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A B S T R A C T  
 

 

Resampling is a critical step in Particle Filter (PF) because of particle degeneracy and impoverishment 

problems. Independent Metropolis Hasting (IMH) resampling algorithm is a robust and high-speed 

method that can be used as the resampling step in PF. In this paper, a new algorithm based on IMH 
resampling is first proposed. The proposed algorithm classifies the particles before entering to the 

resampling module. The classification causes those essential particles are only routed to the IMH 
resampler. Then we propose a distributed architecture to reduce the execution time and high-speed 

processing for resampling. Simulation results for tracking a signal indicate that the PF with the proposed 

resampling architecture has acceptable tracking performance in comparison to other resampling 
methods. The PF architecture with the novel Improved IMH (IIMH) resampling algorithm has 33% more 

speed than the best-reported method in PF. Also, the proposed distributed PF architecture achieve 79% 

more speed compared with the best-reported method in PF. FPGA-based implementation results indicate 
that the utilization of the proposed IIMH resampling algorithm in PF and also distributed architecture 

lead to hardware resource and area usage reduction. 

doi: 10.5829/ije.2020.33.12c.07 
 

 
1. INTRODUCTION1 
 

Object tracking through multiple cameras is a popular 

research topic in security and surveillance systems 

especially when human objects are the target [1]. 

Utilizing adaptive filters is a dominant solution for visual 

tracking problems [2]. The signal tracking in Particle 

Filter (PF) is performed by searching the space of the 

states with randomly generated samples called particles. 

PF consists of three steps, 1) particle sampling, 2) weight 

calculation, and 3) resampling. Without resampling, PF 

suffered from a degeneracy problem, which means that a 

few particles with higher weights participate in the 

resampling and those particles with lower weights will be 

discarded [3-7].  Resampling, however, may introduce 

undesired effects. One of them is sample 

impoverishment. 
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Two main types of resampling methods used in PF 

are sequential resampling and compound resampling. 

Sequential resamplings are standard methods that have 

high complex computation load. Systematic Resampling 

(SR) [8-10], Residual Resampling (RR) [11-14], 

Residual-Systematic Resampling (RSR) [3] are the three 

most common examples for sequential resampling. 

Compound resampling operates based on grouping the 

particles. The grouping can be done by one or more 

threshold values or based on the ratio between particle 

weights. The thresholds can be fixed, variable, or 

adaptive [7]. 

Independent Metropolis Hasting (IMH) algorithm in 

one of the robust and high-speed compound resampling 

methods that works based on the ratio between the 

particle weights. This method works as soon as the first 

particle and its corresponding weights are produced and 

it doesn’t wait until whole particles to be generated. 
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By using multiple Processing Elements (PEs) and a 

Central Unit (CU) we can process the particles 

simultaneously. This is known as Distributed resampling 

methods. The methods include Centralized resampling, 

resampling with proportional allocation, resampling with 

non-proportional allocation  and they use two types of 

resampling, one resampling inside each PE called intra-

resampling and another between two PEs called inter-

resampling. 

In this paper, a new IMH algorithm and architecture, 

called Improved IMH (IIMH) to increase the processing 

speed in IMH resampler is proposed that is derived from 

both threshold-based resampling methods and the ratio 

between the weights. Moreover, Distributed IIMH 

(DIIMH) architecture with 4 PEs to process the particles 

in parallel is explored in this paper. Results of tracking a 

random signal show that the proposed IIMH algorithm 

can have the same accuracy of standard SR. Comparison 

results of hardware resource utilization and processing 

speed show that proposed architectures have acceptable 

performance in comparison to existing efficient methods 

reported in the literature. 

The rest of the paper is organized as follows: In 

Section 2, a literature review and a brief theory of PF and 

resampling are presented, and then, we review the IMH 

and Modified IMH (MIMH) resamplers. In Section 3, the 

proposed IIMH algorithm and architectures, as well as 

DIIMH architecture are presented. In Section 4, the 

comparison and results of the proposed methods are 

discussed. Section 5 concludes the paper. 
 

 

2. LITERATURE REVIEW ON PF AND RESAMPLING 
METHODS 
 
PFs are used for tracking states of dynamic state-space 

models described by the following equation [8]: 

𝑥𝑛 = 𝑓(𝑥𝑛−1) + 𝑢𝑛;         𝑦𝑛 = 𝑔(𝑥𝑛) + 𝑣𝑛  (1) 

where 𝑥𝑛 is the state vector of target position, 𝑦𝑛 is a 

vector of observations, 𝑢𝑛 and 𝑣𝑛 are independent noise 

vectors with known distributions. PFs accomplish 

tracking of 𝑥𝑛 by updating a random measure 

{𝑥1:𝑛
(𝑚)

, 𝑤𝑛
(𝑚)

}𝑚=1
𝑀  which is composed of 𝑀 particles 𝑥𝑛

(𝑚)
 

and their weights 𝑤𝑛
(𝑚)

 defined at time instant 𝑛, 

recursively [3]. The random measure a page no. 

proximates the posterior density of the unknown 

trajectory 𝑥1:𝑛, 𝑝(𝑥1:𝑛|𝑦1:𝑛), where 𝑦1:𝑛 is the set of 

observations. After resampling, the next particles are 

more concentrated in domains of the higher posterior 

probability. The PF operations are performed according 

to the following steps: 

1. Generation of particles (samples) 𝑥𝑛
(𝑚)

∼

𝜋(𝑥𝑛|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚 )

, 𝑦1:𝑛), where 𝜋(𝑥𝑛|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚 )

, 𝑦1:𝑛) is an 

importance density and 𝑖𝑛
(𝑚)

 is an array of indexes, which 

shows that the particle 𝑚 should be reallocated to the 

position 𝑖𝑛
(𝑚)

; 

2. computation of weights by: 

𝑤𝑛
∗(𝑚)

=
𝑤𝑛−1

(𝑡(𝑛−1)
𝑚 )

𝑎𝑛−1

(𝑡(𝑛−1)
𝑚 )

𝑝(𝑦𝑛|𝑥𝑛
(𝑚)

)𝑝(𝑥𝑛
(𝑚)

|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚 )

)

𝜋(𝑥𝑛
(𝑚)

|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚 )

,𝑦1:𝑛)

  (2) 

3. Resampling 𝑖𝑛
(𝑚)

∼ 𝑎𝑛
(𝑚)

, where 𝑎𝑛
(𝑚)

 is a suitable 

resampling function for the particle 𝑥𝑛
(𝑚)

. 

Different classifications of resampling methods exist 

[3, 8, 11]. Recently, Li et al. [7] propose a complete 

classification for resampling methods. For reducing 

hardware complexity, the RR algorithm offers interesting 

features for fixed-point implementation presented in 

literature [5]. The CR architecture consists of two loops. 

The first loop selects the substantial particles, and the 

second one multiplies the selected particles sequentially 

[12]. 

Recently, most of the researches are tended to 

distributed architecture for PF. The main reason is to 

minimize the execution time through paralleling and 

pipelining of operations. 

Most of the resampling algorithms can start only after 

all particles are generated and then cumulative sum and 

normalized weights start to be calculated. This fact is a 

bottleneck in the pipelined implementation. To remove 

this weakness, some resampling algorithms operate 

based on the ratio between the weights, like Metropolis 

Hastings (MH) [13] and IMH algorithm [14]. These 

methods do not need to normalize weights and therefore 

they are suitable for parallel processing. The details of the 

IMH algorithm is described in literature [14]. A Modified 

IMH (MIMH) algorithm is proposed in literature [15]. In 

the IMH algorithm, the new particle will be retained 

when 𝑢 < 𝛼(𝑥̂𝑡
𝑗−1

, 𝑥𝑡
𝑗
), which can be simplified as 

follows: 

𝑢 ≤ 𝛼(𝑥̂𝑡
(𝑗−1)

, 𝑥𝑡
(𝑗)

) = 𝑚𝑖𝑛{
𝑤(𝑥𝑡

(𝑗)
)

𝑥𝑡
(𝑗−1) , 1 ≤

𝑤(𝑥𝑡
(𝑗)

)

𝑥𝑡
(𝑗−1)   (3) 

and this equation in the MIMH algorithm is equal as 

follows: 

𝑢 × 𝑤(𝑥̂𝑡
(𝑗−1)

) ≤ 𝑤(𝑥𝑡
(𝑗))  (4) 

If the weight of the new particle is larger than the product 

of the uniform random-number u and the weight of the 

last accepted particle in the chain, the new particle is 

selected, otherwise, the last accepted particle is repeated 

once more. 

 
 

3. PROPOSED IIMH ALGORITHM 
 
3. 1. Proposed IIMH Resampling Algorithm            
The proposed IIMH algorithm can be defined as 

Algorithm 1. In the first step, two threshold values T1 and 
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Figure 1. Proposed architecture for IIMH resampling in PF 

 

 

T2 are calculated. These values are based on particle 

weights. Then the weight of the particles is compared 

with the two threshold values in the second step. 

According to comparison results, the particles are 

grouped into three different categories as below:  

1. Essential particles (𝑁𝑒𝑠𝑠): Particles whose weights are 

greater than 𝑇1, are assumed as essential particles. These 

high weight particles are used as inputs of the resampler 

module.  

2. Median particles (𝑁𝑚): The particles whose weights 

are less than 𝑇1 and greater than 𝑇2 are assumed in this 

group. These particles are not replicated, but they apage 

no. ear in outputs of the resampler module. These 

particles included essential information about the target 

trajectory. 

3.  Discarded particles (𝑁𝑑): These particles whose 

weights are less than 𝑇2 are considered as discarded 

particles. It means that they are low weight particles and 

don’t have any useful information about the trajectory. 

After classifying the particles, the indexes of essential 

particles are used for resampling. In the third step, the 

first essential particle will be used as an initialized value 

in the chain. In step 4, a Linear Feedback Shift Register 

(LFSR) will be used to generate a uniform random 

number 𝑢 as a resampling function [16]. 

 
Algorithm 1. Proposed IIMH algorithm 

  {𝑥̃𝑘
(𝑗)

}𝑗=1
𝑁 =IMH-Sampler {𝑥𝑘

(𝑗)
, 𝑤𝑘

(𝑗)
}𝑗=1

𝑁−𝑁𝑚−𝑁𝑑+𝑁𝑏   

1.  Threshold T1 and T2 calculation: 

𝑇1 =
∑𝑀

𝑖=1 𝑤𝑖

𝑀
,    𝑇2 =

𝑇1

2
  

2.  Classify the particles into 3 groups: 

𝑁𝑒𝑠𝑠: 𝑇1 ≤ 𝑤(𝑖)    𝑓𝑜𝑟    𝑖 = 1,2, … , 𝑁 

𝑁𝑚: 𝑇2 ≤ 𝑤(𝑖) ≤ 𝑇1    𝑓𝑜𝑟    𝑖 = 1,2, … , 𝑁 

𝑁𝑑: 𝑤(𝑖) ≤ 𝑇2    𝑓𝑜𝑟    𝑖 = 1,2, … , 𝑁  

3. Initialize the chain with 𝑥𝑘
(1)

= 𝑥𝑘
(1)

. The first particle is accepted 

as seed.  

4.  For   𝑗 = 2,3, … , 𝑁 − 𝑁𝑚 − 𝑁𝑑 + 𝑁𝑏   

 - Calculate the acceptance probability: 

𝛼(𝑥𝑘
(𝑗−1)

, 𝑥𝑘
(𝑗)) = min {

𝑤(𝑥𝑘
(𝑗)

)

𝑤(𝑥𝑘
(𝑗−1)

)
, 1} where 𝑥𝑘

(𝑗)
 represents the new 

particles, 𝑥𝑘
(𝑗−1)

 is the last accepted particle and 𝑤(𝑥𝑘
(𝑗)

) is the 

associated weight of the particle 𝑥𝑘
(𝑗)

.  

- Generate a uniform random-number as a resampling function: 

𝑢 ∼ 𝑢[0,1]  
- Determining the accepted and removed particles: 

𝑥𝑘
(𝑗)

= {
𝑥𝑘

(𝑗)
,  𝑖𝑓   𝑢 × 𝑤(𝑥𝑡

(𝑗−1)
) ≤ 𝑤(𝑥𝑡

(𝑗)
)

𝑥𝑘
(𝑗−1)

,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .
   

5.  Discard the first 𝑁𝑏 samples for burn-in particles and keep 𝑁 −
𝑁𝑚 − 𝑁𝑑 samples:  

{𝑥̃𝑘
(𝑗)

}𝑗=1
𝑁−𝑁𝑚−𝑁𝑑 = {𝑥̂𝑘

(𝑗)
}𝑗=𝑁𝑏+1

𝑁−𝑁𝑚−𝑁𝑑+𝑁𝑏  

 
3. 2. Proposed IIMH Resampling Architecture     
Proposed IIMH resampling architecture is shown in 

Figure 1. 

The proposed architecture contains a memory unit 

and a preprocessing unit. Before resampling, the four-

element vectors (𝑥, 𝑦, 𝑉𝑥 , 𝑉𝑦) are loaded into state memory 

separately and their associated weights are loaded into 

the weight memory as parts of the memory unit. The 

weight memory consists of a register file with a size of 

𝑀 × 𝑤 for storing the weights of each particle, where w 

represents the length of weight value. 

The preprocessing unit contains the particle 

classification module, where the two threshold values are 

calculated as described in the first step of Algorithm 1. 

As the weights of particles are loaded into weight 

memory, the cumulative sum of weights is calculated in 

sum_of_weights memory, simultaneously with 

calculating T1 and T2. As T1 and T2 are calculated, the 
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weight of the particles is compared with these two 

threshold values according to the results of the 

comparison, the particles are loaded in three different 

memory are named as Essential memory, Median 

memory, and Discard memory. After classifying the 

particles, the index of essential particles is routed into the 

IMH resampler module. Instead of storing four-element 

vectors of particles in this scheme, their indexes are only 

stored in the memory and routed in this scheme, because 

they have a similar addressing index. So memory size 

𝑀 × 4 is substituted by memory with size 𝑀 × 1. 

 

3. 3. Proposed Distributed Architecture For IIMH       
By employing distributed architecture and several PEs, 

the particles are divided and assigned to PEs to be 

processed in parallel. The execution time in distributed 

architecture for IIMH (DIIMH) would be reduced to the 

number of PEs. By choosing a large number of PEs, 

hardware resource utilization would be increased. So to 

achieve a trade-off between hardware resource usage and 

execution time, choosing a page no. proximates number 

of PEs is essential. Figure 2 shows DIIMH architecture 

with 4 PEs and 1 CU. 

Each PE in our architecture is similar to the IMH 

resampler shown in Figure 1. The function of CU is to 

collect the partial sums of the weights from PEs to 

calculate the output weights and finally perform the inter-

resampling. If the number of particles produced by each 

PE produces is not equal to the number of the particles 

that CU reports, median particles would be routed to the 

output of CU from (𝑁𝑒𝑠𝑠 + 1)𝑡ℎ address of 

next_state_memory. 

 

 

 

 
Figure 2. Proposed DIIMH resampler architecture 

 

 

4. RESULTS AND COMPARISON 
 

4. 1. Signal Tracking Performance        The tracking 

performance of the proposed IIMH resampling algorithm 

in PF has been studied for random signals. Figure 3 and 

Figure 4 show the tracking result of the PF with the 

proposed IIMH algorithm for 𝑴 = 𝟑𝟐 and 𝑴 = 𝟏𝟎𝟐𝟒 

particles, respectively. 

As we know, tracking a random signal with PF 

depends on several parameters. One of the most 

important factors is the number of particles. It can be 

observed that in the above figures, increasing the number 

of particles leads to more accuracy in random signal 

tracking. As the number of particles entering to the PF 

with the proposed IIMH algorithm increases, the amount 

of tracking error decreases. 

The tracking result of the PF with the proposed IIMH 

algorithm in comparison to PF with the Systematic 

Resampling (SR) algorithm is shown in Figure 5. 

To determine the quality of signal tracking depicted 

in Figure 5, Root Mean Squared Error (RMSE) is 

measured for two algorithms. RMSE is a mixture measure 

that reflects the bias and variance of PF estimation [4]. In 

our design, the output state vector consists of coordinate 

components x and y and the weight component w. From 

Figure 6 it is obvious that the RMSE value of the 

proposed architecture is lower than the SR algorithm. 
 

 

 
Figure 3. Tracking a random signal with a proposed IIMH 

algorithm in PF with M=32 particles 

 
 

 
Figure 4. Tracking a random signal with a proposed IIMH 

algorithm in PF with M=1024 particles 
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Figure 5. Tracking a random signal with a proposed IIMH 

algorithm and SR algorithm in PF with M=1024 particles 
 

 

 
Figure 6. RMSE values of the proposed IIMH algorithm and 

SR algorithm in PF 

 

 

Tha average RMSE value of the proposed IIMH 

method is about 25% lower than the SR algorithm that 

demonstrates the high quality of the proposed method. 

 
4. 2. Execution Time            Figure 7 shows the execution 

timing diagram of PF with the proposed IIMH 

resampling architecture. The overall execution time for 

PF can be achieved as below: 

𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (𝐿𝑐 + 𝐿𝑤 + 𝐿𝑠 + 𝐿𝐼𝑀𝐻 + 𝑀 − 𝑁𝑑 −

𝑁𝑚) 𝑇𝑐𝑙𝑘  
(5) 

where 𝐿𝑐, 𝐿𝑤, 𝐿𝑠, 𝐿𝐼𝑀𝐻 represent the startup latencies of 

the particle classification, weight calculation, sampling, 

IMH resampler, respectively. 𝑁𝑑 and 𝑁𝑚 are the numbers 

of discarded particles and median particles, respectively. 

𝑇𝑐𝑙𝑘 is the system clock period. M is the total number of 

particles. 

The overall execution time for PF with proposed 

DIIMH architecture can be achieved as below: 

𝑇𝐷𝐼𝐼𝑀𝐻 = (𝐿𝑐 + 𝐾 + 𝐿𝐼 + 𝐿𝐼𝑀𝐻 + (
𝑀−𝑁𝑑−𝑁𝑚

𝐾
) +

𝐿𝑤 + 𝐿𝑠) 𝑇𝑐𝑙𝑘  
(6) 

Tables 1 and 2 show the resampling frequency 

comparison for proposed IIMH and DIIMH resampling 

architectures and other hardware-based resampling 

methods at a clock frequency of 60 MHz. From the 

tables, it is concluded that the proposed IIMH and 

DIIMH methods suggest an acceptable speed in 

comparison to other resampling methods in PF. The 

comparison result shows that the proposed IIMH and 

DIIMH architecture have 33% and 79% more speed than 

the best reported methods in single PE and 4 PEs, 

respectively. 
 

4. 3. Resource Utilization             Table 3 shows the 

resource utilization of proposed IIMH and DIIMH and 

the existing resampling methods on a Xilinx Virtex5 

FPGA (XC5VSX50T) platform as an example. 

It is observed that the proposed IIMH and DIIMH 

reduce the number of DSP units, Block RAM, LUTs, 

slice FFs and Registers in comparison to other methods. 

Distributed resampling architectures with more PEs 

consume more device utilization. However, the 

performance of distributed architectures is better than  

 

 

 

 
Figure 7. Execution time of PF with proposed IIMH architecture 
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TABLE 1. Resampling frequency of PF at 𝑓𝑐𝑙𝑘 = 60MHz with 

single PE for different resampling methods 

Resampling method Resampling frequency 

Proposed IIMH 60 KHz 

HR [9] 27 KHz 

RSR [6] 45 KHz 

RR [5] 19.5 KHz 

SR [12] 9.6 KHz 

CR [12] 14.4 KHz 

 

 
TABLE 2. Resampling frequency of PF at 𝑓𝑐𝑙𝑘 = 60MHz with 

4 PEs for distributed resampling methods 

Resampling Method Resampling Frequency 

Proposed DIIMH 174 KHz 

Distributed IMH [15] 50 KHz 

Distributed HR [9] 97 KHz 

Distributed RSR [6] 64 KHz 

Distributed RR [12] 40 KHz 

 

 

TABLE 3. Resource utilization of resampling methods 

implemented on Xilinx Virtex5 (XC5VSX50T) 

Resampling 

methods 

Slice 

register 

Slice 

LUTs 

Slice 

FFs 

Block 

RAM 
DSP48Es 

Proposed IIMH 2728 4398 3662 12 7 

Proposed DIIMH 10712 18395 15641 17 27 

IMH [15] 19350 28065 26474 48 101 

Distributed HR [9] 11883 20607 16320 28 30 

 
 

resampling methods with single PE. Resource usage 

reduction of the proposed architectures is due to two main 

reasons; The first reason is because of using the index of 

particles instead of using four-element input vectors. The 

second reason is that a simple routing of CU is employed 

in the proposed DIIMH scheme. Therefore this scheme 

doesn’t need large temporary memories with high 

capacity in PEs and CU.  

 

 
5. CONCLUSION 
 

In this paper, an improved algorithm and an efficient 

architecture for IMH resampling, namely IIMH were first 

proposed. The algorithm is based on classifying the 

particles before assigning them to the resampling 

module. The technique would speed up the resampling 

step by considering only the essential particles in PF. 

Afterward we proposed a distributed architecture for 

IIMH, namely DIIMH to increase the processing speed 

through parallel processing. The results show that 

resampling frequencies of IIMH and DIIMH methods are 

60 KHz and 174 KHz that they are about 33% and 79% 

more than the best reported methods. Also, we can 

achieve about 39% reduction in RAM usage due to the 

simple designing of CU in comparison to the most 

efficient hardware-based method. 
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Persian Abstract 

 چکیده 
  Independent Metropolis Hasting (IMH)برداری مجدد به دلیل انحطاط و ضعف ذرات یک مرحله ضروری در فیلتر ذره است. الگوریتم نمونه برداری مجدد  نمونه

برداری بتدا یک الگوریتم جدید بر اساس نمونهبرداری مجدد در فیلتر ذره مورد استفاده قرار گیرد. در این مقاله اتواند در مرحله نمونهیک روش قوی و پر سرعت است که می 

شود که تنها ذرات ضروری بندی باعث میکند. این طبقهبندی میبرداری مجدد طبقهپیشنهاد شده است. الگوریتم پیشنهادی ذرات را قبل از ورود به ماژول نمونه  IMHمجدد  

برداری مجدد ارائه شده است. نتایج  ای به منظور کاهش زمان اجرا و پردازش سرعت بالا برای نمونه وارد شود. سپس معماری توزیع شده  IMHبردار مجدد به  واحد نمونه

نشان میشبیه ردیابی یک سیگنال  برای  نمونهسازی  معماری  با  ذره  فیلتر  که  مقایسهدهد  در  قبول  قابل  ردیابی  عملکرد  دارای  پیشنهادی  های با سایر روش  برداری مجدد 

% سرعت بیشتر در مقایسه با بهترین روش گزارش داده شده در فیلتر   33دارای  IIMHبرداری مجدد پیشنهادی برداری مجدد است. معماری فیلتر ذره با الگوریتم نمونهنمونه

 FPGAسازی بر اساس  با بهترین روش گزارش داده شده است. نتایج پیاده   % سرعت بیشتر در مقایسه   79ی پیشنهادی دارای  دره است. همچنین معماری فیلتر ذره توزیع شده

برداری مجدد پیشنهادی در فیلتر ذره و همچینین معماری توزیع شده منجر به کاهش منابع سخت افزاری و مساحت مورد استفاده دهد که استفاده از الگوریتم نمونهنشان می 

 شود. می
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