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Abstract This paper considers the problem of minimizing the mean tardiness of N jobs when the
jobs are scheduled on a single machine. A simple algorithmic procedure is developed to obtain an optimal
or a near optimal sequence for the N jobs while considering an equal penalty cost incurred to each job
delivered later than its due date. The developed algorithm is applied to the several test problems.The resuits
obtained reveals that the computational time and the required computer memory of the developed
algotrithm to provide a good solution are very low.
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INTRODUCTION

The problem of sequencing of N
independent jobs on a single machine
scheduling problem to minimize the mean
tardiness of N jobs is considered in this
paper. It is assumed that a set of N
independent single operation jobs is
available for processing at the beginning of
scheduling time horizon. It is also assumed
that the set up time for each job is
independent of job sequence and the
processing time of each job is exactly known
in advance. Under the conditions that one
machine is continuously available and
preemption is not permitted, the objective
function of the problem can be written as:
N
MINIMIZE Z=1/N 2 T
j=1
where in the above formula, Z is defined to
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‘be the mean tardiness of N jobs, and Tjis the

tardiness of job j.

A number of studies dealing with the total
tardiness criteria has been conducted and
are available in the literature. The early
theoretical attempts to the tardiness
problems are studies of Elmaghraby [6],
Emmons [7], and Montagne [9]. Sirnivasan
[15] developed a hybrid algorithm based on
the concept of dynamic programming
technique to minimize the mean tardiness of
N independent jobs on a single machine. The
hybrid algorithm solves this problem in two
consecutive phases. In the first phase of the
algorithm some of N jobs are assigned to the
machine based on some rules dominance
properties. The remaining jobs are then
assigned by the use of the dynamic
programming technique. '

Shwimer [14] has employed a branch and
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bound solution technique to handel this
problem. He has shown the superiority of
“jump tracking” approach via the “back
tracking” approach in the test problems
solved in the experimental section of his
paper.

Cheng [3] in his published paper
considered the problem of assigning due
dates of N independent jobs on a single
machine with the CON-due date assignment
method. In this method a constant flow
allowance is assigned to all jobs, in order to
minimize the weighted average of missed
due dates.

Fry, Armstrong, and Blackston [8] have
proposed a heuristic solution algorithm to
minimize the total weighted absolute value
of penalty when N independent jobs are
being scheduled on a single machine subject
to earliness and tardiness penalties.

Quaddus [11] employed a linear
programming model to find the optimal
CON-due date for N independent jobs on a
single machine sequencing problem. In this
paper the duality theory is used to obtain an
optimal solution to the problem.

Potts, and Wassenhove [10] developed an
algorithm to minimize the total weighted
number of late jobs. The branch and bound
algorithm with the priciples of the dynamic
programming is used to solve a very large
sequencing problem (1000 independent
jobs).

Sen, Raiszadeh, and Dillpan [13] are
considered a bi-criterion scheduling
problem with a linear combination of total
flow time and range of lateness as a measure
of performance of sequencing N jobs on a
single machine problem. A branch and
bound solution procedure is designed and
used to solve this problem.

Abdul-Razaq and Pott [1] have shown
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how state space relaxation of dynami

programming technique can reduce th
computational efforts needed to obtain th
optimal sequence of N independent jobs on
single machine problem. The objectiv
function for the problem is defined as .
function of jobs holding costs which ar
completed before their due dates and th
tardiness costs for jobs which are complete:
after their due dates.

Based on thorough review of the availabl
literature, it is found that a unique solutior
approach to solve the tardiness problem ha
not yet been developed. Most of th
approaches developed to date sufferd from:
number of limitations [4], [12]). The mos
important difficulty in solving sequencin;
problems with tardiness based performance
measures is the fact that tardiness is not ¢
linear function of completion time. Thit
replies that any solution approach to thi
problem has to be capable of challenging
with the combinatorial aspect of the
problem. The combinatorial nature of the
problem will cause the exponential growth
of the solution space, and hence will require
a very large computer memory, and may
need an extensive computational time.
Because of this difficulty, there is apt to be
more attention paid to efficient but
suboptimal solution techniques.

DEVELOPMENT OF AN
ALGORITHM

A thorough conceptual investigation of the
behavior of the tardiness problems reveals
that a complex optimization procedure has
to be employed to solve even the most simple
scheduling problems, when tardiness is
considered as a performance criterion.

Dynamic programming and branch and
bounds techniques demand a large amount
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of computational time and memory as the
problem size increases. Hence a practical
solution approach to  medium or large
problems (more than 15 jobs) could be a
heuristic procedure.

The developed algorithm which will be
presented in this paper is indeed a heuristic
procedure which embodies some simple and
yet efficient decision rules to improve an
initial solution of the problem. The solution
starts with an EDD (Earliest Due Date)
schedule and attempts to find the best
schedule through rearranging jobs which
decrease the value of tardiness. The logic
supporting the selection of these jobs are
based on the following discussion.

Consider an EDD schedule in which job i
proceeds job j. Let us define the following
notation:
dj = the due date of job j
T = the gap between start of job j and end of
job i
S = the waiting time of job i
Dij = the total tardiness of job i and job j}
while job i proceeds job j
Diji = the total tardiness of job i and job j
when job j proceeds job i
tj = the processing time of job j
We are now seeking conditions under which
the relocation of a job in the sequence will
decrease the total tardiness of the existing
sequence. To do so, we examine whether
interchange of two jobs reduce the total
tardiness. Let us consider the contribution
of two jobs i and j. From the definition of

tardiness we have:

Dij=max (S +ti-di,0) + max{(S+t+T

+ti-dj,0

Dji= max (S +tj-dj,0) + max(S+1tj+T

+ti-di, 0)

In comparison of two jobs i and j, we
examine all the possible conditions and will
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~prove under which condition the

interchange of job i and j provides an

optimal tardiness value.

I) Let ti < tj, and S + tj < dj
Dij=max(S+ti-di,0) t max(S+ti+T
+ tj-dj, 0)

Dji=max (S + tj +T + ti - di, 0)

since di < dj(we start with an EDD schedule)

it can be shown that Dij is always less than or

equal to Dji. Hence in this case job i proceeds
job j in an optimal manner.

IDLetti<tj,and S + tj > dj
Di=max(S+ti-di,0)+S+ti+ T+ti-
dj
Di=S+ti-dj+S+t+T+ti-di

it can also be shown that Dij is less than or

equal to Dji, and hence job i will proceed job

j in an optimal manner.

IIT} Let ti > tj, and S + ti < di
Di=max (S+ T+ ti+ ti-dj, 0)
Di=max(S+ T+ ti+ tj- dj, 0)

it is clear that Dij < Dji, and hence job i must

proceed job j.

IV)Let t>tj, S+ ti>di,and T+ S + ti+ ti < dj

v Diji=S +ti-di
Di=S+t+T+t-di

it is seen that Dij < Dji, and hence job i must

proceed job j.

V)Letti>tj, S+ ti>di, and S + t; > dj
Di=S+ti-di+S+ti+T+t-dj
Di=S+t-dj+S+ ti+T+ti-di

in this case Dij > Dji, and hence job j, must

proceed job i.

VI) Let ti<tj,S +ti<di,and S + ;< dj<S +
ti+t+T
Dij=8S+ti-di+S+t+ T+ tj-dj
Di=S+t+T+ti-di
Di-Dji=S + ti-dj

It can be seen that if S + ti > di, then job j

must proceed job i, otherwise job i must

proceed job j. This is the only situation in
which we cannot decide on the position of
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‘jobs i and j in the sequence unless we know
the value of S.

The above discussion reveals that in the
absence of condition number VI we can
always optimally decide whether to
interchange two jobs or leave them as they
are. In the case of condition VI we let job j
proceed job i and this may or may not be an
optimal decision rule. This is the only
situation that if occurs may lead to non-
optimal solution. To reduce the chance of
occurrence of this situation we impose a
decision rule in our algorithm by which
instead of interchanging job i and j, we
relocate all the jobs between these two jobs.
To support this decision rule we have needed
to prove two the following theorems:
Theorem 1. Consider two adjacent jobs iand
j. If in an optimal sequence, job i must
proceed job j, then regardless of their
position in the sequence, if we insert a time
span T between these two jobs still job i must
proceed job j.

Proof: From the assumption of the theorem
if we let the current position of job i, and job
j in a sequence to be denoted by [1] and [2]
respectively, and define Dk (1] as the amount
of tardiness of job K in the position 1, then

we can write:

Din +Dj <Di2] +Dijl

If we insert T between jobi and job j we will
have a new position for job j in the sequence
which we denote by [3] then we have to show
that:

’ Dif1y + Dj 31 < Dip31 + Dyt (D
The inserted T may increase the tardiness of
any job which appears in position (3). Let us
define: ,

Di 31 = Dif2) + Gi (2)
Dj31 = Dj2) + Gj (3)
where Giand Gj each has a value between O
and T. By substituting equation (2)and(3) in
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“inequality (1) we will have:

Dim + Dj21 < Dipj+Gi +Djg
Since Gj can never be greater than Gi, an
the remaining terms of the left side of th
inequalityare less thanthe remaining terms ¢
the right side therefore the inequality
always held.

Theorem 2. Consider three jobs i, j and k. ]
inanoptimalsolution job i must proceed job
and job k must proceed job i regardless o
their position in the sequence, then job |
must proceed job j.

Proof: Let us denote the current position o
job 1 and job j by [1] and [2], respectively
From the assumption of the algorithm w
can write:

Dipn + Dij21 < Dip2g +Ditng 4
By the result of theorm 1 we can write:
Dxi1] + Di2) < Dxp2; + Dif1j (5)

we now add two inequalities (4) and (5) afte
cancelling out the identical terms from bot!
sides we obtain the following inequality an
hence, we reach the proof

Dx(11 + Dij21 < Diji1p + Dx(z)

Based on the above theoretical concepts
heuristic algorithm is developed. To presen
the steps of the developed algotithm, first wi
need to give some definitions;Let

C = an ordered set containing the job.

which have been decided to be in thy
final solution.

C’ = the compliment of C.

S = the sum of processing time for al

jobs in C,

N = the total number of jobs.

[i]= indication of position of a job in :

sequence.

tlil = the processing time of i™

job ir
sequence. )

dpi) = the due date of i job in sequence

The steps of the algorithm are presented a:

below:
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' STEP 1.Let C be empty, assign all jobs to C’
in EDD order, and leti= 1, j = 2.

STEP 2.If tri) < tfj) go to step 7, otherwise go
to step 3.

STEP 3If S + i) < dii}, go to step 7,
otherwise go to step 4.

STEP 4If S + tri) + ) < djjl go to step 7,
otherwise go to step 5.

STEP 5f max (S + t[i. S + t(j) ) >d i) go to
step 6, otherwise go to step 7.

STEP 6.Remove the job in position j and
assign it to position i, and assign
jobs i, 1 + 1, ..., j - 1 one position
further, go to step 7.

STEP TLet j=1J + 1, if j <N go to step 2,
otherwise go to step 8.

STEP 8.Remove job in position i from C’
and assign it to the last position in
C,leti=1i++1,ifi=N stop
otherwise go to step 2.

COMPUTATIONAL
EXPERIENCES
The developed algorithm is applied to
several test problems to check validity of the
solution obtained by the algorithm as well as
More than 100 test
problems are solved via the developed

its performance.

‘Table 1. Summery of Computational Experiences

~algorithm and two well known solution

procedures. Some of the test problems are
selected from the available literature and
some are generated using the concept of
Mont-Carlo simulation. The size of test
problems is varied from four jobs up to
twenty jobs,

The required data to generate a test
problem are the number of jobs (n), the
processing time (tj) for each job, and the
associated due date (dj) for each job. After
deciding on the number of jobs, we used
pseudo random number generation to
randomly generate tj’ s, and dj’ s. To have a
realistic date for the generated test problems
we assigned a range for the processing time
of each job. Let us define the upper value,
and the lower value of tj’s as TU and TL,
respectively. Based on the values of TU and
TL, a range for the values of dj’ s is
determined using the following relations:

DL =TL

DU =N *[TL + (TU - TL) / 2]
Where DU and DL, are the upper and lower
values of dj’s. Using the generated random
number the values of ti and its associated dj
are generated in the defined ranges while
ignoring those dj’s which are smaller than its

Number of  Number of Time (sec) ~ Average
Problems Jobs D.P. H A deviation
20 4 0 0 0 %
20 5 1 0 0 0%
16 8* 23 7 23 39%
55 10 118 10 1 1.55%
10 15 ** 217 2.23%
10 20 * % * %k 2 &Kk

* : The problems are selected from literature

*x ; Time is too large

xx# : The optimal value is not available
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associated tj’s.

Two powerful and exact algorithms are
selected to compare the efficiency of the
algorithm for solving test problems. The
selected algorithms are the dynamic
programming. approach and the hybrid
algorithm [2]. Table 1 summarizes the
results of the computational experiences.

In this table the first column represents
the number of problems which has been
solved, and the second column represents
the size of the problem in each category. The
following three columns represent the
average time spent to solve problems in each
category via D. P. (dynamic programing), H
(hybrid algorithm), and A (the developed
algorithm). The double stars in these
columns represent a very large amount of
time to obtain the optimal solution.
However the required time necessary to
obtain optimal solution for the cases of
problems with 15 jobs using D. P., 20 jobs D.
P., and 20 jobs using H has been determined
to be 1,5, and 17 hours, respectively. In the

last column the average deviation from the

“optimal solution is shown. It is to be note
that the optimal solution of the majority ¢
the problems in the case of 20 jobs could n
be obtained by D. P. and H algorithm, Tt
optimal solution of two problems out of tt
10 problems solved via H algorithm
obtained in the case of 20 jobs. The solutior
provided by the developed algorithm fc
both of these problems were also optimal

The computational time necessary t
reach an optimal solution by D. P. and |
algorithm, and a near optimal solution by.
algorithm verses problem size is depicted i
Figure 1. Based on 131 test problems solve
by the above mentioned algorithms it is see
that when an exact algorithm is employec
the
exponentially as the problem size increase

computational time grow
while in the case of using the develope
algorithm, this growth is most likely linea
This fact and the small deviation of th
solution obtained by A algorithm from th
optimal solution, reveal the power an
efficiency of the developed algorithm.
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Figure 1. C omputational time versus problem size
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CONCLUSION
In this paper a powerful algorithm is
developed to solve N/l sequencing
problems. The average tardiness is the
measure of performance for assigning N
single operation independent jobs on a
single machine.

The performance of the developed
algorithm is tested using 131 test problems
with respect to the closeness of the solution
to the optimal solution and its computional
time. It is deduced that this algoritim uses
very little computer meory and requires very
short computer time.

Out of 123 test problems that could have
optimal solutions, the average deviation of
the solutions obtained by the developed
algorithm was less than 1% while the
computational time for large problems (20
jobs) was in the range of a few seconds.
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