
IJE TRANSACTIONS C: Aspects Vol. 33, No. 12, (December 2020) 2482-2488

Please cite this article as: Z. Talebi, S. Timarchi, Improved Distributed Particle Filter Architecture with Novel Resampling Algorithm for Signal
Tracking, International Journal of Engineering, Transactions C: Aspects Vol. 33, No. 12, (2020), 2482-2488.

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Improved Distributed Particle Filter Architecture with Novel Resampling Algorithm

for Signal Tracking

Z. Talebia, S. Timarchi*b

a Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
b Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran; and School of Computer Science, Institute for Research in Fundamental

Sciences (IPM), Tehran, Iran

P A P E R I N F O

Paper history:
Received 27 July 2019
Received in revised form 01 September 2020
Accepted 03 September 2020

Keywords:
Particle Filter
Independent Metropolis
Hasting Resampling
FPGA
Signal Tracking

A B S T R A C T

Resampling is a critical step in Particle Filter (PF) because of particle degeneracy and impoverishment

problems. Independent Metropolis Hasting (IMH) resampling algorithm is a robust and high-speed

method that can be used as the resampling step in PF. In this paper, a new algorithm based on IMH
resampling is first proposed. The proposed algorithm classifies the particles before entering to the

resampling module. The classification causes those essential particles are only routed to the IMH
resampler. Then we propose a distributed architecture to reduce the execution time and high-speed

processing for resampling. Simulation results for tracking a signal indicate that the PF with the proposed

resampling architecture has acceptable tracking performance in comparison to other resampling
methods. The PF architecture with the novel Improved IMH (IIMH) resampling algorithm has 33% more

speed than the best-reported method in PF. Also, the proposed distributed PF architecture achieve 79%

more speed compared with the best-reported method in PF. FPGA-based implementation results indicate
that the utilization of the proposed IIMH resampling algorithm in PF and also distributed architecture

lead to hardware resource and area usage reduction.

doi: 10.5829/ije.2020.33.12c.07

1. INTRODUCTION1

Object tracking through multiple cameras is a popular

research topic in security and surveillance systems

especially when human objects are the target [1].

Utilizing adaptive filters is a dominant solution for visual

tracking problems [2]. The signal tracking in Particle

Filter (PF) is performed by searching the space of the

states with randomly generated samples called particles.

PF consists of three steps, 1) particle sampling, 2) weight

calculation, and 3) resampling. Without resampling, PF

suffered from a degeneracy problem, which means that a

few particles with higher weights participate in the

resampling and those particles with lower weights will be

discarded [3-7]. Resampling, however, may introduce

undesired effects. One of them is sample

impoverishment.

*Corresponding Author Institutional Email: s_timarchi@sbu.ac.ir

(S. Timarchi)

Two main types of resampling methods used in PF

are sequential resampling and compound resampling.

Sequential resamplings are standard methods that have

high complex computation load. Systematic Resampling

(SR) [8-10], Residual Resampling (RR) [11-14],

Residual-Systematic Resampling (RSR) [3] are the three

most common examples for sequential resampling.

Compound resampling operates based on grouping the

particles. The grouping can be done by one or more

threshold values or based on the ratio between particle

weights. The thresholds can be fixed, variable, or

adaptive [7].

Independent Metropolis Hasting (IMH) algorithm in

one of the robust and high-speed compound resampling

methods that works based on the ratio between the

particle weights. This method works as soon as the first

particle and its corresponding weights are produced and

it doesn’t wait until whole particles to be generated.

mailto:s_timarchi@sbu.ac.ir

Z. Talebi and S. Timarchi / IJE TRANSACTIONS C: Aspects Vol. 33, No. 12, (December 2020) 2482-2488 2483

By using multiple Processing Elements (PEs) and a

Central Unit (CU) we can process the particles

simultaneously. This is known as Distributed resampling

methods. The methods include Centralized resampling,

resampling with proportional allocation, resampling with

non-proportional allocation and they use two types of

resampling, one resampling inside each PE called intra-

resampling and another between two PEs called inter-

resampling.

In this paper, a new IMH algorithm and architecture,

called Improved IMH (IIMH) to increase the processing

speed in IMH resampler is proposed that is derived from

both threshold-based resampling methods and the ratio

between the weights. Moreover, Distributed IIMH

(DIIMH) architecture with 4 PEs to process the particles

in parallel is explored in this paper. Results of tracking a

random signal show that the proposed IIMH algorithm

can have the same accuracy of standard SR. Comparison

results of hardware resource utilization and processing

speed show that proposed architectures have acceptable

performance in comparison to existing efficient methods

reported in the literature.

The rest of the paper is organized as follows: In

Section 2, a literature review and a brief theory of PF and

resampling are presented, and then, we review the IMH

and Modified IMH (MIMH) resamplers. In Section 3, the

proposed IIMH algorithm and architectures, as well as

DIIMH architecture are presented. In Section 4, the

comparison and results of the proposed methods are

discussed. Section 5 concludes the paper.

2. LITERATURE REVIEW ON PF AND RESAMPLING
METHODS

PFs are used for tracking states of dynamic state-space

models described by the following equation [8]:

𝑥𝑛 = 𝑓(𝑥𝑛−1) + 𝑢𝑛; 𝑦𝑛 = 𝑔(𝑥𝑛) + 𝑣𝑛 (1)

where 𝑥𝑛 is the state vector of target position, 𝑦𝑛 is a

vector of observations, 𝑢𝑛 and 𝑣𝑛 are independent noise

vectors with known distributions. PFs accomplish

tracking of 𝑥𝑛 by updating a random measure

{𝑥1:𝑛
(𝑚)

, 𝑤𝑛
(𝑚)

}𝑚=1
𝑀 which is composed of 𝑀 particles 𝑥𝑛

(𝑚)

and their weights 𝑤𝑛
(𝑚)

 defined at time instant 𝑛,

recursively [3]. The random measure a page no.

proximates the posterior density of the unknown

trajectory 𝑥1:𝑛, 𝑝(𝑥1:𝑛|𝑦1:𝑛), where 𝑦1:𝑛 is the set of

observations. After resampling, the next particles are

more concentrated in domains of the higher posterior

probability. The PF operations are performed according

to the following steps:

1. Generation of particles (samples) 𝑥𝑛
(𝑚)

∼

𝜋(𝑥𝑛|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚)

, 𝑦1:𝑛), where 𝜋(𝑥𝑛|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚)

, 𝑦1:𝑛) is an

importance density and 𝑖𝑛
(𝑚)

 is an array of indexes, which

shows that the particle 𝑚 should be reallocated to the

position 𝑖𝑛
(𝑚)

;

2. computation of weights by:

𝑤𝑛
∗(𝑚)

=
𝑤𝑛−1

(𝑡(𝑛−1)
𝑚)

𝑎𝑛−1

(𝑡(𝑛−1)
𝑚)

𝑝(𝑦𝑛|𝑥𝑛
(𝑚)

)𝑝(𝑥𝑛
(𝑚)

|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚)

)

𝜋(𝑥𝑛
(𝑚)

|𝑥𝑛−1

(𝑡(𝑛−1)
𝑚)

,𝑦1:𝑛)

 (2)

3. Resampling 𝑖𝑛
(𝑚)

∼ 𝑎𝑛
(𝑚)

, where 𝑎𝑛
(𝑚)

 is a suitable

resampling function for the particle 𝑥𝑛
(𝑚)

.

Different classifications of resampling methods exist

[3, 8, 11]. Recently, Li et al. [7] propose a complete

classification for resampling methods. For reducing

hardware complexity, the RR algorithm offers interesting

features for fixed-point implementation presented in

literature [5]. The CR architecture consists of two loops.

The first loop selects the substantial particles, and the

second one multiplies the selected particles sequentially

[12].

Recently, most of the researches are tended to

distributed architecture for PF. The main reason is to

minimize the execution time through paralleling and

pipelining of operations.

Most of the resampling algorithms can start only after

all particles are generated and then cumulative sum and

normalized weights start to be calculated. This fact is a

bottleneck in the pipelined implementation. To remove

this weakness, some resampling algorithms operate

based on the ratio between the weights, like Metropolis

Hastings (MH) [13] and IMH algorithm [14]. These

methods do not need to normalize weights and therefore

they are suitable for parallel processing. The details of the

IMH algorithm is described in literature [14]. A Modified

IMH (MIMH) algorithm is proposed in literature [15]. In

the IMH algorithm, the new particle will be retained

when 𝑢 < 𝛼(𝑥̂𝑡
𝑗−1

, 𝑥𝑡
𝑗
), which can be simplified as

follows:

𝑢 ≤ 𝛼(𝑥̂𝑡
(𝑗−1)

, 𝑥𝑡
(𝑗)

) = 𝑚𝑖𝑛{
𝑤(𝑥𝑡

(𝑗)
)

𝑥𝑡
(𝑗−1) , 1 ≤

𝑤(𝑥𝑡
(𝑗)

)

𝑥𝑡
(𝑗−1) (3)

and this equation in the MIMH algorithm is equal as

follows:

𝑢 × 𝑤(𝑥̂𝑡
(𝑗−1)

) ≤ 𝑤(𝑥𝑡
(𝑗)) (4)

If the weight of the new particle is larger than the product

of the uniform random-number u and the weight of the

last accepted particle in the chain, the new particle is

selected, otherwise, the last accepted particle is repeated

once more.

3. PROPOSED IIMH ALGORITHM

3. 1. Proposed IIMH Resampling Algorithm
The proposed IIMH algorithm can be defined as

Algorithm 1. In the first step, two threshold values T1 and

2484 Z. Talebi and S. Timarchi / IJE TRANSACTIONS C: Aspects Vol. 33, No. 12, (December 2020) 2482-2488

Figure 1. Proposed architecture for IIMH resampling in PF

T2 are calculated. These values are based on particle

weights. Then the weight of the particles is compared

with the two threshold values in the second step.

According to comparison results, the particles are

grouped into three different categories as below:

1. Essential particles (𝑁𝑒𝑠𝑠): Particles whose weights are

greater than 𝑇1, are assumed as essential particles. These

high weight particles are used as inputs of the resampler

module.

2. Median particles (𝑁𝑚): The particles whose weights

are less than 𝑇1 and greater than 𝑇2 are assumed in this

group. These particles are not replicated, but they apage

no. ear in outputs of the resampler module. These

particles included essential information about the target

trajectory.

3. Discarded particles (𝑁𝑑): These particles whose

weights are less than 𝑇2 are considered as discarded

particles. It means that they are low weight particles and

don’t have any useful information about the trajectory.

After classifying the particles, the indexes of essential

particles are used for resampling. In the third step, the

first essential particle will be used as an initialized value

in the chain. In step 4, a Linear Feedback Shift Register

(LFSR) will be used to generate a uniform random

number 𝑢 as a resampling function [16].

Algorithm 1. Proposed IIMH algorithm

 {𝑥̃𝑘
(𝑗)

}𝑗=1
𝑁 =IMH-Sampler {𝑥𝑘

(𝑗)
, 𝑤𝑘

(𝑗)
}𝑗=1

𝑁−𝑁𝑚−𝑁𝑑+𝑁𝑏

1. Threshold T1 and T2 calculation:

𝑇1 =
∑𝑀

𝑖=1 𝑤𝑖

𝑀
, 𝑇2 =

𝑇1

2

2. Classify the particles into 3 groups:

𝑁𝑒𝑠𝑠: 𝑇1 ≤ 𝑤(𝑖) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁

𝑁𝑚: 𝑇2 ≤ 𝑤(𝑖) ≤ 𝑇1 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁

𝑁𝑑: 𝑤(𝑖) ≤ 𝑇2 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁

3. Initialize the chain with 𝑥𝑘
(1)

= 𝑥𝑘
(1)

. The first particle is accepted

as seed.

4. For 𝑗 = 2,3, … , 𝑁 − 𝑁𝑚 − 𝑁𝑑 + 𝑁𝑏

 - Calculate the acceptance probability:

𝛼(𝑥𝑘
(𝑗−1)

, 𝑥𝑘
(𝑗)) = min {

𝑤(𝑥𝑘
(𝑗)

)

𝑤(𝑥𝑘
(𝑗−1)

)
, 1} where 𝑥𝑘

(𝑗)
 represents the new

particles, 𝑥𝑘
(𝑗−1)

 is the last accepted particle and 𝑤(𝑥𝑘
(𝑗)

) is the

associated weight of the particle 𝑥𝑘
(𝑗)

.

- Generate a uniform random-number as a resampling function:

𝑢 ∼ 𝑢[0,1]
- Determining the accepted and removed particles:

𝑥𝑘
(𝑗)

= {
𝑥𝑘

(𝑗)
, 𝑖𝑓 𝑢 × 𝑤(𝑥𝑡

(𝑗−1)
) ≤ 𝑤(𝑥𝑡

(𝑗)
)

𝑥𝑘
(𝑗−1)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

5. Discard the first 𝑁𝑏 samples for burn-in particles and keep 𝑁 −
𝑁𝑚 − 𝑁𝑑 samples:

{𝑥̃𝑘
(𝑗)

}𝑗=1
𝑁−𝑁𝑚−𝑁𝑑 = {𝑥̂𝑘

(𝑗)
}𝑗=𝑁𝑏+1

𝑁−𝑁𝑚−𝑁𝑑+𝑁𝑏

3. 2. Proposed IIMH Resampling Architecture
Proposed IIMH resampling architecture is shown in

Figure 1.

The proposed architecture contains a memory unit

and a preprocessing unit. Before resampling, the four-

element vectors (𝑥, 𝑦, 𝑉𝑥 , 𝑉𝑦) are loaded into state memory

separately and their associated weights are loaded into

the weight memory as parts of the memory unit. The

weight memory consists of a register file with a size of

𝑀 × 𝑤 for storing the weights of each particle, where w

represents the length of weight value.

The preprocessing unit contains the particle

classification module, where the two threshold values are

calculated as described in the first step of Algorithm 1.

As the weights of particles are loaded into weight

memory, the cumulative sum of weights is calculated in

sum_of_weights memory, simultaneously with

calculating T1 and T2. As T1 and T2 are calculated, the

Z. Talebi and S. Timarchi / IJE TRANSACTIONS C: Aspects Vol. 33, No. 12, (December 2020) 2482-2488 2485

weight of the particles is compared with these two

threshold values according to the results of the

comparison, the particles are loaded in three different

memory are named as Essential memory, Median

memory, and Discard memory. After classifying the

particles, the index of essential particles is routed into the

IMH resampler module. Instead of storing four-element

vectors of particles in this scheme, their indexes are only

stored in the memory and routed in this scheme, because

they have a similar addressing index. So memory size

𝑀 × 4 is substituted by memory with size 𝑀 × 1.

3. 3. Proposed Distributed Architecture For IIMH
By employing distributed architecture and several PEs,

the particles are divided and assigned to PEs to be

processed in parallel. The execution time in distributed

architecture for IIMH (DIIMH) would be reduced to the

number of PEs. By choosing a large number of PEs,

hardware resource utilization would be increased. So to

achieve a trade-off between hardware resource usage and

execution time, choosing a page no. proximates number

of PEs is essential. Figure 2 shows DIIMH architecture

with 4 PEs and 1 CU.

Each PE in our architecture is similar to the IMH

resampler shown in Figure 1. The function of CU is to

collect the partial sums of the weights from PEs to

calculate the output weights and finally perform the inter-

resampling. If the number of particles produced by each

PE produces is not equal to the number of the particles

that CU reports, median particles would be routed to the

output of CU from (𝑁𝑒𝑠𝑠 + 1)𝑡ℎ address of

next_state_memory.

Figure 2. Proposed DIIMH resampler architecture

4. RESULTS AND COMPARISON

4. 1. Signal Tracking Performance The tracking

performance of the proposed IIMH resampling algorithm

in PF has been studied for random signals. Figure 3 and

Figure 4 show the tracking result of the PF with the

proposed IIMH algorithm for 𝑴 = 𝟑𝟐 and 𝑴 = 𝟏𝟎𝟐𝟒

particles, respectively.

As we know, tracking a random signal with PF

depends on several parameters. One of the most

important factors is the number of particles. It can be

observed that in the above figures, increasing the number

of particles leads to more accuracy in random signal

tracking. As the number of particles entering to the PF

with the proposed IIMH algorithm increases, the amount

of tracking error decreases.

The tracking result of the PF with the proposed IIMH

algorithm in comparison to PF with the Systematic

Resampling (SR) algorithm is shown in Figure 5.

To determine the quality of signal tracking depicted

in Figure 5, Root Mean Squared Error (RMSE) is

measured for two algorithms. RMSE is a mixture measure

that reflects the bias and variance of PF estimation [4]. In

our design, the output state vector consists of coordinate

components x and y and the weight component w. From

Figure 6 it is obvious that the RMSE value of the

proposed architecture is lower than the SR algorithm.

Figure 3. Tracking a random signal with a proposed IIMH

algorithm in PF with M=32 particles

Figure 4. Tracking a random signal with a proposed IIMH

algorithm in PF with M=1024 particles

2486 Z. Talebi and S. Timarchi / IJE TRANSACTIONS C: Aspects Vol. 33, No. 12, (December 2020) 2482-2488

Figure 5. Tracking a random signal with a proposed IIMH

algorithm and SR algorithm in PF with M=1024 particles

Figure 6. RMSE values of the proposed IIMH algorithm and

SR algorithm in PF

Tha average RMSE value of the proposed IIMH

method is about 25% lower than the SR algorithm that

demonstrates the high quality of the proposed method.

4. 2. Execution Time Figure 7 shows the execution

timing diagram of PF with the proposed IIMH

resampling architecture. The overall execution time for

PF can be achieved as below:

𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (𝐿𝑐 + 𝐿𝑤 + 𝐿𝑠 + 𝐿𝐼𝑀𝐻 + 𝑀 − 𝑁𝑑 −

𝑁𝑚) 𝑇𝑐𝑙𝑘
(5)

where 𝐿𝑐, 𝐿𝑤, 𝐿𝑠, 𝐿𝐼𝑀𝐻 represent the startup latencies of

the particle classification, weight calculation, sampling,

IMH resampler, respectively. 𝑁𝑑 and 𝑁𝑚 are the numbers

of discarded particles and median particles, respectively.

𝑇𝑐𝑙𝑘 is the system clock period. M is the total number of

particles.

The overall execution time for PF with proposed

DIIMH architecture can be achieved as below:

𝑇𝐷𝐼𝐼𝑀𝐻 = (𝐿𝑐 + 𝐾 + 𝐿𝐼 + 𝐿𝐼𝑀𝐻 + (
𝑀−𝑁𝑑−𝑁𝑚

𝐾
) +

𝐿𝑤 + 𝐿𝑠) 𝑇𝑐𝑙𝑘
(6)

Tables 1 and 2 show the resampling frequency

comparison for proposed IIMH and DIIMH resampling

architectures and other hardware-based resampling

methods at a clock frequency of 60 MHz. From the

tables, it is concluded that the proposed IIMH and

DIIMH methods suggest an acceptable speed in

comparison to other resampling methods in PF. The

comparison result shows that the proposed IIMH and

DIIMH architecture have 33% and 79% more speed than

the best reported methods in single PE and 4 PEs,

respectively.

4. 3. Resource Utilization Table 3 shows the

resource utilization of proposed IIMH and DIIMH and

the existing resampling methods on a Xilinx Virtex5

FPGA (XC5VSX50T) platform as an example.

It is observed that the proposed IIMH and DIIMH

reduce the number of DSP units, Block RAM, LUTs,

slice FFs and Registers in comparison to other methods.

Distributed resampling architectures with more PEs

consume more device utilization. However, the

performance of distributed architectures is better than

Figure 7. Execution time of PF with proposed IIMH architecture

Z. Talebi and S. Timarchi / IJE TRANSACTIONS C: Aspects Vol. 33, No. 12, (December 2020) 2482-2488 2487

TABLE 1. Resampling frequency of PF at 𝑓𝑐𝑙𝑘 = 60MHz with

single PE for different resampling methods

Resampling method Resampling frequency

Proposed IIMH 60 KHz

HR [9] 27 KHz

RSR [6] 45 KHz

RR [5] 19.5 KHz

SR [12] 9.6 KHz

CR [12] 14.4 KHz

TABLE 2. Resampling frequency of PF at 𝑓𝑐𝑙𝑘 = 60MHz with

4 PEs for distributed resampling methods

Resampling Method Resampling Frequency

Proposed DIIMH 174 KHz

Distributed IMH [15] 50 KHz

Distributed HR [9] 97 KHz

Distributed RSR [6] 64 KHz

Distributed RR [12] 40 KHz

TABLE 3. Resource utilization of resampling methods

implemented on Xilinx Virtex5 (XC5VSX50T)

Resampling

methods

Slice

register

Slice

LUTs

Slice

FFs

Block

RAM
DSP48Es

Proposed IIMH 2728 4398 3662 12 7

Proposed DIIMH 10712 18395 15641 17 27

IMH [15] 19350 28065 26474 48 101

Distributed HR [9] 11883 20607 16320 28 30

resampling methods with single PE. Resource usage

reduction of the proposed architectures is due to two main

reasons; The first reason is because of using the index of

particles instead of using four-element input vectors. The

second reason is that a simple routing of CU is employed

in the proposed DIIMH scheme. Therefore this scheme

doesn’t need large temporary memories with high

capacity in PEs and CU.

5. CONCLUSION

In this paper, an improved algorithm and an efficient

architecture for IMH resampling, namely IIMH were first

proposed. The algorithm is based on classifying the

particles before assigning them to the resampling

module. The technique would speed up the resampling

step by considering only the essential particles in PF.

Afterward we proposed a distributed architecture for

IIMH, namely DIIMH to increase the processing speed

through parallel processing. The results show that

resampling frequencies of IIMH and DIIMH methods are

60 KHz and 174 KHz that they are about 33% and 79%

more than the best reported methods. Also, we can

achieve about 39% reduction in RAM usage due to the

simple designing of CU in comparison to the most

efficient hardware-based method.

6. ACKNOWLEDGMENT

The authors would like to thank the Institute for Research

in Fundamental Sciences (IPM) which supported this

research in the context of research project number

CS1396-4-670.

7. REFERENCES

1. Feizi, A., "Convolutional gating network for object tracking",

International Journal of Engineering, Transactions A: Basics,

Vol. 32, No. 7, (2019), 931-939. DOI:
0.5829/IJE.2019.32.07A.05

2. Sadegh Moghadasi, S. and Faraji, N., "An efficient target tracking

algorithm based on particle filter and genetic algorithm",
International Journal of Engineering, Transactions A: Basics,

Vol. 32, No. 7, (2019), 915-923. DOI:

10.5829/IJE.2019.32.07A.03

3. Liu, J.S., Chen, R. and Logvinenko, T., A theoretical framework

for sequential importance sampling with resampling, in

Sequential monte carlo methods in practice. 2001, Springer.225-

246. DOI: 10.1007/978-1-4757-3437-9_11

4. Zhao, Z., Wang, T., Liu, F., Choe, G., Yuan, C. and Cui, Z.,

"Remarkable local resampling based on particle filter for visual
tracking", Multimedia Tools and Applications, Vol. 76, No. 1,

(2017), 835-860. DOI: 10.1007/s11042-015-3075-6

5. Hong, S., Chin, S.-S., Djurić, P.M. and Bolić, M., "Design and
implementation of flexible resampling mechanism for high-speed

parallel particle filters", Journal of VLSI Signal Processing

Systems for Signal, Image and Video Technology, Vol. 44, No.

1-2, (2006), 47-62. DOI: : 10.1007/s11265-006-5919-9

6. Abd El-Halym, H.A., Mahmoud, I.I. and Habib, S., "Proposed

hardware architectures of particle filter for object tracking",
EURASIP Journal on Advances in Signal Processing, Vol.

2012, No. 1, (2012), 17. DOI: 10.1186/1687-6180-2012-17

7. Li, T., Bolic, M. and Djuric, P.M., "Resampling methods for

particle filtering: Classification, implementation, and strategies",

IEEE Signal Processing Magazine, Vol. 32, No. 3, (2015), 70-

86. DOI: 10.1109/MSP.2014.2330626

8. Bolić, M., Djurić, P.M. and Hong, S., "Resampling algorithms for

particle filters: A computational complexity perspective",

EURASIP Journal on Advances in Signal Processing, Vol.
2004, No. 15, (2004), 403686. DOI:

10.1155/S1110865704405149

9. Pan, Y., Zheng, N., Tian, Q., Yan, X. and Huan, R., "Hierarchical

resampling algorithm and architecture for distributed particle

filters", Journal of Signal Processing Systems, Vol. 71, No. 3,

(2013), 237-246. DOI: 10.1007/s11265-012-0712-4

10. Gan, Q., Langlois, J.P. and Savaria, Y., "A parallel systematic

resampling algorithm for high-speed particle filters in embedded

https://dx.doi.org/10.5829/ije.2019.32.07a.05
https://dx.doi.org/10.5829/ije.2019.32.07a.03
https://doi.org/10.1007/s11042-015-3075-6
https://doi.org/10.1186/1687-6180-2012-17
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FMSP.2014.2330626
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1155%2FS1110865704405149
https://doi.org/10.1007/s11265-012-0712-4

2488 Z. Talebi and S. Timarchi / IJE TRANSACTIONS C: Aspects Vol. 33, No. 12, (December 2020) 2482-2488

systems", Circuits, Systems, and Signal Processing, Vol. 33, No.

11, (2014), 3591-3602. DOI: 10.1007/s00034-014-9820-7

11. Douc, R. and Cappé, O., "Comparison of resampling schemes for

particle filtering", in ISPA 2005. Proceedings of the 4th
International Symposium on Image and Signal Processing and

Analysis, IEEE. (2005), 64-69. DOI: 10.1109/ISPA.2005.195385

12. Hong, S.-H., Shi, Z.-G., Chen, J.-M. and Chen, K.-S., "A low-
power memory-efficient resampling architecture for particle

filters", Circuits, Systems and Signal Processing, Vol. 29, No.

1, (2010), 155-167. DOI: 10.1007/s00034-009-9117-4

13. Murray, L., "Gpu acceleration of the particle filter: The

metropolis resampler", arXiv Preprint arXiv:1202.6163, (2012).

14. Sankaranarayanan, A.C., Srivastava, A. and Chellappa, R.,
"Algorithmic and architectural optimizations for computationally

efficient particle filtering", IEEE Transactions on Image

Processing, Vol. 17, No. 5, (2008), 737-748. DOI:

10.1109/TIP.2008.920760

15. Hong, S., Shi, Z. and Chen, K., "Easy-hardware-implementation

mmpf for maneuvering target tracking: Algorithm and
architecture", Journal of Signal Processing Systems, Vol. 61,

No. 3, (2010), 259-269. DOI: 10.1007/s11265-010-0450-4

16. Medina, A.R., "Hardware-based particle filter with evolutionary
resampling stage", Master thesis, 3-2014, Universidad Politécnica

de Madrid, (2014).

Persian Abstract

 چکیده
 Independent Metropolis Hasting (IMH)برداری مجدد به دلیل انحطاط و ضعف ذرات یک مرحله ضروری در فیلتر ذره است. الگوریتم نمونه برداری مجدد نمونه

برداری بتدا یک الگوریتم جدید بر اساس نمونهبرداری مجدد در فیلتر ذره مورد استفاده قرار گیرد. در این مقاله اتواند در مرحله نمونهیک روش قوی و پر سرعت است که می

شود که تنها ذرات ضروری بندی باعث میکند. این طبقهبندی میبرداری مجدد طبقهپیشنهاد شده است. الگوریتم پیشنهادی ذرات را قبل از ورود به ماژول نمونه IMHمجدد

برداری مجدد ارائه شده است. نتایج ای به منظور کاهش زمان اجرا و پردازش سرعت بالا برای نمونه وارد شود. سپس معماری توزیع شده IMHبردار مجدد به واحد نمونه

نشان میشبیه ردیابی یک سیگنال برای نمونهسازی معماری با ذره فیلتر که مقایسهدهد در قبول قابل ردیابی عملکرد دارای پیشنهادی های با سایر روش برداری مجدد

% سرعت بیشتر در مقایسه با بهترین روش گزارش داده شده در فیلتر 33دارای IIMHبرداری مجدد پیشنهادی برداری مجدد است. معماری فیلتر ذره با الگوریتم نمونهنمونه

 FPGAسازی بر اساس با بهترین روش گزارش داده شده است. نتایج پیاده % سرعت بیشتر در مقایسه 79ی پیشنهادی دارای دره است. همچنین معماری فیلتر ذره توزیع شده

برداری مجدد پیشنهادی در فیلتر ذره و همچینین معماری توزیع شده منجر به کاهش منابع سخت افزاری و مساحت مورد استفاده دهد که استفاده از الگوریتم نمونهنشان می

 شود. می

https://doi.org/10.1007/s00034-014-9820-7
https://doi.org/10.1007/s00034-009-9117-4
https://doi.org/10.1007/s11265-010-0450-4

