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A B S T R A C T  
 

 

This study presents an efficient path planning method for mobile robots in a dynamic environment. The 

method is based on the rapidly-exploring random tree (RRT) algorithm. The two primary processes in 

mobile robot path planning in a dynamic environment are initial path planning and path re-planning. In 
order to generate a feasible initial path with fast convergence speed, we used a hybridization of rapidly-

exploring random tree star and ant colony systems (RRT-ACS). When an obstacle obstructs the initial 

path, the path re-planner must be executed. In addition to the RRT-ACS algorithm, we proposed using a 
rule-template set based on the mobile robot in dynamic environment scenes during the path re-planner 

process. This novel algorithm is called RRT-ACS with Rule-Template Sets (RRT-ACS+RT). We 

conducted many benchmark simulations to validate the proposed method in a real dynamic environment. 
The performance of the proposed method is compared to the state-of-the-art path planning algorithms: 

RRT*FND and MOD-RRT*. Numerous experimental results demonstrate that the proposed method 

outperforms other comparison algorithms. The results show that the proposed method is suitable for the 

use on robots that need to navigate in a dynamic environment, such as self-driving cars. 

doi: 10.5829/ije.2023.36.04a.16 
 

 
1. INTRODUCTION1 
 
Path planning is one of the most researched problems in 

robotics [1-3]. Any path planning algorithm's primary 

goal is to provide a collision-free path from a start state 

to an end state within the robot's configuration space [4, 

5]. The Rapidly Exploring Random Tree (RRT) is a 

simple and fast algorithm that generates a tree in the 

configuration space incrementally until the goal is 

reached [6]. The RRT is one of the most widely used 

probabilistic planning algorithms [7-9]. On the other 

hand, the RRT has never converged to an asymptotically 

optimal solution [10, 11]. As a result, Karaman 

developed the RRT* [12]. Since the introduction of the 

RRT* algorithm, research has expanded to discover new 

ways to improve the RRT* algorithm in the path planning 

application [13-16]. However, the operational 

environment of path planning is dynamic in many 

scenarios [17, 18]. The path from a single query is 

frequently obstructed during execution. As a result, the 
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topic of dynamic and re-planning is critical to robotic 

path planning [19]. 

Many methods for dynamic path planning algorithms 

have been presented in the literature. Sampling-based 

planners, such as RRT-related methods, are widely used 

among existing mobile robot path planning in a dynamic 

environment [6, 17]. Meng et al. [20] proposed an 

improved two-way RRT algorithm to solve the path re-

planning problem for Unmanned Aerial Vehicles (UAV) 

in dynamic environments. Before the UAV takes off, 

offline path planning is performed. If a pop-up threat is 

detected during the flight, the affected nodes will be 

removed while the remaining tree structure will be 

preserved. The improved two-way RRT is then used for 

path re-planning. Chen and Wang [21] present a novel 

RRT-based path planning algorithm that allows UAVs to 

fly safely in dynamic threat environments. Chen and 

Wang [21] proposed a pruning-reconnecting mechanism 

to avoid collisions with dynamic threats and repair the 

path when new obstacles appear. Adiyatov and Varol 
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[22] proposed a novel RRT-based algorithm for dynamic 

motion planning and named it RRT*FND. Adiyatov and 

Varol [22] extends the memory-efficient RRT*FN 

algorithm to dynamic scenarios. Adiyatov and Varol [22]  

then used two greedy heuristics to repair the solution 

rather than restarting the entire motion planning process. 

Qi et al. [23] present an RRT algorithm suitable for robot 

navigation in an undetermined dynamic environment. 

The algorithm includes two procedures: initial path 

planning and re-planning. To determine the initial path, a 

modified RRT* is employed. If the current path is not 

feasible, a different method is intended to reroute it. This 

algorithm is called MOD-RRT*. Wei et al. [24] proposed 

a Bi-RRT* dynamic path planning approach based on an 

improved exploring function with a goal direction to deal 

with re-planning paths for a robotic manipulator to avoid 

dynamic obstacles. A multi-step expansion strategy with 

greedy heuristics is also used in the Bi-RRT* proposal. 

Meng and Dai [25] updated the current path with the 

advanced RRT algorithm for local path planning to avoid 

obstacles based on the obstacle map. Meng's method 

solved the problem of avoiding dynamic obstacles during 

real-time autonomous robot navigation. However, the 

RRT algorithm is still used in the methods described 

above. 

Numerous techniques have been developed to enhance 

the performance of the RRT* algorithm. Klemm et al. 

[13] introduced the RRT*-connect algorithm, a dual-tree 

variant of RRT*. RRT*-connect could find the solution 

faster than RRT, especially in a narrow passage 

environment where the planner must traverse to find 

solutions. However, to optimize their paths, RRT*-

connect must search all states. Gammel et al. [14] 

introduced the informed RRT* algorithm, which 

employs informed sampling on RRT* once the first 

solution has been determined. The informed RRT* 

algorithm can find the optimal solution 1.2–10.3 times 

faster than the RRT* algorithm. However, informed 

RRT* encounters difficulty when the target node is 

concealed behind a narrow passage. The informed RRT*-

connect algorithm was developed by Mashayekhi et al. 

[15], which combines RRT*-connect with informed 

RRT*. Therefore, informed RRT*-connect can find the 

optimal solution faster than informed RRT* in a narrow 

passage environment. Pohan et al. [16] created the RRT-

ACS algorithm, a hybrid of the RRT algorithm and the 

Ant Colony System (ACS). In Friedman's nonparametric 

test, Pohan et al. [16] reported that the RRT-ACS 

algorithm outperformed the informed RRT*, informed 

RRT*-connect, RRT*-connect, and RRT* algorithms. 

To the authors' best of knowledge, no research has used 

the RRT-ACS algorithm in a path planning mobile robot 

in a dynamic environment. 

This study presents an effective mobile robot path 

planning method in a dynamic environment. The method 

is based on the RRT algorithm. Initial path generation 

and path re-planning are the two primary processes in 

path planning for mobile robots in dynamic 

environments. In order to generate a feasible initial path 

with fast convergence speed, we used the RRT-ACS 

algorithm. The path re-planner must be executed when an 

obstruction blocks the initial path. During the path re-

planner process, we propose using a rule-template set 

based on the mobile robot in dynamic environment 

scenes. A rule-template set consists of multiple rule 

templates generated offline based on the context of an 

environment scene. At the start of the algorithm, the rule-

template set is loaded, and a suitable rule template can be 

chosen automatically based on the scene of the 

environment. If some nodes in the rule template are not 

collision-free, these nodes will be discarded, and the 

remaining nodes will be added to the root. Thus, the tree 

likely possesses a portion of branches and leaves at this 

time. If this tree has reached the goal state, then random 

searching is no longer necessary, and this strategy will 

reduce the time needed for re-planning. However, if the 

goal state has yet to be reached, the RRT-ACS algorithm 

will be implemented to accelerate the growth rate of the 

search tree in order to reach the goal state. RRT-ACS 

with Rule-Template Sets (RRT-ACS+RT) is the name of 

this proposed algorithm. We ran numerous benchmark 

simulations to validate the proposed method in a dynamic 

environment. The performance of the proposed method 

is compared to RRT*FND and MOD-RRT*, the state-of-

the-art path planners in a dynamic environment. 

Numerous experimental results indicate that the proposed 

method outperforms other comparitive algorithms. The 

results show that the proposed method is suitable for use 

on robots that need to navigate in a dynamic 

environment, such as self-driving cars. 

The remaining sections of this paper are structured as 

follows. The RRT-ACS+RT algorithm is described in 

section II. In section III, the performance of the RRT-

ACS+RT algorithm in comparison to RRT*FND and 

MOD-RRT*, the state-of-the-art path planners for a 

dynamic environment, is evaluated and discussed. Finally, 

section IV presents some conclusions. 

 

 

2. PROPOSED ALGORITHM: RRT-ACS+RT 
 

2. 1. Proposed Algorithm            This section details 

the proposed algorithm. Algorithm 1 depicts the RRT-

ACS+RT algorithm. Compared with RRT-ACS, the 

improvement is the addition of rule templates. By 

introducing path rule templates, more vertices and edges 

will be derived from rule templates than constructed 

online during the re-planning phase when obstacles block 

the initial path. The concept of using rule templates to 

speed up the re-planning process was inspired by the 

research of Ma et al. [26]. Ma et al. use rule templates for 

cases of autonomous on-road driving. 
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A set of rule templates contains multiple rule 

templates, which are generated offline according to the 

context of the environment. Figure 1 shows an example 

of a rule template created offline for a straight-line initial 

path blocked by an obstacle. 

At the start of the proposed algorithm, the rule 

template set 𝑇 is loaded (line 2). This template is then 

parsed and saved as a tree-like structure. If some of the 

vertices and path edges in the rule template are not 

collision-free with obstacles or road boundaries, these 

sections are discarded, and the remainder in the rule 

template is preserved and added to the root (line 3). 

Therefore, at this point, the tree may already have some 

branches and leaves before searching randomly. If the 

tree from this template can immediately plot a path to the 

current destination state without any obstructions, then 

the algorithm stops and returns the tree. If the function 

fails, then the algorithm starts the following iteration 

step. 

In the iteration step process, a random variable value 

will be generated at each iteration to determine whether 

the exploration or exploitation process will be used (line 

8). If the exploration process is chosen, the random 

sample will determine the random state 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 (line 

14). If the exploitation process is selected, the random 

state will be determined using pheromone distribution 

data (lines 10-12). 

After obtaining the value of the random state, the 

following process is to look for nodes in 𝑇 that are less 

than a threshold value to the random state. The nodes are 

named 𝑄𝒏𝒆𝒂𝒓 (line 16). Then the node in 𝑄𝒏𝒆𝒂𝒓 that is 

closest to 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 is selected. The node with the shortest 

distance is named 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  (line 17). Next, a new branch 

will be created from the 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  node that goes to 

𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 with a distance of ∆𝑞 from 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 . The new 

node is named 𝑞𝑛𝑒𝑤 (line 18). If there are no obstacles 

between 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡  and 𝑞𝑛𝑒𝑤 (line 19), then the 𝑞𝑛𝑒𝑤 node 

will be entered into 𝑇 (lines 20-22). Next, it will be 

checked whether there are nodes in the current 𝑇 close 

enough to the destination node or 𝑞𝑔𝑜𝑎𝑙  (line 23). If a 

node is close enough to the destination node, an 𝑋𝑏𝑠 route 

will be built (line 24). This process will repeat until the 

stop condition is met. The looping process can have 

several conditions that vary to stop, for example, if the 

maximum number of iterations has been met.  

The RRT-ACS+RT algorithm determines the new 

path using pheromone information to ensure the quality  

 

 

 
Figure 1. Example of a rule template for a straight line initial 

path blocked by an obstacle 

Algorithm 1 : 𝑋𝑏𝑠 ←RRT-ACS+RT(𝑚𝑎𝑝) 

1: % ========== Initialization 

2: 𝑇 ← 𝐿𝑜𝑎𝑑 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒() 

3: 𝑇 ← 𝑇𝑟𝑖𝑚𝑇𝑟𝑒𝑒(𝑇) 

4: 𝑠 ← 0 

5:  while 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑚𝑒𝑡 do 

6:     for 𝑘 = 1 to 𝑚 do 

7:         while 𝑠 = 0 do 

8:             𝑞 ← 𝑟𝑎𝑛𝑑𝑣𝑎𝑟[0,1] and 𝜏 ≠ ∅ 

9:             if 𝑞 ≤  𝑞𝑜 

10:                 𝑞𝑠𝑎𝑚𝑝 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑒𝐹𝑟𝑜𝑚 

10𝐿𝑎𝑠𝑡𝑁𝑜𝑑𝑒(𝑇) 

11:                 𝜏𝑛𝑒𝑎𝑟  ← 𝑁𝑒𝑎𝑟(𝜏, 𝑞𝑠𝑎𝑚𝑝) 

12:                 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 ← 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑙𝑙(𝜏𝑛𝑒𝑎𝑟) 

13:             else 

14:                 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝑘) 

15:             end if 

16:             𝑄𝒏𝒆𝒂𝒓  ← 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒) 

17:             𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑜𝑟 
(𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 , 𝑄𝑛𝑒𝑎𝑟 , 𝑇) 

18:             𝑞𝑛𝑒𝑤  ← 𝐺𝑟𝑜𝑤𝑇𝑟𝑒𝑒 

 (𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 , ∆𝑞) 

19:             if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑓𝑟𝑒𝑒(𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑞𝑛𝑒𝑤) then 

20:                 𝑄𝒏𝒆𝒂𝒓  ← 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤) 

21:                 𝑞𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡 
(𝑞𝑛𝑒𝑤 , 𝑄𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡) 

22:                 𝑇 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑞𝑚𝑖𝑛,𝑞𝑛𝑒𝑤 , 𝑇) 

23:                 if 𝐶𝑎𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑞𝑔𝑜𝑎𝑙 , 𝑇) then 

24:                     𝑋𝑏𝑠 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑇) 

25:                 end if 

26:             end if 

27:         end while 

28:         𝑋(𝑘) ← 𝑀𝑎𝑘𝑒𝑃𝑎𝑡ℎ from 𝑇 

29: end for 

30: 𝑋𝑏𝑠 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑋𝑏𝑠 , 𝑚𝑎𝑝) 

31: 𝑋𝑤  ← Select 𝑤 best 𝑃𝑎𝑡ℎ(𝑋) 

32: 𝜏 ←  Add 𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑁𝑜𝑑𝑒  on the 𝑤  best 

𝑃𝑎𝑡ℎ(𝑋𝑤 , 𝜏) 

33: 𝜏 ← Evaporate 𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑁𝑜𝑑𝑒(𝜏) 

34: end while 

 

 

of the final result. This motivation is based on the 

principle of learning by doing. A procedure for updating 

pheromone data has been implemented (lines 31-33). 

Only ants with the best path will contribute to providing 

additional pheromones at each iteration. This restriction 

is intended to provide additional reinforcement only to 

the good paths. The function LocalSearch (line 30) will 

optimize RRT's existing branches to improve the quality 

of found paths. 

The RRT-ACS+RT algorithm was designed to deal 

with dynamic obstacles. Algorithms 2 - 4 depict the RRT-

ACS+RT-based dynamic path planning algorithm. In 

order to generate a feasible initial path with fast 

convergence speed, the RRT-ACS algorithm, as 

described by Pohan et al. [16], is used (line 2 in algorithm 

2). After that, the robot will set its velocity (line 4 in 

algorithm 2). The robot's position is updated based on the 
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speed. This process is described in algorithm 3. When the 

vertex is reached, the robot changes the velocity vector to 

move toward the next node (line 2-5 in algorithm 2).  

 
Algorithm 2 : 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑃𝑎𝑡ℎ() 

1: 𝑚𝑎𝑝 ← 𝑆𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡() 

:2 𝑋𝑏𝑠 ←RRT-ACS(𝑚𝑎𝑝) 

:3 𝑅𝑜𝑏𝑜𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑜𝑛 ← 𝑁𝑒𝑥𝑡𝑊𝑎𝑦𝑝𝑛𝑡(𝑋𝑏𝑠) 

4: 𝑆𝑒𝑡 𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦() 

5: 𝑆𝑒𝑡𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

6: 𝑆𝑒𝑡𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠(𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

7:  while 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ! = 𝐺𝑜𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 do 

8:     𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐(𝑋𝑏𝑠) 

9:     𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠𝐿𝑜𝑐(𝑁𝑢𝑚𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

10: end while 

 

Algorithm 3 : 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐(𝑋𝑏𝑠) 

1: 
𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 

𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

2: 
If 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 == 𝑅𝑜𝑏𝑜𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

                                then 

3:     𝑅𝑜𝑏𝑜𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑜𝑛 ← 𝑁𝑒𝑥𝑡𝑊𝑎𝑦𝑝𝑛𝑡(𝑋𝑏𝑠) 

4:     𝑆𝑒𝑡 𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦() 

:5 end 

6: 

𝑂𝑏𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒( 

                            𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 
                            𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑜𝑐) 

:7 if 𝑂𝑏𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑅𝑜𝑏𝑜𝑡𝑅𝑎𝑛𝑔𝑒 then 

:8     if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑜𝑐 𝑏𝑙𝑜𝑐𝑘𝑠 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ do 

:9         𝑋𝑏𝑠 ←DoReplan(𝑚𝑎𝑝) 

:10     end if 

11: end if 

 

Algorithm 4 : 𝑋𝑏𝑠 ←DoReplan(𝑚𝑎𝑝) 

1: 𝑇 ← 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑁𝑜𝑑𝑒𝑠() 

2: 𝑚𝑎𝑝 ← 𝑆𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑛𝑆𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛() 

3: 𝑚𝑎𝑝 ← 𝑆𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑛𝐺𝑜𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛() 

4: 𝑋𝑟𝑒𝑝𝑙𝑎𝑛 ←RRT-ACS+RT(𝑚𝑎𝑝) 

:5 
while 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ! = 

                𝑅𝑒𝑝𝑙𝑎𝑛𝐺𝑜𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 do 

:6     𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐(𝑋𝑟𝑒𝑝𝑙𝑎𝑛) 

:7     𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠𝐿𝑜𝑐(𝑁𝑢𝑚𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠) 

8: end while 

 

 

When the simulation begins, the moving obstacles 

choose several random adjacent vertices as the 

destination points for movement (lines 5 and 6 in 

algorithm 2). During the simulation, the obstacle will 

move towards several random adjacent vertexes (line 9 

of algorithm 2). 

As the robot approaches the RobotDestination, it will 

determine if there are any dynamic obstacles within the 

robot's detection range. Furthermore, the dynamic 

obstacle movement must be observed in at least two steps 

to predict the dynamic obstacle's speed and direction. If 

the dynamic obstacle is predicted to block the path that 

the vehicle should take, DoReplan will be executed (lines 

7 - 9 in algorithm 3). 

The DoReplan algorithm works on the principle of 

determining the current vehicle position node as 

ReplanStartLocation (line 2 in algorithm 4). Following 

that, the DoReplan algorithm will determine the next 

position on the global path that is not blocked by dynamic 

obstacles (line 3 in algorithm 4). ReplanGoalLocation is 

the name of this position. The RRT-ACS+RT algorithm 

will then modify and expand the nodes surrounding the 

dynamic obstacle that connects ReplanStartLocation and 

ReplanGoalLocation (line 4 in algorithm 4). In principle, 

a path will be found that will circle the dynamic obstacle 

to ReplanGoalLocation. Any nodes that collide with a 

random moving obstacle are invalidated rather than 

deleted. After that, the robot will follow the re-planning 

result path until it reaches the ReplanGoalLocation (lines 

5-8 in algorithm 4). Once the ReplanGoalLocation is 

reached (and the obstacle has been overcome), the robot 

will retrace the initial path determined previously. 

 

2. 2. The Illustration              Figures 2 – 10 depict 

illustrations of the proposed algorithm. This illustration 

mimics the scenario proposed by Connell et al. [6], Jin et 

al. [27], and Wei and Ren [28]. The illustration shows a 

robot path planning process in a maze environment with 

a dynamic object. Figure 2 shows the scenario of the 

maze environment used and a unicycle robot model (big 

grey circle) moving from the starting location (red dot) to 

the destination location (blue dot). Robots are currently 

treated as particles. Furthermore, certain safe distances 

are set aside to form obstacles. The barriers are expanded 

to ensure the robot's safety during operation, as shown in 

Figure 3. 

The next step is to perform path planning using the 

RRT-ACS algorithm, with the results displayed in Figure 

4. In Figure 4, it is evident that the path generated by the 

RRT-ACS algorithm is close to the optimal path, as the 

path's corner points are close to the corners of the 

obstacle. Figure 5 depicts the results of path planning on 

the original map (without obstacle expansion). Based on 

Figure 5, the resulting path is safe for the robot to 

traverse, as it will not cause it to collide with the wall. 

The illustration of a robot moving through a given path is 

shown in Figure 6. 

 

 

 
Figure 2. Maze environment scenario used for testing 
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Figure 3. Obstacle expansion 

 

 

 
Figure 4. The results of path planning using the RRT-ACS 

algorithm 

 

 

 
Figure 5. The results of the path planning using the RRT-

ACS algorithm on the initial map 
 

 

 
Figure 6. Illustration of a robot moving through a given path 

 

 

Furthermore, a dynamic obstacle in the form of a 

basketball is given, as shown in Figure 7. It can be seen 

that the dynamic obstacle blocks the path that the robot 

must pass. The robot will crash into these dynamic 

obstacles if re-planning is not carried out. So that in the 

proposed algorithm, if an obstacle is detected that blocks 

the robot, it will be detected by the sensor. The algorithm 

will update the environmental map, as shown in Figure 8. 

Next, the RRT-ACS+RT algorithm is run again to 

produce a re-planning algorithm to avoid dynamic 

constraints. The first stage of the RRT-ACS+RT 

algorithm for the re-planning process is to use the tree of 

rule templates, as shown in Figure 9. If the tree of rule 

templates can be connected to the destination node, then 

the re-planning process is complete. If not, the RRT-ACS 

algorithm will start iterating to connect the tree with the 

destination node. The resulting re-planning path is shown 

in Figure 10. 

 

 

 
Figure 7. Given an obstacle on the path traversed by the 

robot 

 

 

 
Figure 8. Update the environmental map after the robot 

detects a dynamic obstacle 

 

 

 
Figure 9. Use of rule template to speed up the re-planning 

process 
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Figure 10. Path re-planning results to avoid dynamic 

obstacle 

 

 

3. RESULTS AND DISCUSSION 
 

To validate the performance of the proposed path 

planning mobile robot in a dynamic environment using 

the RRT-ACS+RT algorithm, we ran it through a three-

dynamic environment simulation scenario (as shown in 

Figures 11 – 13). The three scenarios replicate the test 

scenario proposed by Wang et al. [29]. In each scenario, 

the robot's initial location is indicated by a red dot, while 

a blue dot indicates the robot's goal location. The 

simulation tests were carried out on a PC with a Core i5 

3.20 GHz CPU and 4 GB RAM running Windows 10 64-

bit, with LabVIEW 7.1 as the compilation environment. 

The first scenario is shown in Figure 11(a). In this 

scenario, there are five static obstacles (black box) and 

one dynamic obstacle (in the form of a basketball). First, 

the robot will create an initial path, as shown in Figure 

11(b). Then, when the robot moves, a dynamic obstacle 

will be placed that will block the initial path, as shown in 

Figure 11(c) or Figure 11(d). The robot must then re-plan 

in order to find a new path to the goal state that avoids 

the newly-placed dynamic obstacles. Figure 11(c) shows 

an example of the re-planning path generated by the 

proposed algorithm. It can be seen that the robot simply 

circles around the dynamic obstacle to avoid colliding 

with it. As for the case of Figure 11(d), the dynamic 

obstacle covers the narrow path that the robot wants to 

pass (making the robot unable to pass through the narrow 

path). The RRT-ACS+RT algorithm then searches for a 

new route that takes a right turn to reach the goal state 

while avoiding collisions with dynamic obstacles. 

The second scenario is shown in Figure 12(a). In this 

scenario, there are two static obstacles and two dynamic 

obstacles. First, the robot will create an initial path, as 

shown in Figure 12(b). Then, when the robot begins to 

move, it will place the first dynamic obstacle that will 

block the initial path, as shown in Figure 12(c). The robot 

must then re-plan to find a new path to the goal state 

without being impeded by the newly placed dynamic 

obstacles. Figure 12(c) shows an example of the re-

planning path generated by the proposed algorithm. It can 

be seen that the robot simply circles around the dynamic 

obstacle to avoid a collision. 

Furthermore, a second dynamic obstacle will be 

placed when the robot moves again to block the initial 

path on the other side, as shown in Figure 12(d). Then the 

robot must re-do the re-planning to find a new path to 

reach the goal state and not be hindered by the second 

dynamic obstacle. Figure 12(d) shows an example of the 

second re-planning path generated by the RRT-ACS+RT 

algorithm. 

Meanwhile, the third scenario is shown in Figure 

13(a). The initial path generated by the proposed 

algorithm is also shown in Figure 13(a). In this scenario, 

there are four static obstacles and three dynamic 

obstacles. The three dynamic obstacles will be placed in 

turn to block the initial path of the robot, as shown in 

Figure 13(b) – 13(d). It can be seen in the three figures 

that every time a dynamic obstacle blocks the robot's 

path; the robot will re-plan to find a new path to reach the 

goal state and not be hindered by dynamic obstacles. 

Figures 13(b) – 13(d) show an example of the re-planning 

path generated by the RRT-ACS+RT algorithm every 

time the robot detects a dynamic object. 
 

 

 
(a) 

 
(b) 

 
(c) 



M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics  Vol. 36 No. 04, (April 2023)   797-806                                        803 

 

 
(d) 

Figure 11. First test scenario: (a) test scenario, initial 

location and goal location of the robot, (b) an example of the 

initial path generated by the proposed algorithm, (c) and (d) 

dynamic obstacle is placed that will block the initial path and 

the robot must re-planning the path to reach the goal location 

while avoiding collisions with dynamic obstacles 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Second test scenario: (a) test scenario, initial 

location and goal location of the robot, (b) an example of the 

initial path generated by the proposed algorithm, (c) and (d) 

the first and the second dynamic obstacle is placed that will 

block the initial path and the robot must re-planning the path 

to reach the goal location while avoiding collisions with 

dynamic obstacles 

 

 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 13. Third test scenario: (a) test scenario, initial 

location, goal location, and the initial path generated by the 

proposed algorithm, (b) - (d) the first, the second, and the 

third dynamic obstacle is placed that will block the initial 

path and the robot must re-planning the path to reach the goal 

state while avoiding collisions with dynamic obstacles 
 

 

The performance of the re-planning process of the 

mobile robot in a dynamic environment using the RRT-

ACS+RT algorithm is compared to the RRT*FND, 

MOD-RRT*, and RRT* algorithms. Testing was carried 

out using the three scenarios that have been described. 

The results are summarized in Tables 1-3. Performance 

measurements include the best, the worst, and the mean 

computation time of each algorithm.  

Based on the data in Tables 1-3, we will compare how 

fast the RRT-ACS+RT, RRT*FND, and MOD-RRT* 

algorithms perform the re-planning process compared to 

the RRT* algorithm. The results of this comparison are 

stated in Table 4. 

Based on the datareported in Table 4, it can be seen that 

the average time for the RRT-ACS+RT algorithm to 

carry out the re-planning process is 65.5% faster than the 

RRT* algorithm. These results are consistent with the 

RRT-ACS algorithm performance measurement results 

reported by Pohan et al. [16]. They have also reported 

that the speed of the RRT-ACS algorithm was 59.4% 
 

 

TABLE 1. Comparison of the time required for each algorithm 
to re-planning in the first scenario. The time is in milliseconds 

Computation 

time 

performance 

RRT-

ACS+RT 

RRT* 

FND 

MOD-

RRT* 
RRT* 

The dynamic obstacle's location as shown in Figure 11(c) 

Best 478.9 1216.2 1577.0 1770 

Mean 565.3 1451.0 2617.8 3113 

Worst 1158.1 1935.9 4050.3 5296 

The dynamic obstacle's location as shown in Figure 11(d) 

Best 763.8 1385.5 1649.7 1875 

Mean 936.5 2340.9 2549.5 2932.2 

Worst 2824.5 19670.1 4289.6 4965 

TABLE 2. Comparison of the time required for each algorithm 
to re-planning in the second scenario. The time is in 
milliseconds 

Computation 

time 

performance 

RRT-

ACS+RT 

RRT* 

FND 

MOD-

RRT* 
RRT* 

The first dynamic obstacle is placed as in Figure 12(c) 

Best 615.5 1003.8 1028.2 1154 

Mean 921.7 1086.6 1696.1 2017 

Worst 943.1 1329.1 2207.2 2886 

The second dynamic obstacle is placed as in Figure 12(d) 

Best 266.8 360.0 1525.7 1734 

Mean 1427.7 1861.0 2327.6 2677 

Worst 2593.5 4060.7 3627.8 4199 

 

 
TABLE 3. Comparison of the time required for each algorithm 
to re-planning in the third scenario. The time is in milliseconds 

Computation 

time 

performance 

RRT-

ACS+RT 

RRT* 

FND 

MOD-

RRT* 
RRT* 

The first dynamic obstacle is placed as in Figure 13(b) 

Best 286.2 794.3 798.3 896 

Mean 312.8 980.0 1709.7 2033.2 

Worst 441.6 1254.3 3501.2 4578 

The second dynamic obstacle is placed as in Figure 13(c) 

Best 869.8 1577.7 1343.5 1527 

Mean 1245.8 2092.6 3123.2 3592 

Worst 1147.2 6019.3 4884.9 5654 

The third dynamic obstacle is placed as in Figure 13(d) 

Best 482.1 801.3 805.4 904 

Mean 753.7 1038.2 1256.2 1493.8 

Worst 922.6 2069.1 1804.9 2360 

 

 
TABLE 4. Comparison of the average time for each algorithm 
executes the re-planning process relative to the RRT* 
algorithm 

Dynamic obstacle position 
RRT-

ACS+RT 

RRT* 

FND 

MOD-

RRT* 

First scenario, Figure 11(c)  81.8% 53.4% 15.9% 

First scenario, Figure 11(d) 68.1% 20.2% 13.1% 

Second scenario, Figure 12(c) 54.3% 46.1% 15.9% 

Second scenario, Figure 12(d) 46.7% 30.5% 13.1% 

Third scenario, Figure 13(b) 84.6% 51.8% 15.9% 

Third scenario, Figure 13(c) 73.7% 41.7% 13.1% 

Third scenario, Figure 13(d) 49.5% 30.5% 15.9% 

Average percentage 65.5% 39.2% 14.7% 
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faster than the RRT* algorithm in reaching the optimal 

path. Based on the data in Table 4, it can be apparent that 

the average time for the RRT*FND algorithm to carry out 

the re-planning process is 39.2% faster than the RRT* 

algorithm. These results are consistent with the 

performance measurement results of the RRT*FND 

algorithm reported by Adiyatov et al. [22]. Adiyatov et 

al. [22] also reported that the speed of the RRT*FND 

algorithm in reaching the optimal path was 43.5% faster 

than the RRT* algorithm. Based on Tables 1 - 4, it is clear 

that the RRT-ACS+RT algorithm outperforms other 

algorithms in terms of best path length, worst path length, 

and mean path length. 

 

 

4. CONCLUSION 
 

This study implements a path planning mobile robot 

based on the RRT-ACS+RT algorithm in a dynamic 

environment. The simulation was carried out to validate 

the proposed method in a real dynamic environment. The 

proposed method's performance is compared to the 

RRT*FND and MOD-RRT algorithms. The test results 

demonstrate that the proposed method outperforms other 

comparison algorithms. The findings indicate that the 

proposed method is appropriate for use on robots 

navigating in a dynamic environment, such as self-

driving cars. 
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Persian Abstract 

 چکیده 
دفی در حال کاوش سریع این مطالعه یک روش برنامه ریزی مسیر کارآمد برای ربات های متحرک در یک محیط پویا ارائه می دهد. این روش بر اساس الگوریتم درخت تصا

(RRT  است. دو فرآیند اصلی در )برنامه ریزی مسیر ربات متحرک در یک محیط پویا، برنامه ریزی مسیر اولیه و برنامه ریزی مجدد مسیر است. به منظور ایجاد یک مسیر اولیه  

اده کردیم. هنگامی  ( استفRRT-ACSای از درختان تصادفی که به سرعت در حال کاوش هستند )های مستعمرهپذیر با سرعت همگرایی سریع، ما از ترکیبی از سیستم امکان

قانون مبتنی بر ربات متحرک  -، ما استفاده از یک مجموعه الگوRRT-ACSکه مانعی مسیر اولیه را مسدود می کند، برنامه ریزی مجدد مسیر باید اجرا شود. علاوه بر الگوریتم 

( نامیده  RRT-ACS+RTقانون )-های الگوبا مجموعه RRT-ACSگوریتم جدید ریزی مجدد مسیر پیشنهاد کردیم. این ال های محیط پویا در طول فرآیند برنامهرا در صحنه

ریزی  های پیشرفته برنامههای معیار زیادی را برای اعتبارسنجی روش پیشنهادی در یک محیط پویا واقعی انجام دادیم. عملکرد روش پیشنهادی با الگوریتمسازیشود. ما شبیهمی

نتایج تجربی متعدد نشان می MOD-RRTو    RRT*FNDشود:  مسیر مقایسه می  نتایج نشان های مقایسه عمل می دهد که روش پیشنهادی بهتر از سایر الگوریتم*.  کند. 

 های خودران دارند، مناسب است.یابی در یک محیط پویا، مانند اتومبیل هایی که نیاز به جهتدهد که روش پیشنهادی برای استفاده در روبات می
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