
IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806

Please cite this article as: M. A. R. Pohan, J. Utama, Efficient Sampling-based for Mobile Robot Path Planning in a Dynamic Environment Based
on the Rapidly-exploring Random Tree and a Rule-template Sets, International Journal of Engineering, Transactions A: Basics, Vol. 36, No.
04, (2023), 797-806

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Efficient Sampling-based for Mobile Robot Path Planning in a Dynamic Environment

Based on the Rapidly-exploring Random Tree and a Rule-template Sets

M. A. R. Pohan*, J. Utama

Electrical Engineering Department, Universitas Komputer Indonesia, Jl. Dipatiukur 102-116, Bandung 40132, Indonesia

P A P E R I N F O

Paper history:
Received 12 December 2022
Received in revised form 30 December 2022
Accepted 16 January 2023

Keywords:
Efficient Sampling
Path Planning
Dynamic Environment
Rapidly-exploring Random Tree
Rule-template Sets

A B S T R A C T

This study presents an efficient path planning method for mobile robots in a dynamic environment. The

method is based on the rapidly-exploring random tree (RRT) algorithm. The two primary processes in

mobile robot path planning in a dynamic environment are initial path planning and path re-planning. In
order to generate a feasible initial path with fast convergence speed, we used a hybridization of rapidly-

exploring random tree star and ant colony systems (RRT-ACS). When an obstacle obstructs the initial

path, the path re-planner must be executed. In addition to the RRT-ACS algorithm, we proposed using a
rule-template set based on the mobile robot in dynamic environment scenes during the path re-planner

process. This novel algorithm is called RRT-ACS with Rule-Template Sets (RRT-ACS+RT). We

conducted many benchmark simulations to validate the proposed method in a real dynamic environment.
The performance of the proposed method is compared to the state-of-the-art path planning algorithms:

RRT*FND and MOD-RRT*. Numerous experimental results demonstrate that the proposed method

outperforms other comparison algorithms. The results show that the proposed method is suitable for the

use on robots that need to navigate in a dynamic environment, such as self-driving cars.

doi: 10.5829/ije.2023.36.04a.16

1. INTRODUCTION1

Path planning is one of the most researched problems in

robotics [1-3]. Any path planning algorithm's primary

goal is to provide a collision-free path from a start state

to an end state within the robot's configuration space [4,

5]. The Rapidly Exploring Random Tree (RRT) is a

simple and fast algorithm that generates a tree in the

configuration space incrementally until the goal is

reached [6]. The RRT is one of the most widely used

probabilistic planning algorithms [7-9]. On the other

hand, the RRT has never converged to an asymptotically

optimal solution [10, 11]. As a result, Karaman

developed the RRT* [12]. Since the introduction of the

RRT* algorithm, research has expanded to discover new

ways to improve the RRT* algorithm in the path planning

application [13-16]. However, the operational

environment of path planning is dynamic in many

scenarios [17, 18]. The path from a single query is

frequently obstructed during execution. As a result, the

*Corresponding Author Institutional Email:
muhammad.aria@email.unikom.ac.id (M. A. R. Pohan)

topic of dynamic and re-planning is critical to robotic

path planning [19].

Many methods for dynamic path planning algorithms

have been presented in the literature. Sampling-based

planners, such as RRT-related methods, are widely used

among existing mobile robot path planning in a dynamic

environment [6, 17]. Meng et al. [20] proposed an

improved two-way RRT algorithm to solve the path re-

planning problem for Unmanned Aerial Vehicles (UAV)

in dynamic environments. Before the UAV takes off,

offline path planning is performed. If a pop-up threat is

detected during the flight, the affected nodes will be

removed while the remaining tree structure will be

preserved. The improved two-way RRT is then used for

path re-planning. Chen and Wang [21] present a novel

RRT-based path planning algorithm that allows UAVs to

fly safely in dynamic threat environments. Chen and

Wang [21] proposed a pruning-reconnecting mechanism

to avoid collisions with dynamic threats and repair the

path when new obstacles appear. Adiyatov and Varol

mailto:muhammad.aria@email.unikom.ac.id

798 M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806

[22] proposed a novel RRT-based algorithm for dynamic

motion planning and named it RRT*FND. Adiyatov and

Varol [22] extends the memory-efficient RRT*FN

algorithm to dynamic scenarios. Adiyatov and Varol [22]

then used two greedy heuristics to repair the solution

rather than restarting the entire motion planning process.

Qi et al. [23] present an RRT algorithm suitable for robot

navigation in an undetermined dynamic environment.

The algorithm includes two procedures: initial path

planning and re-planning. To determine the initial path, a

modified RRT* is employed. If the current path is not

feasible, a different method is intended to reroute it. This

algorithm is called MOD-RRT*. Wei et al. [24] proposed

a Bi-RRT* dynamic path planning approach based on an

improved exploring function with a goal direction to deal

with re-planning paths for a robotic manipulator to avoid

dynamic obstacles. A multi-step expansion strategy with

greedy heuristics is also used in the Bi-RRT* proposal.

Meng and Dai [25] updated the current path with the

advanced RRT algorithm for local path planning to avoid

obstacles based on the obstacle map. Meng's method

solved the problem of avoiding dynamic obstacles during

real-time autonomous robot navigation. However, the

RRT algorithm is still used in the methods described

above.

Numerous techniques have been developed to enhance

the performance of the RRT* algorithm. Klemm et al.

[13] introduced the RRT*-connect algorithm, a dual-tree

variant of RRT*. RRT*-connect could find the solution

faster than RRT, especially in a narrow passage

environment where the planner must traverse to find

solutions. However, to optimize their paths, RRT*-

connect must search all states. Gammel et al. [14]

introduced the informed RRT* algorithm, which

employs informed sampling on RRT* once the first

solution has been determined. The informed RRT*

algorithm can find the optimal solution 1.2–10.3 times

faster than the RRT* algorithm. However, informed

RRT* encounters difficulty when the target node is

concealed behind a narrow passage. The informed RRT*-

connect algorithm was developed by Mashayekhi et al.

[15], which combines RRT*-connect with informed

RRT*. Therefore, informed RRT*-connect can find the

optimal solution faster than informed RRT* in a narrow

passage environment. Pohan et al. [16] created the RRT-

ACS algorithm, a hybrid of the RRT algorithm and the

Ant Colony System (ACS). In Friedman's nonparametric

test, Pohan et al. [16] reported that the RRT-ACS

algorithm outperformed the informed RRT*, informed

RRT*-connect, RRT*-connect, and RRT* algorithms.

To the authors' best of knowledge, no research has used

the RRT-ACS algorithm in a path planning mobile robot

in a dynamic environment.

This study presents an effective mobile robot path

planning method in a dynamic environment. The method

is based on the RRT algorithm. Initial path generation

and path re-planning are the two primary processes in

path planning for mobile robots in dynamic

environments. In order to generate a feasible initial path

with fast convergence speed, we used the RRT-ACS

algorithm. The path re-planner must be executed when an

obstruction blocks the initial path. During the path re-

planner process, we propose using a rule-template set

based on the mobile robot in dynamic environment

scenes. A rule-template set consists of multiple rule

templates generated offline based on the context of an

environment scene. At the start of the algorithm, the rule-

template set is loaded, and a suitable rule template can be

chosen automatically based on the scene of the

environment. If some nodes in the rule template are not

collision-free, these nodes will be discarded, and the

remaining nodes will be added to the root. Thus, the tree

likely possesses a portion of branches and leaves at this

time. If this tree has reached the goal state, then random

searching is no longer necessary, and this strategy will

reduce the time needed for re-planning. However, if the

goal state has yet to be reached, the RRT-ACS algorithm

will be implemented to accelerate the growth rate of the

search tree in order to reach the goal state. RRT-ACS

with Rule-Template Sets (RRT-ACS+RT) is the name of

this proposed algorithm. We ran numerous benchmark

simulations to validate the proposed method in a dynamic

environment. The performance of the proposed method

is compared to RRT*FND and MOD-RRT*, the state-of-

the-art path planners in a dynamic environment.

Numerous experimental results indicate that the proposed

method outperforms other comparitive algorithms. The

results show that the proposed method is suitable for use

on robots that need to navigate in a dynamic

environment, such as self-driving cars.

The remaining sections of this paper are structured as

follows. The RRT-ACS+RT algorithm is described in

section II. In section III, the performance of the RRT-

ACS+RT algorithm in comparison to RRT*FND and

MOD-RRT*, the state-of-the-art path planners for a

dynamic environment, is evaluated and discussed. Finally,

section IV presents some conclusions.

2. PROPOSED ALGORITHM: RRT-ACS+RT

2. 1. Proposed Algorithm This section details

the proposed algorithm. Algorithm 1 depicts the RRT-

ACS+RT algorithm. Compared with RRT-ACS, the

improvement is the addition of rule templates. By

introducing path rule templates, more vertices and edges

will be derived from rule templates than constructed

online during the re-planning phase when obstacles block

the initial path. The concept of using rule templates to

speed up the re-planning process was inspired by the

research of Ma et al. [26]. Ma et al. use rule templates for

cases of autonomous on-road driving.

M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806 799

A set of rule templates contains multiple rule

templates, which are generated offline according to the

context of the environment. Figure 1 shows an example

of a rule template created offline for a straight-line initial

path blocked by an obstacle.

At the start of the proposed algorithm, the rule

template set 𝑇 is loaded (line 2). This template is then

parsed and saved as a tree-like structure. If some of the

vertices and path edges in the rule template are not

collision-free with obstacles or road boundaries, these

sections are discarded, and the remainder in the rule

template is preserved and added to the root (line 3).

Therefore, at this point, the tree may already have some

branches and leaves before searching randomly. If the

tree from this template can immediately plot a path to the

current destination state without any obstructions, then

the algorithm stops and returns the tree. If the function

fails, then the algorithm starts the following iteration

step.

In the iteration step process, a random variable value

will be generated at each iteration to determine whether

the exploration or exploitation process will be used (line

8). If the exploration process is chosen, the random

sample will determine the random state 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 (line

14). If the exploitation process is selected, the random

state will be determined using pheromone distribution

data (lines 10-12).

After obtaining the value of the random state, the

following process is to look for nodes in 𝑇 that are less

than a threshold value to the random state. The nodes are

named 𝑄𝒏𝒆𝒂𝒓 (line 16). Then the node in 𝑄𝒏𝒆𝒂𝒓 that is

closest to 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 is selected. The node with the shortest

distance is named 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 (line 17). Next, a new branch

will be created from the 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 node that goes to

𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 with a distance of ∆𝑞 from 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 . The new

node is named 𝑞𝑛𝑒𝑤 (line 18). If there are no obstacles

between 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 and 𝑞𝑛𝑒𝑤 (line 19), then the 𝑞𝑛𝑒𝑤 node

will be entered into 𝑇 (lines 20-22). Next, it will be

checked whether there are nodes in the current 𝑇 close

enough to the destination node or 𝑞𝑔𝑜𝑎𝑙 (line 23). If a

node is close enough to the destination node, an 𝑋𝑏𝑠 route

will be built (line 24). This process will repeat until the

stop condition is met. The looping process can have

several conditions that vary to stop, for example, if the

maximum number of iterations has been met.

The RRT-ACS+RT algorithm determines the new

path using pheromone information to ensure the quality

Figure 1. Example of a rule template for a straight line initial

path blocked by an obstacle

Algorithm 1 : 𝑋𝑏𝑠 ←RRT-ACS+RT(𝑚𝑎𝑝)

1: % ========== Initialization

2: 𝑇 ← 𝐿𝑜𝑎𝑑 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒()

3: 𝑇 ← 𝑇𝑟𝑖𝑚𝑇𝑟𝑒𝑒(𝑇)

4: 𝑠 ← 0

5: while 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑚𝑒𝑡 do

6: for 𝑘 = 1 to 𝑚 do

7: while 𝑠 = 0 do

8: 𝑞 ← 𝑟𝑎𝑛𝑑𝑣𝑎𝑟[0,1] and 𝜏 ≠ ∅

9: if 𝑞 ≤ 𝑞𝑜

10: 𝑞𝑠𝑎𝑚𝑝 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑒𝐹𝑟𝑜𝑚

10𝐿𝑎𝑠𝑡𝑁𝑜𝑑𝑒(𝑇)

11: 𝜏𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟(𝜏, 𝑞𝑠𝑎𝑚𝑝)

12: 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 ← 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑙𝑙(𝜏𝑛𝑒𝑎𝑟)

13: else

14: 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝑘)

15: end if

16: 𝑄𝒏𝒆𝒂𝒓 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒)

17: 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑜𝑟
(𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 , 𝑄𝑛𝑒𝑎𝑟 , 𝑇)

18: 𝑞𝑛𝑒𝑤 ← 𝐺𝑟𝑜𝑤𝑇𝑟𝑒𝑒

 (𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑞𝑟𝑛𝑑𝑠𝑡𝑎𝑡𝑒 , ∆𝑞)

19: if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑓𝑟𝑒𝑒(𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑞𝑛𝑒𝑤) then

20: 𝑄𝒏𝒆𝒂𝒓 ← 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤)

21: 𝑞𝑚𝑖𝑛 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡
(𝑞𝑛𝑒𝑤 , 𝑄𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑎𝑟𝑒𝑠𝑡)

22: 𝑇 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑑𝑒(𝑞𝑚𝑖𝑛,𝑞𝑛𝑒𝑤 , 𝑇)

23: if 𝐶𝑎𝑛𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑞𝑔𝑜𝑎𝑙 , 𝑇) then

24: 𝑋𝑏𝑠 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑇)

25: end if

26: end if

27: end while

28: 𝑋(𝑘) ← 𝑀𝑎𝑘𝑒𝑃𝑎𝑡ℎ from 𝑇

29: end for

30: 𝑋𝑏𝑠 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑋𝑏𝑠 , 𝑚𝑎𝑝)

31: 𝑋𝑤 ← Select 𝑤 best 𝑃𝑎𝑡ℎ(𝑋)

32: 𝜏 ← Add 𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑁𝑜𝑑𝑒 on the 𝑤 best

𝑃𝑎𝑡ℎ(𝑋𝑤 , 𝜏)

33: 𝜏 ← Evaporate 𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑁𝑜𝑑𝑒(𝜏)

34: end while

of the final result. This motivation is based on the

principle of learning by doing. A procedure for updating

pheromone data has been implemented (lines 31-33).

Only ants with the best path will contribute to providing

additional pheromones at each iteration. This restriction

is intended to provide additional reinforcement only to

the good paths. The function LocalSearch (line 30) will

optimize RRT's existing branches to improve the quality

of found paths.

The RRT-ACS+RT algorithm was designed to deal

with dynamic obstacles. Algorithms 2 - 4 depict the RRT-

ACS+RT-based dynamic path planning algorithm. In

order to generate a feasible initial path with fast

convergence speed, the RRT-ACS algorithm, as

described by Pohan et al. [16], is used (line 2 in algorithm

2). After that, the robot will set its velocity (line 4 in

algorithm 2). The robot's position is updated based on the

800 M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806

speed. This process is described in algorithm 3. When the

vertex is reached, the robot changes the velocity vector to

move toward the next node (line 2-5 in algorithm 2).

Algorithm 2 : 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑃𝑎𝑡ℎ()

1: 𝑚𝑎𝑝 ← 𝑆𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡()

:2 𝑋𝑏𝑠 ←RRT-ACS(𝑚𝑎𝑝)

:3 𝑅𝑜𝑏𝑜𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑜𝑛 ← 𝑁𝑒𝑥𝑡𝑊𝑎𝑦𝑝𝑛𝑡(𝑋𝑏𝑠)

4: 𝑆𝑒𝑡 𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦()

5: 𝑆𝑒𝑡𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)

6: 𝑆𝑒𝑡𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠(𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)

7: while 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ! = 𝐺𝑜𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 do

8: 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐(𝑋𝑏𝑠)

9: 𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠𝐿𝑜𝑐(𝑁𝑢𝑚𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)

10: end while

Algorithm 3 : 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐(𝑋𝑏𝑠)

1:
𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 +

𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

2:
If 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 == 𝑅𝑜𝑏𝑜𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

 then

3: 𝑅𝑜𝑏𝑜𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑜𝑛 ← 𝑁𝑒𝑥𝑡𝑊𝑎𝑦𝑝𝑛𝑡(𝑋𝑏𝑠)

4: 𝑆𝑒𝑡 𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦()

:5 end

6:

𝑂𝑏𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(

 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,
 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑜𝑐)

:7 if 𝑂𝑏𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑅𝑜𝑏𝑜𝑡𝑅𝑎𝑛𝑔𝑒 then

:8 if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐿𝑜𝑐 𝑏𝑙𝑜𝑐𝑘𝑠 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ do

:9 𝑋𝑏𝑠 ←DoReplan(𝑚𝑎𝑝)

:10 end if

11: end if

Algorithm 4 : 𝑋𝑏𝑠 ←DoReplan(𝑚𝑎𝑝)

1: 𝑇 ← 𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑁𝑜𝑑𝑒𝑠()

2: 𝑚𝑎𝑝 ← 𝑆𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑛𝑆𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛()

3: 𝑚𝑎𝑝 ← 𝑆𝑒𝑡𝑅𝑒𝑝𝑙𝑎𝑛𝐺𝑜𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛()

4: 𝑋𝑟𝑒𝑝𝑙𝑎𝑛 ←RRT-ACS+RT(𝑚𝑎𝑝)

:5
while 𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ! =

 𝑅𝑒𝑝𝑙𝑎𝑛𝐺𝑜𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 do

:6 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑜𝑏𝑜𝑡𝐿𝑜𝑐(𝑋𝑟𝑒𝑝𝑙𝑎𝑛)

:7 𝑈𝑝𝑑𝑎𝑡𝑒𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠𝐿𝑜𝑐(𝑁𝑢𝑚𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)

8: end while

When the simulation begins, the moving obstacles

choose several random adjacent vertices as the

destination points for movement (lines 5 and 6 in

algorithm 2). During the simulation, the obstacle will

move towards several random adjacent vertexes (line 9

of algorithm 2).

As the robot approaches the RobotDestination, it will

determine if there are any dynamic obstacles within the

robot's detection range. Furthermore, the dynamic

obstacle movement must be observed in at least two steps

to predict the dynamic obstacle's speed and direction. If

the dynamic obstacle is predicted to block the path that

the vehicle should take, DoReplan will be executed (lines

7 - 9 in algorithm 3).

The DoReplan algorithm works on the principle of

determining the current vehicle position node as

ReplanStartLocation (line 2 in algorithm 4). Following

that, the DoReplan algorithm will determine the next

position on the global path that is not blocked by dynamic

obstacles (line 3 in algorithm 4). ReplanGoalLocation is

the name of this position. The RRT-ACS+RT algorithm

will then modify and expand the nodes surrounding the

dynamic obstacle that connects ReplanStartLocation and

ReplanGoalLocation (line 4 in algorithm 4). In principle,

a path will be found that will circle the dynamic obstacle

to ReplanGoalLocation. Any nodes that collide with a

random moving obstacle are invalidated rather than

deleted. After that, the robot will follow the re-planning

result path until it reaches the ReplanGoalLocation (lines

5-8 in algorithm 4). Once the ReplanGoalLocation is

reached (and the obstacle has been overcome), the robot

will retrace the initial path determined previously.

2. 2. The Illustration Figures 2 – 10 depict

illustrations of the proposed algorithm. This illustration

mimics the scenario proposed by Connell et al. [6], Jin et

al. [27], and Wei and Ren [28]. The illustration shows a

robot path planning process in a maze environment with

a dynamic object. Figure 2 shows the scenario of the

maze environment used and a unicycle robot model (big

grey circle) moving from the starting location (red dot) to

the destination location (blue dot). Robots are currently

treated as particles. Furthermore, certain safe distances

are set aside to form obstacles. The barriers are expanded

to ensure the robot's safety during operation, as shown in

Figure 3.

The next step is to perform path planning using the

RRT-ACS algorithm, with the results displayed in Figure

4. In Figure 4, it is evident that the path generated by the

RRT-ACS algorithm is close to the optimal path, as the

path's corner points are close to the corners of the

obstacle. Figure 5 depicts the results of path planning on

the original map (without obstacle expansion). Based on

Figure 5, the resulting path is safe for the robot to

traverse, as it will not cause it to collide with the wall.

The illustration of a robot moving through a given path is

shown in Figure 6.

Figure 2. Maze environment scenario used for testing

M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806 801

Figure 3. Obstacle expansion

Figure 4. The results of path planning using the RRT-ACS

algorithm

Figure 5. The results of the path planning using the RRT-

ACS algorithm on the initial map

Figure 6. Illustration of a robot moving through a given path

Furthermore, a dynamic obstacle in the form of a

basketball is given, as shown in Figure 7. It can be seen

that the dynamic obstacle blocks the path that the robot

must pass. The robot will crash into these dynamic

obstacles if re-planning is not carried out. So that in the

proposed algorithm, if an obstacle is detected that blocks

the robot, it will be detected by the sensor. The algorithm

will update the environmental map, as shown in Figure 8.

Next, the RRT-ACS+RT algorithm is run again to

produce a re-planning algorithm to avoid dynamic

constraints. The first stage of the RRT-ACS+RT

algorithm for the re-planning process is to use the tree of

rule templates, as shown in Figure 9. If the tree of rule

templates can be connected to the destination node, then

the re-planning process is complete. If not, the RRT-ACS

algorithm will start iterating to connect the tree with the

destination node. The resulting re-planning path is shown

in Figure 10.

Figure 7. Given an obstacle on the path traversed by the

robot

Figure 8. Update the environmental map after the robot

detects a dynamic obstacle

Figure 9. Use of rule template to speed up the re-planning

process

802 M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806

Figure 10. Path re-planning results to avoid dynamic

obstacle

3. RESULTS AND DISCUSSION

To validate the performance of the proposed path

planning mobile robot in a dynamic environment using

the RRT-ACS+RT algorithm, we ran it through a three-

dynamic environment simulation scenario (as shown in

Figures 11 – 13). The three scenarios replicate the test

scenario proposed by Wang et al. [29]. In each scenario,

the robot's initial location is indicated by a red dot, while

a blue dot indicates the robot's goal location. The

simulation tests were carried out on a PC with a Core i5

3.20 GHz CPU and 4 GB RAM running Windows 10 64-

bit, with LabVIEW 7.1 as the compilation environment.

The first scenario is shown in Figure 11(a). In this

scenario, there are five static obstacles (black box) and

one dynamic obstacle (in the form of a basketball). First,

the robot will create an initial path, as shown in Figure

11(b). Then, when the robot moves, a dynamic obstacle

will be placed that will block the initial path, as shown in

Figure 11(c) or Figure 11(d). The robot must then re-plan

in order to find a new path to the goal state that avoids

the newly-placed dynamic obstacles. Figure 11(c) shows

an example of the re-planning path generated by the

proposed algorithm. It can be seen that the robot simply

circles around the dynamic obstacle to avoid colliding

with it. As for the case of Figure 11(d), the dynamic

obstacle covers the narrow path that the robot wants to

pass (making the robot unable to pass through the narrow

path). The RRT-ACS+RT algorithm then searches for a

new route that takes a right turn to reach the goal state

while avoiding collisions with dynamic obstacles.

The second scenario is shown in Figure 12(a). In this

scenario, there are two static obstacles and two dynamic

obstacles. First, the robot will create an initial path, as

shown in Figure 12(b). Then, when the robot begins to

move, it will place the first dynamic obstacle that will

block the initial path, as shown in Figure 12(c). The robot

must then re-plan to find a new path to the goal state

without being impeded by the newly placed dynamic

obstacles. Figure 12(c) shows an example of the re-

planning path generated by the proposed algorithm. It can

be seen that the robot simply circles around the dynamic

obstacle to avoid a collision.

Furthermore, a second dynamic obstacle will be

placed when the robot moves again to block the initial

path on the other side, as shown in Figure 12(d). Then the

robot must re-do the re-planning to find a new path to

reach the goal state and not be hindered by the second

dynamic obstacle. Figure 12(d) shows an example of the

second re-planning path generated by the RRT-ACS+RT

algorithm.

Meanwhile, the third scenario is shown in Figure

13(a). The initial path generated by the proposed

algorithm is also shown in Figure 13(a). In this scenario,

there are four static obstacles and three dynamic

obstacles. The three dynamic obstacles will be placed in

turn to block the initial path of the robot, as shown in

Figure 13(b) – 13(d). It can be seen in the three figures

that every time a dynamic obstacle blocks the robot's

path; the robot will re-plan to find a new path to reach the

goal state and not be hindered by dynamic obstacles.

Figures 13(b) – 13(d) show an example of the re-planning

path generated by the RRT-ACS+RT algorithm every

time the robot detects a dynamic object.

(a)

(b)

(c)

M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806 803

(d)

Figure 11. First test scenario: (a) test scenario, initial

location and goal location of the robot, (b) an example of the

initial path generated by the proposed algorithm, (c) and (d)

dynamic obstacle is placed that will block the initial path and

the robot must re-planning the path to reach the goal location

while avoiding collisions with dynamic obstacles

(a)

(b)

(c)

(d)

Figure 12. Second test scenario: (a) test scenario, initial

location and goal location of the robot, (b) an example of the

initial path generated by the proposed algorithm, (c) and (d)

the first and the second dynamic obstacle is placed that will

block the initial path and the robot must re-planning the path

to reach the goal location while avoiding collisions with

dynamic obstacles

(a)

(b)

(c)

804 M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806

(d)

Figure 13. Third test scenario: (a) test scenario, initial

location, goal location, and the initial path generated by the

proposed algorithm, (b) - (d) the first, the second, and the

third dynamic obstacle is placed that will block the initial

path and the robot must re-planning the path to reach the goal

state while avoiding collisions with dynamic obstacles

The performance of the re-planning process of the

mobile robot in a dynamic environment using the RRT-

ACS+RT algorithm is compared to the RRT*FND,

MOD-RRT*, and RRT* algorithms. Testing was carried

out using the three scenarios that have been described.

The results are summarized in Tables 1-3. Performance

measurements include the best, the worst, and the mean

computation time of each algorithm.

Based on the data in Tables 1-3, we will compare how

fast the RRT-ACS+RT, RRT*FND, and MOD-RRT*

algorithms perform the re-planning process compared to

the RRT* algorithm. The results of this comparison are

stated in Table 4.

Based on the datareported in Table 4, it can be seen that

the average time for the RRT-ACS+RT algorithm to

carry out the re-planning process is 65.5% faster than the

RRT* algorithm. These results are consistent with the

RRT-ACS algorithm performance measurement results

reported by Pohan et al. [16]. They have also reported

that the speed of the RRT-ACS algorithm was 59.4%

TABLE 1. Comparison of the time required for each algorithm
to re-planning in the first scenario. The time is in milliseconds

Computation

time

performance

RRT-

ACS+RT

RRT*

FND

MOD-

RRT*
RRT*

The dynamic obstacle's location as shown in Figure 11(c)

Best 478.9 1216.2 1577.0 1770

Mean 565.3 1451.0 2617.8 3113

Worst 1158.1 1935.9 4050.3 5296

The dynamic obstacle's location as shown in Figure 11(d)

Best 763.8 1385.5 1649.7 1875

Mean 936.5 2340.9 2549.5 2932.2

Worst 2824.5 19670.1 4289.6 4965

TABLE 2. Comparison of the time required for each algorithm
to re-planning in the second scenario. The time is in
milliseconds

Computation

time

performance

RRT-

ACS+RT

RRT*

FND

MOD-

RRT*
RRT*

The first dynamic obstacle is placed as in Figure 12(c)

Best 615.5 1003.8 1028.2 1154

Mean 921.7 1086.6 1696.1 2017

Worst 943.1 1329.1 2207.2 2886

The second dynamic obstacle is placed as in Figure 12(d)

Best 266.8 360.0 1525.7 1734

Mean 1427.7 1861.0 2327.6 2677

Worst 2593.5 4060.7 3627.8 4199

TABLE 3. Comparison of the time required for each algorithm
to re-planning in the third scenario. The time is in milliseconds

Computation

time

performance

RRT-

ACS+RT

RRT*

FND

MOD-

RRT*
RRT*

The first dynamic obstacle is placed as in Figure 13(b)

Best 286.2 794.3 798.3 896

Mean 312.8 980.0 1709.7 2033.2

Worst 441.6 1254.3 3501.2 4578

The second dynamic obstacle is placed as in Figure 13(c)

Best 869.8 1577.7 1343.5 1527

Mean 1245.8 2092.6 3123.2 3592

Worst 1147.2 6019.3 4884.9 5654

The third dynamic obstacle is placed as in Figure 13(d)

Best 482.1 801.3 805.4 904

Mean 753.7 1038.2 1256.2 1493.8

Worst 922.6 2069.1 1804.9 2360

TABLE 4. Comparison of the average time for each algorithm
executes the re-planning process relative to the RRT*
algorithm

Dynamic obstacle position
RRT-

ACS+RT

RRT*

FND

MOD-

RRT*

First scenario, Figure 11(c) 81.8% 53.4% 15.9%

First scenario, Figure 11(d) 68.1% 20.2% 13.1%

Second scenario, Figure 12(c) 54.3% 46.1% 15.9%

Second scenario, Figure 12(d) 46.7% 30.5% 13.1%

Third scenario, Figure 13(b) 84.6% 51.8% 15.9%

Third scenario, Figure 13(c) 73.7% 41.7% 13.1%

Third scenario, Figure 13(d) 49.5% 30.5% 15.9%

Average percentage 65.5% 39.2% 14.7%

M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806 805

faster than the RRT* algorithm in reaching the optimal

path. Based on the data in Table 4, it can be apparent that

the average time for the RRT*FND algorithm to carry out

the re-planning process is 39.2% faster than the RRT*

algorithm. These results are consistent with the

performance measurement results of the RRT*FND

algorithm reported by Adiyatov et al. [22]. Adiyatov et

al. [22] also reported that the speed of the RRT*FND

algorithm in reaching the optimal path was 43.5% faster

than the RRT* algorithm. Based on Tables 1 - 4, it is clear

that the RRT-ACS+RT algorithm outperforms other

algorithms in terms of best path length, worst path length,

and mean path length.

4. CONCLUSION

This study implements a path planning mobile robot

based on the RRT-ACS+RT algorithm in a dynamic

environment. The simulation was carried out to validate

the proposed method in a real dynamic environment. The

proposed method's performance is compared to the

RRT*FND and MOD-RRT algorithms. The test results

demonstrate that the proposed method outperforms other

comparison algorithms. The findings indicate that the

proposed method is appropriate for use on robots

navigating in a dynamic environment, such as self-

driving cars.

5. ACKNOWLEDGMENTS

This research was funded by Universitas Komputer

Indonesia through the UNIKOM Internal Research

program in 2023.

6. REFERENCES

1. Ganeshmurthy, M. S., and Suresh, G. R. “Path planning algorithm

for autonomous mobile robot in dynamic environment.” In 2015
3rd International Conference on Signal Processing,

Communication and Networking (ICSCN), (2015), 1-6.

https://doi.org/10.1109/icscn.2015.7219901

2. Ab Wahab, M. N., Lee, C. M., Akbar, M. F., and Hassan, F. H.

“Path planning for mobile robot navigation in unknown indoor

environments using hybrid PSOFS algorithm.” IEEE Access,
Vol. 8, (2020), 161805-161815.

https://doi.org/10.1109/access.2020.3021605

3. Nascimento, L. B., Morais, D. S., Barrios-Aranibar, D., Santos,
V. G., Pereira, D. S., Alsina, P. J., and Medeiros, A. A. “A Multi-

Robot Path Planning Approach Based on Probabilistic Foam.” In

2019 Latin American Robotics Symposium (LARS), 2019
Brazilian Symposium on Robotics (SBR) and 2019 Workshop on

Robotics in Education (WRE), (2019), 329-334.

https://doi.org/10.1109/lars-sbr-wre48964.2019.00064

4. Aria, M. “Optimal Path Planning using Informed Probabilistic

Road Map Algorithm.” Journal of Engineering Research-

ASSEEE Special Issue, (2021), 1-15.

https://doi.org/10.36909/jer.asseee.16105

5. Teshnizi, M. M., Kosari, A., Goliaei, S., and Shakhesi, S.

“Centralized Path Planning for Multi-aircraft in the Presence of
Static and Moving Obstacles.” International Journal of

Engineering, Transactions B: Applications, Vol. 33, No. 5,

(2020) 923-933. https://doi.org/10.5829/ije.2020.33.05b.25

6. Connell, D., and Manh La, H. “Extended rapidly exploring

random tree–based dynamic path planning and replanning for

mobile robots.” International Journal of Advanced Robotic

Systems, Vol. 15, No. 3 (2018), 1729881418773874.

https://doi.org/10.1177/1729881418773874

7. Zhang, H., Wang, Y., Zheng, J., and Yu, J. “Path planning of

industrial robot based on improved RRT algorithm in complex

environments.” IEEE Access, Vol. 6, (2018) 53296-53306.

https://doi.org/10.1109/access.2018.2871222

8. Li, X., Jiang, H., Shi, W., Chen, S., and Wang, Y. “Path planning

of multipoint region attraction RRT* algorithm in complex
environment.” In 2019 Chinese Control Conference (CCC),

(2019) 4409-4414. https://doi.org/10.23919/chicc.2019.8865834

9. Taheri, E. “Any-time randomized kinodynamic path planning
algorithm in dynamic environments with application to

quadrotor.” International Journal of Engineering, Transactions

A: Basics, Vol. 34, No. 10, (2021) 2360-2370.

https://doi.org/10.5829/ije.2021.34.10a.17

10. Wang, J., Li, X., and Meng, M. Q. H. “An improved rrt algorithm

incorporating obstacle boundary information.” In 2016 IEEE
International Conference on Robotics and Biomimetics (ROBIO),

(2016) 625-630. https://doi.org/10.1109/robio.2016.7866392

11. Zhang, Y., Wang, R., Song, C., and Xu, J. “An Improved

Dynamic Step Size RRT Algorithm in Complex Environments”

In 2021 33rd Chinese Control and Decision Conference (CCDC),

(2021) 3835-3840.

https://doi.org/10.1109/ccdc52312.2021.9602069

12. Solovey, K., Janson, L., Schmerling, E., Frazzoli, E., and Pavone,

M. “Revisiting the asymptotic optimality of RRT.” In 2020 IEEE
International Conference on Robotics and Automation (ICRA),

(2020) 2189-2195.

https://doi.org/10.1109/icra40945.2020.9196553

13. Klemm, S., Oberländer, J., Hermann, A., Roennau, A., Schamm,

T., Zollner, J. M., and Dillmann, R. “RRT-connect: Faster,

asymptotically optimal motion planning.” In 2015 IEEE
International conference on robotics and biomimetics (ROBIO),

(2015) 1670-1677. https://doi.org/10.1109/robio.2015.7419012

14. Gammell, J. D., Barfoot, T. D., and Srinivasa, S. S. “Informed
asymptotically optimal anytime search.” in International

Journal of Robotics Research, (2017) 1-27.

https://doi.org/10.1177/0278364919890396

15. Mashayekhi, R., Idris, M. Y. I., Anisi, M. H., Ahmedy, I., and Ali,

I. “Informed RRT*-connect: An asymptotically optimal single-

query path planning method.” IEEE Access, Vol. 8, (2020)

19842-19852. https://doi.org/10.1109/access.2020.2969316

16. Pohan, M. A. R., Trilaksono, B. R., Santosa, S. P., and Rohman,

A. S. “Path Planning Algorithm Using the Hybridization of the
Rapidly-Exploring Random Tree and Ant Colony Systems.”

IEEE Access, Vol. 9, (2021) 153599-153615.

https://doi.org/10.1109/access.2021.3127635

17. Connell, D., and La, H. M. “Dynamic path planning and

replanning for mobile robots using RRT.” In 2017 IEEE

International Conference on Systems, Man, and Cybernetics
(SMC), (2017) 1429-1434.

https://doi.org/10.1109/smc.2017.8122814

18. Yaghmaee, F., and Koohi, H. “Dynamic obstacle avoidance by
distributed algorithm based on reinforcement learning.”

International Journal of Engineering, Transactions B:

https://doi.org/10.1109/icscn.2015.7219901
https://doi.org/10.1109/access.2020.3021605
https://doi.org/10.1109/lars-sbr-wre48964.2019.00064
https://doi.org/10.36909/jer.asseee.16105
https://doi.org/10.5829/ije.2020.33.05b.25
https://doi.org/10.1177/1729881418773874
https://doi.org/10.1109/access.2018.2871222
https://doi.org/10.23919/chicc.2019.8865834
https://doi.org/10.5829/ije.2021.34.10a.17
https://doi.org/10.1109/robio.2016.7866392
https://doi.org/10.1109/ccdc52312.2021.9602069
https://doi.org/10.1109/icra40945.2020.9196553
https://doi.org/10.1109/robio.2015.7419012
https://doi.org/10.1177/0278364919890396
https://doi.org/10.1109/access.2020.2969316
https://doi.org/10.1109/access.2021.3127635
https://doi.org/10.1109/smc.2017.8122814

806 M. A. R. Pohan and J. Utama / IJE TRANSACTIONS A: Basics Vol. 36 No. 04, (April 2023) 797-806

Applications, Vol. 28, No. 2, (2015) 198-204.

https://doi.org/10.5829/idosi.ije.2015.28.02b.05

19. Kala, R., Shukla, A., and Tiwari, R. “Robot path planning using

dynamic programming with accelerating nodes.” Paladyn, Vol. 3,

No. 1, (2012) 23-34. https://doi.org/10.2478/s13230-012-0013-4

20. Meng, L., Qing, S., and Jun, Z. Q. “UAV path re-planning based

on improved bidirectional RRT algorithm in dynamic
environment.” In 2017 3rd International Conference on Control,

Automation and Robotics (ICCAR), (2017) 658-661.

https://doi.org/10.1109/iccar.2017.7942779

21. Chen, Y., and Wang, L. “Adaptively Dynamic RRT*-Connect:

Path Planning for UAVs Against Dynamic Obstacles.” In 2022
7th International Conference on Automation, Control and

Robotics Engineering (CACRE), (2022) 1-7.

https://doi.org/10.1109/cacre54574.2022.9834188

22. Adiyatov, O., and Varol, H. A. “A novel RRT*-based algorithm

for motion planning in Dynamic environments.” In 2017 IEEE

International Conference on Mechatronics and Automation
(ICMA), (2017) 1416-1421.

https://doi.org/10.1109/icma.2017.8016024

23. Qi, J., Yang, H., and Sun, H. “MOD-RRT*: A sampling-based
algorithm for robot path planning in dynamic environment.”

IEEE Transactions on Industrial Electronics, Vol. 68, No. 8,

(2020) 7244-7251. https://doi.org/10.1109/tie.2020.2998740

24. Wei, K., Chu, Y., and Gan, H. “An improved Rapidly-exploring

Random Tree Approach for Robotic Dynamic Path Planning.” In

2021 11th International Conference on Intelligent Control and
Information Processing (ICICIP), (2021) 181-187.

https://doi.org/10.1109/icicip53388.2021.9642182

25. Meng, C., and Dai, H. “An Obstacle Avoidance Method Based on
Advanced Rapidly-exploring Random Tree for Autonomous

Navigation.” In 2021 IEEE International Conference on Parallel

& Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social

Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom), (2021) 1118-1125.
IEEE. https://doi.org/10.1109/ispa-bdcloud-socialcom-

sustaincom52081.2021.00154

26. Ma, L., Xue, J., Kawabata, K., Zhu, J., Ma, C., and Zheng, N.
“Efficient sampling-based motion planning for on-road

autonomous driving.” IEEE Transactions on Intelligent

Transportation Systems, Vol. 16, No. 4, (2015) 1961-1976.

https://doi.org/10.1109/tits.2015.2389215

27. Jin, Q., Tang, C., and Cai, W. “Research on Dynamic Path
Planning Based on the Fusion Algorithm of Improved Ant Colony

Optimization and Rolling Window Method.” IEEE Access, Vol.

10, (2021) 28322-28332.

https://doi.org/10.1109/access.2021.3064831

28. Wei, K., and Ren, B. “A method on dynamic path planning for

robotic manipulator autonomous obstacle avoidance based on an
improved RRT algorithm.” Sensors, Vol. 18, No. 2 (2018), 571.

https://doi.org/10.3390/s18020571

29. Wang J., Meng M. Q. -H., and Khatib, O. "EB-RRT: Optimal
Motion Planning for Mobile Robots," in IEEE Transactions on

Automation Science and Engineering, Vol. 17, No. 4 (2020),

2063-2073, https://doi.org/10.1109/TASE.2020.2987397

Persian Abstract

 چکیده
دفی در حال کاوش سریع این مطالعه یک روش برنامه ریزی مسیر کارآمد برای ربات های متحرک در یک محیط پویا ارائه می دهد. این روش بر اساس الگوریتم درخت تصا

(RRT است. دو فرآیند اصلی در)برنامه ریزی مسیر ربات متحرک در یک محیط پویا، برنامه ریزی مسیر اولیه و برنامه ریزی مجدد مسیر است. به منظور ایجاد یک مسیر اولیه

اده کردیم. هنگامی (استفRRT-ACSای از درختان تصادفی که به سرعت در حال کاوش هستند)های مستعمرهپذیر با سرعت همگرایی سریع، ما از ترکیبی از سیستم امکان

قانون مبتنی بر ربات متحرک -، ما استفاده از یک مجموعه الگوRRT-ACSکه مانعی مسیر اولیه را مسدود می کند، برنامه ریزی مجدد مسیر باید اجرا شود. علاوه بر الگوریتم

(نامیده RRT-ACS+RTقانون)-های الگوبا مجموعه RRT-ACSگوریتم جدید ریزی مجدد مسیر پیشنهاد کردیم. این ال های محیط پویا در طول فرآیند برنامهرا در صحنه

ریزی های پیشرفته برنامههای معیار زیادی را برای اعتبارسنجی روش پیشنهادی در یک محیط پویا واقعی انجام دادیم. عملکرد روش پیشنهادی با الگوریتمسازیشود. ما شبیهمی

نتایج تجربی متعدد نشان می MOD-RRTو RRT*FNDشود: مسیر مقایسه می نتایج نشان های مقایسه عمل می دهد که روش پیشنهادی بهتر از سایر الگوریتم*. کند.

 های خودران دارند، مناسب است.یابی در یک محیط پویا، مانند اتومبیل هایی که نیاز به جهتدهد که روش پیشنهادی برای استفاده در روبات می

https://doi.org/10.5829/idosi.ije.2015.28.02b.05
https://doi.org/10.2478/s13230-012-0013-4
https://doi.org/10.1109/iccar.2017.7942779
https://doi.org/10.1109/cacre54574.2022.9834188
https://doi.org/10.1109/icma.2017.8016024
https://doi.org/10.1109/tie.2020.2998740
https://doi.org/10.1109/icicip53388.2021.9642182
https://doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom52081.2021.00154
https://doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom52081.2021.00154
https://doi.org/10.1109/tits.2015.2389215
https://doi.org/10.1109/access.2021.3064831
https://doi.org/10.3390/s18020571
https://doi.org/10.1109/TASE.2020.2987397

