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A B S T R A C T  
 

 

Drone semantic segmentation is a challenging task in computer vision, mainly due to inherent 
complexities associated with aerial imagery. This paper presents a comprehensive methodology for 

drone semantic segmentation and evaluates its performance using the ICG dataset. The proposed 

method leverages hierarchical multi-scale feature extraction and efficient channel-based attention 
Atrous Spatial Pyramid Pooling (ASPP) to address the unique challenges encountered in this domain. 

In this study, the performance of the proposed method is compared to several state-of-the-art models. 

The findings of this research highlight the effectiveness of the proposed method in tackling the 
challenges of drone semantic segmentation. The outcomes demonstrate its superiority over the state-of-

the-art models, showcasing its potential for accurate and efficient segmentation of aerial imagery. The 

results contribute to the advancement of drone-based applications, such as surveillance, object 
tracking, and environmental monitoring, where precise semantic segmentation is crucial. The obtained 

experimental results demonstrate that the proposed method outperforms these existing approaches 

regarding Dice, mIOU, and accuracy metrics. Specifically, the proposed method achieves an 
impressive performance with Dice, mIOU, and accuracy scores of 86.51%, 76.23%, and 91.74%, 

respectively. 
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Semantic Segmentation of Aerial Imagery: A Novel Approach Leveraging Hierarchical Multi-Scale Features and Channel-Based Attention for Drone Applications 

Drone semantic segmentation is a challenging task in computer vision, mainly due to the inherent complexities associated with  

aerial imagery. This paper presents a comprehensive methodology for drone semantic segmentation and evaluates its performance 

using the ICG dataset. The proposed method leverages hierarchical multi-scale feature extraction and efficient channel-based 

attention Atrous Spatial Pyramid Pooling (ASPP) to address the unique challenges encountered in this domain. In this study, the 

performance of the proposed method is compared to several state-of-the-art models. 

The findings of this research highlight the 

effectiveness of the proposed method in tackling the 

challenges of drone semantic segmentation. The 

outcomes demonstrate its superiority over the state-of-

the-art models, showcasing its potential for accurate 

and efficient segmentation of aerial imagery. The 

results contribute to the advancement of drone-based 

applications, such as surveillance, object tracking, and 

environmental monitoring, where precise semantic 

segmentation is crucial. The obtained experimental 

results demonstrate that the proposed method 

outperforms these existing approaches regarding Dice, 

mIOU, and accuracy metrics. Specifically, the 

proposed method achieves an impressive performance 

with Dice, mIOU, and accuracy scores of 86.51%, 

76.23%, and 91.74%, respectively.
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NOMENCLATURE 

𝑥(𝑖, 𝑗) Input feature map C1  
the weight of the first and second convolutions with 
kernel size 1 

H Height of the feature maps 𝑇𝑃 True positive  

𝑊 Width of the feature maps FN  False-negative  

IoU Intersection over Union FP   False  positive  

δ  ReLU activation function σ  Sigmoid activation function 

 
1. INTRODUCTION 
 

Deep learning has emerged as a powerful technique in 

various domains, and it plays a crucial role in enabling 

drones to understand and accurately interpret their 

surroundings [1]. Semantic segmentation, a critical 

application, involves classifying objects or regions at 

the pixel level in drone images, enabling tasks such as 

aerial surveillance, infrastructure inspection, and 

precision agriculture(1). However, achieving accurate 

and reliable semantic segmentation for drone imagery 

poses significant challenges due to its unique 

characteristics (2),(3). The rapid advancement of drone 

technology has revolutionized industries by offering 

unprecedented capabilities for data acquisition and 

analysis (4). Drones, equipped with high-resolution 

cameras, provide a comprehensive aerial viewpoint, 

capturing valuable information that can be extracted 

through semantic segmentation. (5). This enables drones 

to make informed decisions based on their 

environmental understanding (6),(7). However, drone 

semantic segmentation encounters several challenges 

that musttion be addressed to achieve accurate results 

(8). The first challenge lies in the variability of scale 

and perspective inherent in aerial imagery. Objects of 

interest in drone images exhibit variations in distance, 

size, and orientation, making accurate segmentation 

challenging. Additionally, complex backgrounds often 

present in drone images, such as buildings, trees, and 

other objects, introduce occlusions and ambiguities in 

object boundaries, which further complicates the precise 

delineation from the surroundings. (9). The lack of 

readily available large-scale, diverse, and accurately 

annotated datasets poses a significant challenge when it 

comes to training robust semantic segmentation models 

that are specifically designed for drones. This limitation 

results in suboptimal performance and limited 

generalization capability. In this paper, we proposed a 

novel approach to address these challenges in drone 

semantic segmentation. Our method aims to improve the 

accuracy and robustness of semantic segmentation 

results by combining hierarchical multi-scale feature 

extraction with an efficient channel-based attention 

ASPP module. The proposed method contributes 

significantly to the field of drone semantic 

segmentation. Specifically, we introduced a hierarchical 

multi-scale feature extraction module that captures 

features at different scales and levels of granularity, 

enabling our model to handle scale and perspective 

variations prevalent in drone imagery. We also 

incorporated an efficient channel-based attention ASPP 

module that selectively focuses on informative features 

while suppressing irrelevant ones. This attention-based 

approach enhances the discriminative power of the 

model and improves segmentation accuracy. 

Furthermore, we proposed a feature fusion and 

integration step that combines the attention-guided 

features with the hierarchical multi-scale features, 

leveraging their complementary information to further 

enhance segmentation performance. Overall, our 

proposed method addresses the challenges of scale and 

perspective variability, complex backgrounds, and 

limited training data in drone semantic segmentation. 

Combining hierarchical multi-scale feature extraction 

and efficient channel-based attention ASPP provides a 

robust and accurate solution for interpreting drone-

captured scenes.  

In the following sections, we will describe the 

methodology in detail, present experimental results, and 

discuss the significance and implications of our 

findings. We believe these revisions provide a more 

targeted and logical overview of the existing work while 

highlighting the novelty and contributions of our 

approach in drone semantic segmentation. 

 

 

2. LITERATURE REVIEW 
 

During the past decade, deep learning has witnessed 

significant advancements in diverse domains, including 

machine vision (10), object tracking (11), and 

segmentation (12), (13). Deep learning methods have 

revolutionized this field by leveraging their ability to 

automatically learn and extract meaningful 

representations from large-scale datasets (14). In this 

section, we present a thorough review of research 

conducted on semantic segmentation of aerial imagery, 

particularly emphasizing its application in drone-related 

tasks. We examined the methodologies, techniques, and 

approaches utilized in previous studies, with a focus on 

how deep neural networks have been employed to 

achieve accurate semantic segmentation of aerial 

images. This literature review critically analyzes the 

accomplishments, limitations, and advancements in the 

field, laying the foundation for the proposed method. 

Additionally, it identifies the gaps that the present study 

aims to address. Moreover, this study highlights the 

significance of the proposed approach, which utilizes 
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hierarchical multi-scale features and channel-based 

attention. These advancements contribute to pushing the 

boundaries of aerial imagery analysis for drone 

applications. This research aims to advance semantic 

segmentation in aerial imagery by addressing identified 

gaps and introducing novel techniques. The intended 

outcome is an improved understanding and 

interpretation of aerial scenes. As a result, this 

advancement will enhance the capabilities and 

effectiveness of drones in various applications and 

domains such as surveillance, environmental 

monitoring, urban planning, and disaster response. We 

specifically examine the methodologies, techniques, and 

approaches utilized in previous studies, with a focus on 

the advancements made by prominent methods. These 

methods have made significant contributions to the field 

of semantic segmentation and have been widely adopted 

in various computer vision tasks(15).  

FCN revolutionized semantic segmentation with 

end-to-end pixel-wise segmentation, serving as a 

foundational method (16). However, it has limitations in 

capturing fine details and object boundaries in aerial 

imagery (17). UNet introduced an encoder-decoder 

structure with skip connections and brought 

groundbreaking advancements in medical imaging (18). 

Nevertheless, it's important to note that the symmetric 

pathways in question may not fully cater to scale 

variations. This observation suggests that further 

considerations may be required to address the issue 

effectively. UNet++ was developed as an enhancement 

to UNet, incorporating nested skip and dense 

connections to improve segmentation accuracy. 

However, the increased complexity of UNet++ limit its 

feasibility in resource-constrained drone applications 

(19). DeepLab effectively addresses the challenge of 

capturing global and local contextual information using 

atrous/dilated convolutions and multi-scale contextual 

information (20). It dramatically improves segmentation 

accuracy, especially for objects of different scales and 

complex backgrounds. However, the reliance on dense 

dilated convolutions in DeepLab increases memory 

consumption and inference times, potentially 

introducing artefacts in segmentation masks. Lin et al. 

(21) utilize a feature pyramid network (FPN) for multi-

scale object detection and segmentation, capturing local 

and global context. A limitation of this approach is its 

reliance on predefined anchor scales, which may 

encounter difficulties in handling diverse scale 

variations present in aerial imagery. 

The PSPNet method, proposed by Zhao et al. (22) 

employs spatial pyramid pooling and dilated 

convolutions to capture contextual information at 

different scales in drone imagery. It utilizes a CNN 

backbone, like ResNet or VGG, to extract feature maps, 

followed by pyramid pooling modules. However, the 

pooling operations in PSPNet can cause information 

loss and reduced spatial resolution, leading to 

difficulties in accurately segmenting small objects and 

capturing fine details in aerial imagery. 

By leveraging the insights and advancements from 

these methods, we propose a novel approach for 

semantic segmentation of aerial imagery in the context 

of drone applications. Our approach leverages 

hierarchical multi-scale features and channel-based 

attention mechanisms to enhance segmentation accuracy 

and improve the interpretability of aerial scenes. 

Through the integration of these innovative techniques, 

we aim to address the limitations and challenges faced 

in the field and contribute to the advancement of aerial 

imagery analysis for drone applications. 

The following sections of this paper will provide a 

detailed description of our proposed method, including 

the architectural design, training strategies, and 

evaluation metrics. Additionally, we will present 

comprehensive experimental results to demonstrate the 

effectiveness and superiority of our approach compared 

to existing methods. Finally, we will discuss the 

implications of our findings and outline potential future 

research directions in the domain of semantic 

segmentation for drone applications. 

 

 

3. PROPOSED METHOD 
 

This section provides an overview of the methodology 

employed in this paper. We present a high-level 

description of the proposed method and explain its key 

components: hierarchical multi-scale feature extraction 

and efficient channel-based attention ASPP. 

Furthermore, we discuss how these components 

effectively address the challenges encountered in drone 

semantic segmentation. The algorithm is introduced as 

follows: 
Algorithm 1 

1. Input: Drone image I, Ground truth segmentation map GT 

2. Preprocess the input image I 

3. Define the architecture of the proposed model, which includes the 

hierarchical multi-scale feature extraction and the Channel-based 

Attention ASPP module. The model consists of the following 

components: 

• Convolutional layers for feature extraction at different scales. 

• Efficient Channel-based Attention ASPP module for inter-

channel dependencies. 

• Convolutional layers for refinement. 

• Up-sampling layers for restoring the original image size. 

• Softmax or sigmoid activation for obtaining pixel-wise predicted 

probabilities. 

4. Initialize the model parameters. 
5. Define the loss function, in this work as pixel-wise cross-entropy 

loss. 

6. Set the number of training iterations and the learning rate for 
optimization. 

7.  Perform the training loop: 

a. For each iteration: 

• Perform forward propagation through the model: 

• Obtain multi-scale feature maps 
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• Apply the Efficient Channel-based Attention ASPP module to 
the multi-scale feature maps  

• Fuse the multi-scale feature maps to generate a final feature 

representation. 
• Apply convolutional layers and activation functions to refine 

the feature representation. 

• Up-sample the refined feature representation to the original 
image size. 

• Apply softmax activation to obtain pixel-wise predicted 

probabilities P for each class. 

• Calculate the loss L between the predicted probabilities P and the 

ground truth segmentation map GT. 

• Perform backpropagation to compute and update the gradients of 

the model's parameters. 

• Update the model parameters using an optimizer with the defined 

learning rate. 
b. Repeat the training loop for the specified number of iterations. 

8. Evaluate the trained model on validation or test data: 

• Preprocess the validation/test images in the same way as the 

training images. 

• Perform forward propagation through the trained model to 

obtain predicted probabilities for the validation/test images. 

• Evaluate the segmentation performance using metrics such as 

intersection over union (IoU), Dice score and accuracy. 

9. Output: Trained model for drone semantic segmentation. 

 

The proposed method aims to improve the accuracy 

and robustness of drone semantic segmentation by 

combining hierarchical multi-scale feature extraction 

with efficient channel-based attention ASPP. The 

method influences the unique characteristics of aerial 

imagery and addresses the challenges posed by scale 

and perspective variability, complex backgrounds, and 

limited training data. The following explanation 

provides an overview of the components used in the 

proposed method.  

 
3. 1. Hierarchical Multi-scale Feature Extraction            
The hierarchical multi-scale feature extraction 
component captures features at multiple scales and 
levels of granularity (23), (24). It involves extracting 
features from different layers of the network 
architecture, allowing the model to incorporate 
information from various scales. By considering 
features at multiple scales, the model can handle the 
variations in object sizes, orientations, and perspectives 
often presented in drone imagery. This multi-scale 
feature extraction enables the model to capture both 
fine-grained details and global context, leading to 
improved segmentation accuracy. This component 
addresses the challenge of scale and perspective 
variability in drone imagery. The model can adapt to 
variations in object sizes, orientations, and perspectives 
by capturing features at different scales. This allows 
accurate segmentation of objects in aerial scenes, 
regardless of their scale or spatial arrangement. The use 
of multi-scale feature extraction in the model allows for 
the capture of both local details and global context. 
This, in turn, leads to improved segmentation accuracy, 
particularly when dealing with variations in scale. 

In the proposed method, we utilize the ResNet-50 

backbone, which is a widely used convolutional neural 

network architecture known for its effectiveness in 

feature extraction. The hierarchical feature extraction 

process begins with the initial convolutional layer of the 

ResNet-50 backbone, which captures low-level features 

such as edges and textures. These features provide a 

basis for subsequent layers to extract more complex and 

informative features.The ResNet-50 backbone consists 

of several stages, each containing multiple residual 

blocks. The feature extraction layers at different scales 

are determined by the stages and blocks within the 

ResNet-50 architecture. In the ResNet-50 architecture, 

the first stage consists of a single convolutional layer 

that captures low-level features. The subsequent stages, 

each contains a varying number of residual blocks. 

These blocks consist of multiple convolutional layers, 

including bottleneck layers that reduce the spatial 

dimensions and increase the number of channels. The 

hierarchical multi-scale feature extraction process with 

the ResNet-50 backbone enables the capture of both 

local and global information in drone imagery. The 

earlier stages of the ResNet-50 capture local 

information and fine-grained details, which are crucial 

for segmenting small objects or objects with intricate 

textures. These features preserve object boundaries and 

capture local variations effectively. As the network 

progresses through the stages of the ResNet-50, the 

scale of the features increases, incorporating more 

global context. The later stages capture features at 

coarser scales, enabling the model to consider the 

relationships between objects and their surroundings. 

This global context is essential for accurately 

segmenting larger objects and handling complex scenes 

with multiple objects and backgrounds. The hierarchical 

multi-scale feature extraction process provides a 

comprehensive representation of the input scene by 

combining features from different stages of the ResNet-

50 backbone. The model can leverage these multi-scale 

features to make informed decisions during the 

segmentation process, effectively addressing the 

challenges of scale and perspective variability in drone 

imagery. 

 
3. 2. Efficient Channel-based Attention ASPP          
The efficient channel-based attention Atrous Spatial 
Pyramid Pooling (ASPP) component incorporates an 
attention mechanism that selectively focuses on 
informative features while suppressing irrelevant ones. 
This attention-based approach enhances the 
discriminative power of the model by assigning 
attention weights to different channels of the feature 
maps. By emphasizing relevant features and de-
emphasizing less informative ones, the model becomes 
more adept at discriminating objects from complex 
backgrounds and handling occlusions. The efficient 
channel-based attention ASPP enables the model to 
exploit local and global contextual information 
effectively, leading to enhanced segmentation accuracy. 
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A vital advantage of the ASPP module with efficient 
channel attention lies in its ability to model 
interdependencies among different channels of feature 
maps. The channels in feature maps represent various 
aspects or semantic features of objects in the image. 
However, not all channels contribute equally to the 
segmentation task. The incorporation of efficient 
channel attention resolves this issue by dynamically 
adjusting the importance of each channel through 
learned attention weights. By emphasizing informative 
channels and suppressing noise or low-value channels, 
the ASPP module ensures accurate and reliable 
segmentation results. The utilization of channel-level 
attention allows the model to leverage limited training 
data more efficiently, resulting in enhanced 
generalizability. This component tackles the challenges 
of complex backgrounds and limited training data in 
drone semantic segmentation. By applying an attention 
mechanism, the model can selectively focus on 
informative features while suppressing irrelevant ones. 
This attention-based approach aids in discriminating 
objects from complex backgrounds and handling 
occlusions, leading to improved segmentation accuracy. 
During the training process, the attention weights are 
learned through backpropagation, optimizing the model 
to attend to the most informative features for semantic 
segmentation. These weights are adjusted iteratively, 
allowing the module to adaptively focus on relevant 
channels depending on the specific characteristics of the 
input data. The dynamic adjustment of attention weights 
ensures that the module can adapt to different semantic 
segmentation tasks and handle variations in object 
appearance and context. It enables the model to 
effectively capture both local and global information 
while suppressing noise and irrelevant details. Different 
components of the module are explained in the 
following sub-sections. 

 

3. 2. 1. ASPP Module           In CNN architectures, the 

ASPP module plays a crucial role in capturing multi-

scale contextual information w ithin images effectively 

(20), (25). Its fundamental purpose is to aggregate 

features from distinct receptive fields of the CNN's 

convolution kernel, enabling the extraction of 

comprehensive multi-scale information from an image. 

The ASPP module consists of parallel branches that 

apply atrous spatial convolutions to the input image. 

Each branch operates at a specific dilation rate. The 

dilation rate determines the spacing between kernel 

elements, resulting in an expanded receptive field that 

enhances the ability of the model to capture contextual 

details while keeping the computational cost low (26). 

Figure 1 provides a visual illustration of the ASPP 

module, showcasing its architecture and functionality. 

 
3. 2. 2. Efficient Channel-based Attention      The 
attention module can be implemented using techniques 
like squeeze-and-excitation blocks (27), (28). These 

techniques enable the model to learn and adaptively 
adjust the channel-wise attention weights based on the 
input data. Figure 2 illustrates the architecture of the 
Efficient Channel-based Attention module.  

We can formulate the ECA module as follows: Let 

X represent the input feature maps with dimensions 

H×W×C, where H and W are the height and width of 

the feature maps, and C is the number of channels. 

- Compression: Apply GAP to X to obtain a channel 

descriptor z of dimensions 1×1×C: 

𝑧(𝑋) =
1

𝐻×𝑊
∑ ∑ 𝑥(𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1   (1) 

- Re-weighting: Apply a two-layer convolution with 

kernel size 1 to z to obtain an attention of weights s 

of dimensions 1×1×C: 

𝑠 = 𝐹𝑒𝑥(𝑧, 𝐶1) = 𝛿(𝐶1(𝜎𝐶1(𝑧)))  (2) 

where δ is a ReLU activation function, and C1 is the 

weight of the first and second convolutions with kernel 

size 1, respectively. Besides, σ is a sigmoid activation 

function that scales the 1×1 conv output to the range 

[0,1], ensuring that the weights are positive and sum to 

1. 

- Scaling: Apply the weights s to the original feature 

maps X to obtain the scaled feature maps Y of 

dimensions H×W×C: 

𝑌 = 𝑠 ⊗ 𝑋  (3) 

After performing the element-wise multiplication 
denoted by ⊗, the resulting scaled feature maps, 
 
 

 
Figure 1. The details of the ASPP structure 

 

 

 
Figure 2. The details of the ECA structure  



E. Sahragard et al. / IJE TRANSACTIONS B: Applications  Vol. 37, No. 05, (May 2024)   1022-1035                                      1027 

 

represented as Y, are subsequently passed to the next 

layer in the network. Using GAP to extract information 

from each channel of the input feature map, the ECA 

mechanism enabled the model to prioritize important 

features and enhance its overall performance. The 

resulting feature map utilized one-dimensional (1-D) 

convolutional cross-channel interaction instead of 1×1 

convolutions to minimize the computational complexity 

of the model (29). 

 
3. 2. 3. Efficient Channel-based Attention ASPP    
We introduce the Efficient Channel-based Attention 
ASPP (ECA-ASPP) module as an innovative 
component within our proposed method, offering an 
alternative to the concatenation operation utilized in the 
DeepLab architecture. Figure 3 provides a visual 
representation of the various components and operations 
involved within the ECA-ASPP structure. These details 
are crucial for understanding how the architecture 
functions and how it leverages its unique features to 
enhance image analysis. 

Our module focuses on modeling interdependencies 

between channels presented in feature maps, 

dynamically adjusting the importance of each channel 

using attention weights. By employing this attention 

mechanism, we enhance feature representation, resulting 

in improved discriminative power and more accurate 

segmentation. The main advantage of our method is that 

it is able to selectively focus on useful information 

channels while reducing the importance of less relevant 

channels.This selective attention enables the network to 

efficiently utilize features, leading to enhanced 

segmentation performance and improved efficiency 

compared to the traditional concatenation operation. 

By combining hierarchical multi-scale feature 

extraction with the ECA-ASPP, the proposed method 

leverages the complementary strengths of both 

approaches. The multi-scale feature extraction captures 

a wide range of spatial details, while the channel 

attention module enhances the discriminative power of 

the extracted features. This integration aids the model in 

effectively handling the challenges of drone semantic 

segmentation, such as variations in object scales, 

complex backgrounds, and occlusions.  
 

 

 
Figure 3. The details of ECA-ASPP structure 

4. EXPRIMENTAL RESULT 
 
4. 1. Datasets and Data Augmentation            The 

designers of the Semantic Drone Dataset have 

specifically aimed to enhance the safety of autonomous 

drone flight and landing procedures by focusing on a 

semantic understanding of urban scenes. The dataset 

comprises imagery of over 20 houses captured from a 

bird's eye view at heights ranging from 5 to 30 meters 

above the ground.The images were acquired using a 

high-resolution camera with a size of 6000×4000 pixels 

(24 megapixels). The dataset includes pixel-accurate 

annotations for semantic segmentation. Detailed labels 

for 20 classes are assigned to the training and test sets. 

These classes include various elements such as trees, 

grass, other vegetation, dirt, gravel, rocks, water, paved 

areas, pools, persons, dogs, cars, bicycles, roofs, walls, 

fences, fence poles, windows, doors, and obstacles. The 

complexity of the dataset is constrained to these 20 

classes, allowing researchers to focus on the specific 

semantic understanding of urban scenes. This carefully 

annotated dataset provides a valuable resource for 

developing and evaluating algorithms in semantic 

segmentation in the context of autonomous drone flights 

(30).   

 
4. 1. 1. Data Augmentation            In the proposed 
method, we utilize data augmentation techniques to 
improve the performance of our semantic segmentation 
model on the semantic drone dataset. Data augmentation 
is a widely used approach in computer vision tasks, 
including semantic segmentation, to address challenges 
such as limited labelled data and variations in 
environmental conditions. The data augmentation 
process involved applying a set of transformations to the 
original dataset, resulting in the creation of new and 
diverse training samples. These transformed samples 
facilitated an increase in quantity and variety of the 
training data, leading to improved model performance 
and generalization ability (31), (32). Specifically, we 
applied several standard data augmentation techniques 
to the semantic drone dataset: 

• Random Cropping: This technique involves 

randomly selecting a portion of the image and using 

it as a new image. It aids in introducing variations in 

the position and composition of objects within the 

image. By cropping different parts of the image, the 

model can learn to recognize objects from various 

perspectives and locations. 

• Horizontal Flipping: During horizontal flipping, the 

image undergoes a horizontal flip, creating a mirror 

image of the original. This technique is effective 

when the orientation of objects in the image does not 

affect their interpretation. It helps the model learn to 

recognize objects regardless of their left-right 

orientation . 
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• Vertical Flipping: Similar to horizontal flipping, 

vertical flipping involves flipping the image 

vertically, resulting in an upside-down version of the 

original image. It can be helpful in certain 

applications where the orientation of objects is not 

critical, such as text recognition or specific types of 

image classification. 

• Rotation: This involves rotating the image to a 

certain degree. By applying the rotation, the model 

becomes more robust to changes in the orientation of 

objects in the image. It aids the model in learning to 

recognize objects from different angles and improves 

its ability to generalize to rotated images . 

• Random Brightness and Contrast Adjustments: This 

technique involves randomly adjusting the 

brightness and contrast of the image. By modifying 

the brightness and contrast, the model can handle 

variations in lighting conditions. It helps the model 

become more resilient to changes in illumination and 

enhances its ability to generalize to images with 

different lighting levels . 

• Contrast-Limited Adaptive Histogram Equalization 

(CLAHE): CLAHE is an image enhancement 

technique that improves the contrast of an image. It 

redistributes pixel intensities in a way that enhances 

details in both bright and dark regions of the image. 

The CLAHE aids the model in capturing fine-

grained details and improves its performance in low-

contrast images. 

• Grid Distortion: Grid distortion applies a distortion 

effect to the image by manipulating a grid overlay. It 

introduces local deformations to the image, which 

can help the model learn to handle geometric 

transformations. The Grid distortion is particularly 

useful for tasks that require the model to be robust to 

deformations, such as object detection or image 

segmentation. 

• Optical Distortion: Optical distortion simulates lens 

distortion effects in the image. It applies non-linear 

transformations to mimic the distortions introduced 

by different camera lenses. This technique is useful 

in scenarios where the images are captured by wide-

angle lenses. By training the model with optically 

distorted images, it becomes more robust to lens 

distortions in real-world scenarios. 

By applying these data augmentation techniques, we 

augmented the semantic drone dataset with transformed 

images, effectively expanding the size of the training 

dataset and introducing variations representative of real-

world scenarios. This enabled our model to learn from a 

broader range of conditions and improved its ability to 

segment objects in unseen drone images accurately. 

Data augmentation played a crucial role in our semantic 

segmentation pipeline, enhancing the performance and 

generalization ability of our model on the semantic 

drone dataset.  

Figure 4 shows the original image alongside four 

augmented versions generated from it. The original 

image serves as the base or reference image, while the 

four augmented images are created by applying 

augmentation techniques to the original image. Each 

augmented image has undergone a specific data 

augmentation technique. These techniques include 

random cropping, horizontal flipping, vertical flipping, 

rotation, random brightness, and contrast adjustments, 

contrast-limited adaptive histogram equalization, grid 

distortion, and optical distortion. 

 
4. 2. Evaluation Metric 
4. 2. 1. Intersection over Union               Semantic 
segmentation tasks commonly employ the Intersection 
over Union (IoU) metric as the primary evaluation 
measure (33). This widely adopted metric quantifies the 
quality of a predicted segmentation mask by calculating 
the ratio between the intersection and the union of the 
predicted and ground truth masks. The IoU metric 
yields a value between 0 and 1, where a score of 1 
denotes a flawless segmentation. The IoU is 
mathematically defined as follows:   

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (4) 

where TP stands for true positive (the number of 

correctly classified pixels), FP stands for false positive 

(the number of incorrectly classified pixels), and FN 

stands for false negative (the number of pixels that 

should have been classified as belonging to the class but 

were not). Mean Intersection over Union (mIoU) is a 

commonly used evaluation metric for semantic 

segmentation tasks, defined as the average IoU score 

across all classes: 

𝑚𝑒𝑎𝑛𝐼𝑜𝑈 =
1

𝐶
∑ 𝐼𝑜𝑈𝑐𝑐   (5) 

 

 

 
Figure 4. Examples of augmented images in the ICG dataset 
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The meanIoU (mIoU) score evaluates the overall 

accuracy of a segmentation model across all classes. A 

higher mIoU score signifies improved segmentation 

accuracy (34). 

 
4. 2. 2. Dice Metric              The Dice coefficient, also 
known as the Sørensen–Dice coefficient and F1 score, is 
a widely used metric for evaluating the performance of 
binary image segmentation models on a given dataset. It 
effectively captures the balance between false positives 
(FP) and false negatives (FN) (35). The Dice coefficient 
measures the degree of overlap between the predicted 
and ground truth segmentations. It ranges from 0 to 1, 
where 1 indicates a perfect overlap, and 0 specifies no 
overlap. The computation of the Dice coefficient relies 
on the counts of true positives (TP), false negatives 
(FN), and false positives (FP), which can be derived 
from the confusion matrix of the model's predicted 
outcomes.The TP count represents the number of 
correctly identified positive pixels, while the FN count 
reflects the number of incorrectly identified negative 
pixels. Conversely, the FP count denotes the number of 

pixels erroneously classified as positive. The Dice 
coefficient is mathematically defined as follows: 

𝐷𝑖𝑐𝑒 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (6) 

The Mean Dice (mDice) coefficient represents the 

average Dice coefficient score across all classes within a 

dataset. We can calculate the Dice coefficient as 

follows, which provides a measure of overall 

segmentation performance: 

𝑚𝑒𝑎𝑛 𝐷𝑖𝑐𝑒 = ∑ 𝐷𝑖𝑐𝑒𝑐𝑐   (7) 

 
4. 2. 3. Pixel-wise Accuracy            The evaluation of 

performance and accuracy in semantic segmentation 

models often involves utilizing the pixel-wise accuracy 

metric for pixel-level predictions. Pixel-wise accuracy 

calculates the ratio of correctly classified pixels to the 

total number of pixels in the image. To calculate this 

metric, we compare the model's estimated outcomes 

with the ground truth labels on a pixel-by-pixel basis. 

Each pixel in the predicted segmentation is compared to 

its corresponding pixel in the ground truth 

segmentation. If the predicted label matches the ground 

truth label, the pixel is classified correctly. Utilizing 

pixel-wise accuracy provides valuable insights into the 

overall performance of semantic segmentation models. 

 
4. 3. Exprimental Result                  Table 1 presents 

the experimental results for evaluating a semantic drone 

segmentation model. The metrics used for evaluation 

are IoU, Dice coefficient, and Accuracy. Each row is 

related to a specific class. Table 1 demonstrates the 

performance of the proposed method across different 

classes. The model achieves high IoU, Dice, and  
 

TABLE 1. Performance Evaluation of Proposed Method 

Across Multiple Classes 

Class IoU Dice Acc 

Unlabeled 50.14 66.7910 88.02 

Paved-area 95 97.4359 97.42 

Dirt 62.71 77.0819 79.26 

Grass 93.04 96.3945 97.45 

Gravel 79.98 88.8765 96.17 

Water 92.35 96.0229 98.52 

Rocks 85.89 92.4095 95.67 

Pool 96.62 98.2809 98.54 

Vegetation 74.4 85.3211 85.37 

Roof 94.9 97.3833 97.66 

Wall 84.85 91.8042 82.89 

Window 69.28 81.8526 87.9 

Door 47.03 63.9733 63.51 

Fence 59.65 74.7260 73.93 

Fence-pole 42.4 59.5506 60.86 

Person 79.16 88.3679 89.72 

Dog 68.05 80.9878 75.01 

Car 94.25 97.0399 98.58 

Bicycle 67.58 80.6540 75.83 

Tree 78.17 87.7477 84.03 

Bald-tree 79.99 88.8827 89.5 

Ar-marker 88.17 93.7131 95.28 

Obstacle 78.23 87.7854 93.46 

 

 

Accuracy scores for several classes such as paved-area, 

grass, pool, and car. 

These high scores indicate that the proposed model 

successfully captures the boundaries and details of these 

classes, resulting in accurate segmentation. However, it 

is worth noting that certain classes such as unlabeled, 

dirt, fence-pole, and door exhibit lower scores, 

indicating areas where the model faces challenges in 

achieving accurate segmentation. These classes may 

pose challenges due to their complex or ambiguous 

visual characteristics, resulting in lower performance 

than other classes. Figure 5 demonstrates the 

performance of the proposed method for drone semantic 

segmentation using augmented images from the ICG 

dataset. The figure comprises three columns, each 

providing crucial information about the segmentation 

process. The first column showcases the original images 

from the augmented ICG dataset. The drone captures 

these images, and we apply augmentation techniques 

such as rotation, scaling, flipping, or adding noise to 

enhance them.  
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Figure  5. Qualitative results. From left to right: input, ground 

truth, our method on ICG 

 

 

Augmenting the dataset enhances its diversity and 

enables the model to handle a broader range of real-

world scenarios. The second column presents the 

ground truth annotations, which serve as the reference 

labels for each image pixel. These annotations are 

meticulously handcrafted masks, accurately outlining 

the boundaries and regions of interest in the augmented 

images. They represent the accurate segmentation 

information and provide a benchmark against which the 

performance of the proposed method can be evaluated. 

The third column displays the predicted masks 

generated by the proposed method. These masks result 

from applying our trained model to the augmented 

images from the dataset. The experimental results 

indicate that the proposed method performs well in 

handling the augmented ICG dataset for drone semantic 

segmentation. The predicted masks exhibit a high 

degree of agreement with the ground truth annotations, 

suggesting that the proposed model successfully 

captures and classifies the objects in the augmented 

drone imagery. These results highlight the robustness 

and generalization capability of the proposed method, 

showcasing its potential for real-world applications. 

Figure 6 illustrates the accuracy of metrics' 

measurement results for all the compared methods 

obtained during the validation phases.  

Figures 7 and 8 illustrate the measurement results of 

the Dice coefficient and mIOU metrics for all the 

compared methods during the training and validation 

phases. We obtained these results by training for 20 

epochs. By analyzing the results in Figures 7 and 8, it is 

evident that the proposed method outperforms the other 

compared techniques in terms of both the Dice 

coefficient and mIOU metrics. The proposed method 

achieves significantly higher scores, indicating its 

superiority in accurately segmenting objects in the given 

dataset. 

In our study on semantic segmentation, we 

employed the following hyperparameters to train and 

evaluate the models. These choices were made based on 

prior research in the field and empirical observations. 

We set the batch size to 8, determining the number of 

samples propagated through the network in each 

training iteration. This value strikes a balance between 

memory consumption and convergence speed. To 

complete one epoch, we used 200 steps per epoch. This 

value ensures that the model is exposed to a diverse 

 
 

 
Figure  6. Comparison of  accuracy for different methods 

validation phases 
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Figure 7. Comparison of  mIOU metrics for different methods in training and validation phases 

 

 

 
Figure 8. Comparison of  dice metrics for different methods in training and validation phases 

 

 

range of samples during training, facilitating better 

generalization. For validation, we utilized ten validation 

steps per epoch, allowing us to evaluate the 

performance of the model on a separate set of samples. 

The input shape of images was (512, 512, 3). We 

initialized the learning rate to 0.0001, determining the 

step size during gradient descent optimization. We 

chose this initial learning rate to strike a balance 

between convergence speed and accuracy.To further 

refine the learning process, we employed an 

Exponential Decay Learning-Rate-Scheduler callback. 

This scheduler gradually reduced the learning rate over 

time, aiding the model in refining its parameters 

effectively. The proposed model was trained for 20 

epochs, allowing the model to learn from the dataset 

multiple times. The number of epochs affects both 

training time and the capacity of the model to 

generalize, which refers to its ability to accurately 

classify or predict unseen or new data that was not a 

part of the training set. A model with good 

generalization can effectively extrapolate patterns and 

provide an accurate prediction on unfamiliar data, 

indicating its robustness and ability to handle real-world 

scenarios. 
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Additionally, we utilized two callbacks during 

training: Model-Checkpoint and Early-Stopping. The 

Model-Checkpoint callback saved the best model 

weights based on a specified metric, enabling the 

retrieval of the best-performing model. The Early-

Stopping callback monitored a specified metric and 

stopped training early if the metric did not improve for a 

certain number of epochs, preventing overfitting. 

Table 2 provides information on the training 

schedule and time for a semantic segmentation model. 

The model was trained for 20 epochs, with a maximum 

(initial) learning rate of 10e4 and a minimum learning 

rate of 1.12× 10e5. The total training time for the model 

was 22981 seconds. Additionally, it is worth noting that 

the best weights were obtained at the 18th epoch, 

indicating the optimal point of model performance 

during training. 

Table 3 presents the evaluation results of various 

semantic segmentation methods for drone images, 

including the proposed method. We assessed the 

performance using three metrics: Dice coefficient, mean 

Intersection over Union (mIOU), and accuracy. The 

proposed method achieved an impressive Dice 

coefficient of 86.51%, indicating a strong agreement 

between the predicted and ground truth segmentations. 

This demonstrates the accuracy of the proposed method 

in capturing the shapes and boundaries of objects in the 

drone images. Additionally, our method achieved an 

mIOU of 76.23%, showcasing its ability to represent the 

spatial extent of the objects accurately.The high mIOU 

suggests that the method effectively captures the overall  

 

 
TABLE 2. Training schedule and time with learning rate (best 

weights at 18th epoch) 

Epochs Max. (Initial) LR Min. LR Total Training Time 

20 10e4 1.12× 10e5 22981 s 

 

 
TABLE 3. Comparative evaluation of semantic drone 

segmentation methods 

 Dice mIOU Accuracy 

FCN (36) 71.44 55.58 72.14 

UNet-VGG16 (37) 74.80 59.70 78.44 

UNet-ResNet50 75.01 60.01 78.91 

FPN (21) 75.37 60.48 80.04 

PspNet (22) 76.52 61.98 83.93 

DeeplabV3-ResNet50 (20) 75.94 61.21 84.35 

Unet++ (19) 77.06 62.68 84.48 

DeeplabV3+VGG16 (38) 76.87 64.01 85.79 

DeeplabV3+ResNet50 (38) 79.18 65.27 86.11 

Proposed 86.51 76.23 91.74 

quality of the segmentation output. Moreover, our 

method achieved an accuracy of 91.74%, indicating its 

effectiveness in correctly labelling pixels within the 

drone images. This showcases the reliability of the 

proposed method in accurately classifying the pixels. 

Comparing the proposed method to the other methods in 

the table, we outperformed them regarding Dice 

coefficient, mIOU, and accuracy. 

The FCN method achieved a Dice coefficient of 

71.44, an mIOU of 55.58, and an accuracy of 72.14. 

These results indicate that FCN performs reasonably 

well but has limitations in accurately capturing fine 

details and object boundaries in aerial imagery. The 

UNet-VGG16 method showed improvement with a Dice 

coefficient of 74.80, an mIOU of 59.70, and an accuracy 

of 78.44. This suggests that incorporating the VGG16 

architecture in the UNet framework enhances the 

segmentation results. Further enhancing the UNet 

architecture with the ResNet50 backbone, the UNet-

ResNet50 method achieved a Dice coefficient of 75.01, 

an mIOU of 60.01, and an accuracy of 78.91. This 

suggests that integrating a more advanced backbone 

network results in enhanced segmentation performance. 

The FPN method demonstrated even better performance 

with a Dice coefficient of 75.37, an mIOU of 60.48, and 

an accuracy of 80.04. This suggests that utilizing a 

feature pyramid network effectively captures multi-scale 

information and enhances segmentation accuracy. The 

PspNet method continued the trend of improvement, 

achieving a Dice coefficient of 76.52, an mIOU of 

61.98, and an accuracy of 83.93. This indicates that the 

Pyramid Scene Parsing Network (PspNet) is effectively 

captures both local and global contextual information, 

leading to improved segmentation results. DeeplabV3-

ResNet50 obtained a Dice coefficient of 75.94, an 

mIOU of 61.21, and an accuracy of 84.35. This suggests 

that the DeeplabV3 architecture, combined with the 

ResNet50 backbone, improves segmentation accuracy, 

particularly for objects of different scales and complex 

backgrounds. The Unet++ method improved the results 

with a Dice coefficient of 77.06, an mIOU of 62.68, and 

an accuracy of 84.48. combining incorporating nested 

skip and dense connections in the UNet architecture 

enhances segmentation accuracy. DeeplabV3+-VGG16 

achieved a Dice coefficient of 76.87, an mIOU of 64.01, 

and an accuracy of 85.79. This suggests that utilizing 

the VGG16 architecture in the DeeplabV3+ framework 

improves segmentation accuracy, capturing finer details 

and object boundaries.DeeplabV3+-ResNet50 showed 

even better performance, with a Dice coefficient of 

79.18, an mIOU of 65.27, and an accuracy of 86.11. 

This indicates that combining the DeeplabV3+ 

architecture with the ResNet50 backbone further 

enhances segmentation accuracy. 

Finally, the proposed method outperformed all other 

methods, achieving a Dice coefficient of 86.51, an 
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mIOU of 76.23, and an accuracy of 91.74. These results 

demonstrate that the novel method proposed in this 

paper achieves the highest segmentation accuracy, 

showcasing its effectiveness and superiority over 

existing methods in semantic drone segmentation. 

Our method outperforms other evaluated methods in 

accurately segmenting objects in drone images. It 

combines hierarchical multi-scale feature extraction 

with an Efficient Channel-based Attention ASPP 

module, capturing local and global information. The 

proposed method achieves significantly higher 

segmentation accuracy by focusing on relevant features. 

These findings contribute to advancing drone semantic 

segmentation techniques and offer insights for future 

research. Our method shows superior performance, 

promising improved accuracy and reliability in drone 

image segmentation. 

 

 
5. CONCLUSION 
 
In this study, we proposed a novel method for drone 

semantic segmentation that combines hierarchical multi-

scale feature extraction and an Efficient Channel-based 

Attention ASPP module. The superior performance of 

our proposed method can be attributed to its ability to 

capture both local and global information while 

efficiently focusing on relevant features, resulting in 

accurate object segmentation in drone images. The 

evaluation results demonstrate that the proposed method 

outperforms other existing methods regarding 

segmentation accuracy. These findings validate the 

effectiveness of the hybrid approach and its potential to 

advance the field of drone semantic segmentation. 

Furthermore, our proposed method offers significant 

advancements in drone imagery applications. Improving 

the accuracy and reliability of segmentation algorithms 

provides valuable insights for various tasks such as 

object detection, tracking, and scene understanding in 

drone-based systems. Looking ahead, there are 

promising prospects for the suggested hybrid approach. 

One potential direction for future research is to explore 

the scalability and efficiency of the method for real-time 

or near-real-time applications. This could involve 

optimizing the computational efficiency of the approach 

to enable its deployment on resource-constrained 

platforms. Moreover, further investigations can be 

conducted to evaluate the proposed method on large-

scale, diverse, and challenging datasets specific to drone 

imagery. This would provide a deeper understanding of 

its performance and generalization capabilities across 

different environmental conditions and object classes. 

The findings contribute to the existing body of 

knowledge and provide a foundation for future research 

and development in drone-based computer vision 

systems.  
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Persian Abstract 

 چکیده 
 کیمقاله،    نیدشوار است. در ا  ژهیبه و  ،ییهوا   ریمرتبط با تصاو  یهایدگیچیپ  لیبه دل  فهیوظ  نیاست. ا  وتریکامپ  یینایدر حوزه ب  زیبرانگچالش  فهیوظ  کی پهپاد    ییمعنا  یبندم یتقس

 یهای ژگیاز استخراج و  یشنهادی. روش پردیگی قرار م  یابیمورد ارز  ICGپهپاد ارائه شده است و عملکرد آن با استفاده از مجموعه داده    ییمعنا  یبندمیتقس   یبرا  جامعروش  

مطالعه، عملکرد   نی. در ادهدی حوزه پاسخ م  نیفرد موجود در امنحصربه  یهاروش به چالش  نی. اکندی بر کانال استفاده م  یاز توجه مبتن  نهیو استفاده به  ی مراتبسلسله  اسیچندمق

و دقت   Dice  ،mIOU  معیارهایموجود با    یکردهایرو  ن ینسبت به ا  یشنهادیکه روش پ  دهندی نشان م  یشیآزما  جیشده است. نتا  سهیمدل مدرن مقا  ن یبا چند  یشنهادیروش پ

را به دست   یرچشمگی  عملکرد  ٪۹۱.۷۴  و  ٪۷۶.۲۳  ،٪۸۶.۵۱  بیرت و دقت به ت  Dice  ،mIOU  معیارهایبا    یشنهادیدارد. به طور خاص، روش پ  یعملکرد بهبود قابل توجه

بر پهپاد، مانند    یمبتن  یهابرنامه  شرفتیبه پ  جینتا  نیپهپاد مؤثر است. ا  ییمعنا  یبندمیتقس  یها در مقابله با چالش  یشنهادیکه روش پ  دهند یپژوهش نشان م  نیا  یهاافتهی.  آوردیم

 .کندیاست، کمک م یآنها ضرور قیدق ییمعنا یبندمیکه تقس یط یو نظارت مح ایاش یری گینظارت، پ
 

 


