iteration of this method:
Step 0- The numerical values of the matrices
A, B, Q, R, Qg; for all i, RBI' for all j, the
vector x(0) and the constants a and b in the
model (6) are introduced. In this step, Q and R
are considered to be the nxn and mxm identity
matrices, respectively.,
Step 1- Solving the Riccati equation (3) and
equations. (17) and (18}, the numerical values of
the matrices P, P; and PB ; are computed. Then,
the values of the objective function and the
gradient vector are obtained from equations (5),
(19) and (20). Also, the numerical value of the
objective function first derivative with respect to
step size at a,, =0 is calculated using (21).
Step 2- The minimum elements of the gradient
vector with respect to o and B are computed
from (14) and (15), and the indices k and 1 are
determined. A step is taken with the step size
a,=1, and the new values of the matrices Q and
R diagonal elements for ik and j#1 are
obtained. The values of o, and B, are calculated
by equations (12) and (13), respectively. If any
of these diagonal elements become less than or
equal to zero, it will be set equal to the small
positive number 107,
Step 3- The computations of Step 1 for the new
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“values of the matrices Q and R are repeated

again, only this time, the derivative of J with
respect to the step size in (21) is obtained at
a,=1.
Step 4-The optimal step size is determined
using the cubic fit method between the two
points a, =0 and a, = 1. It should be noted that
for the step size corresponding to each iteration
of the cubic fit method, the calculations of Step
2 and then Step 1 are exactly performed and this
process is continued until the convergence occurs
in the step size value.
Step 5- The diagonal elements of the matrices
Q and R are updated using the optimal step size
and it is returned to Step 1.

Steps 1 to 5 are repeated as long as the
diagonal elements of the matrices Q and R are
converged.

NUMERICAL EXAMPLE

A numerical example with the dimensions n=5
and m=3 is considered which its input quantities
are

2 -1 -2 3 5 1 2 =2
1 4 3 -1 21{ 304 1
A= 3 5 6 4 ~-iI[,B=i~1 5 2
1 2 4 3 =2 4 =2 3
5 =5 —4 6 1 5 1 -3
1
1
x(O)=]1|,
1
1

Q=I5, R=I3, a=5 and b=3,

"The output of this example is given in Table 1.

'CONCLUSIONS

7Th§ substitution between objectives problem or

determination of the best coefficients in the
objective function of a linear-quadratic control
problem was discussed. This optimization
problem was formulated as the model (6). Then,
proving the concavity of this model objective
function, it was shown that the corresponding
optimal solution was located at one of the
extreme points of its feasible set. In the problem
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Table 1. The Numerical Results of the Example

1 o oL, o, o, O Bl [32 B3 J
1 11 1 1 1 1 1 1 1 89.5035
2 (108 | 10 | 107% |0.5743 | 4.4257 100 | 2.999998 | 107 |8.3270
3 |10¢ |10 | 10% 103333 | 4.6667 106 | 2999998 | 107® |8.2854
4 |10 |10 | 10 02053 | 47947 1078 | 2.999998 | 107¢ |{8.2394
5 |10% | 10® | 107° ]0.1356 | 4.8644 106 1 2.999998 | 107¢ |8.1900
6 |10 | 10® | 1076 |o0.0925 | 4.9074 10°% | 2999998 | 10°° |8.1318
7 110¢ 108 | 107% |o.0171 | 49828 108 | 2999998 | 10 |7.5639
8 |10 |10 | 10% }100 4999906 | 1078 | 2.999998 | 10® |5.0253
9 |10 |10 | 10¢ |100 4999996 | 107 2999998 | 107 |5.0253

numerical solution, a method of selecting this
extreme point was introduced first. Then, the
problem constraints were eliminated somehow,
and the unconstrained problem was solved by the
steepest descent method. The numerical example
of the paper showed the selected extreme point
was actually the optimal solution of the problem.
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