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A B S T R A C T  

 

During the ultrasound imaging process, the ultrasound contrast agents (UCAs) are beating near the blood 
vessel wall. Therefore, the purpose of the present simulation study is to investigate the effect of the 

presence of an elastic wall on the radial and frequency acoustic response of a UCA microbubble 

oscillating in a nonlinear regime. For this reason, the numerical simulation of the dynamic behavior of a 
coated microbubble was performed using coding in MATLAB and a Rayleigh-Plesset equation modified 

by Doinikov. To study the nonlinear bubble oscillations, its compression-only behavior and the sub-

harmonic nonlinear component are taken from a nonlinear shell model presented by Marmottant et al. 
Initially, coated bubble oscillations in two linear and nonlinear regimes were investigated for two types 

of shell models, and it was observed that presence of the elastic wall  affects the bubble's compression-

only behavior. Finally, due to the importance of the subharmonic component in the nonlinear oscillation 
of the coated bubble, the threshold of the appearance of subharmonic components for a coated bubble 

near an elastic wall was investigated using the Fast Fourier Transform (FFT) and compared with the 

oscillation in the infinite fluid. 

doi: 10.5829/ije.2020.33.10a.28 
 

 
1. INTRODUCTION1 
 
The mechanism of diagnostic imaging in medicine by 

ultrasound is based on the scattering and reflection of the 

ultrasound waves sent from the target tissue. Unlike body 

tissues, the scattering properties of blood are very poor 

and ultrasound transmitted waves attenuate after 

reflection and reduce imaging quality due to the low 

reflection of blood and some tissues against ultrasound 

waves which either absorb or transmit the ultrasound 

waves. To increase the reflectance of ultrasound beams, 

micrometer coated bubbles (ultrasound contrast agents) 

that are covered by a stabilizing shell (a variety of 

proteins such as lipid or albumin) are intravenously 

injected. These contrast agent microbubbles due to their 

oscillations prevent the wave attenuation, and increase 

the acoustic differentiation between blood and tissue 

during an ultrasound examination and improve image 

quality. The UCA microbubbles usually have a small size 
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of about microns (1 to 10 micrometers) that enables them 

to pass through the smallest capillaries in the body. 

Bubble coating has been done to increase the stability of 

the free bubbles, prevent its rapid dissolution, and 

prevent their agglomeration which has led to the 

production of different generations of UCA bubbles. 

Adding a special coating with a certain viscosity and 

elasticity to the free bubbles alters the surface tension of 

the bubbles and consequently changes their acoustic 

behavior dramatically. In medical applications, UCA 

microbubbles move near boundary surfaces such as the 

wall of a laboratory container or the wall of a blood 

vessel. Therefore, the theoretical models that predict the 

effect of a wall on the dynamics of a UCA microbubble 

are interesting.  Studying this information is important for 

determining the imaging methods and the microbubble 

parameters owing to their ability to optimize imaging 

clarity, improve imaging quality, and assist the 

development of new imaging strategies. 
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The dynamics of the bubble in an ultrasonic field is 

described by the Rayleigh-Plesset (RP) equation, but the 

addition of a shell to the bubble and the presence of a wall 

near the bubble will change the above equation. To study 

the dynamics of the coated bubble, De Jong et al. [1] 

presented the first models and parameters (shell friction 

and shell elasticity) to determine the coating effects.  

Church et al. [2] developed the first accurate model of 

coating theory by a layer of incompressible rubber 

material using a Modified Rayleigh-Plesset equation. 

Hoff et al. [3] used a thin-shell model of polymer and 

observed that this coating increases the bubble shell 

resistance by up to 20 times compared to the free gas 

bubble. Later, De Jong et al. [4] investigated the response 

of the UCA in nonlinear regimes appearing at high 

pressures and observed that nonlinear bubble oscillations 

produce harmonics and sub-harmonics in the bubble 

behavior. 

Several researchers like Brennen [5], Leighton [6], 

and Blake and Gibson [7] investigated the dynamics of a 

free gas bubble near a solid boundary. In medical 

imaging, bubbles may be in the proximity of the vessel 

or capillary that will therefore affect the pressure 

propagated from the bubble. It has provided a motivation 

for studying the effect of a boundary on a coated bubble. 

For the first time, Herring [8] made numerical study of 

the free bubble near the wall. Then, Strasberg [9] and 

Blue [10] examined the effect of a rigid wall on the 

resonant frequency of a free bubble. In their assumptions, 

the interaction of a bubble with a rigid boundary is 

mathematically equivalent to the interaction between two 

pulsating, in-phase, and adjacent bubbles. Since then, this 

equivalence has been utilized in many studies, such as the 

study reported by Doinikov et al. [11], to investigate the 

dynamical behavior of bubbles. Tomita and Shima [12] 

also presented a modified Rayleigh-Plesset equation for 

a free bubble that incorporated the rigid wall effects and 

the compressibility of the fluid around the bubble. This 

equation, developed by the Image Source Method, was 

used by Doinikov et al. [13] to derive a modified 

Rayleigh-Plesset equation for a bubble near a fluid layer 

of finite thickness. Experimental data show that the 

proximity of a boundary to the bubble and the mechanical 

properties of the material of the shell can cause 

significant changes in the amplitude of the micro 

bubble’s oscillation and its propagated pressure [14]. 

Many theoretical studies predicted that the resonance 

frequency of a UCA near a boundary can be reduced or 

increased depending on the mechanical properties of the 

boundary [15]. In an experimental work, Garbin et al. 

[14] observed that the oscillation amplitude of a BR-14 

microbubble near the wall of an OptiCell chamber is 

suppressed by more than 50%. 

These findings prompted scientists to focus on the 

interaction of the UCA microbubbles and the ultrasound 

waves, and the effect of vessel wall proximity to have a 

better understanding of its behavior in an ultrasound 

field. Various modeling studies have been conducted to 

understand the bubble response when it passes along the 

vessel wall. Primary studies such as that reported by 

Leighton [6] investigated the response of the bubble near 

the rigid wall of the vessel. However, the recent studies 

indicate the need for a comprehensive understanding of 

the more flexible boundaries effect because these 

boundaries are biologically more important. Doinikov et 

al. [11] modeled the UCA microbubbles responses using 

the modified Rayleigh-Plesset equation near the rigid 

wall and analyzed it. Overvelde et al. [16] investigated 

the presence of a rigid wall and its effect on the behavior 

of the UCA microbubbles. They found that, in particular, 

the resonance frequency of the microbubbles and the 

intensity of the scattered pressure field varied, so that the 

maximum resonance frequency of the bubble attached to 

the wall was 50% lower than the bubble in the infinite 

fluid. Doinikov et al. [13] investigated the oscillating 

UCA responses near a thin layer of finite density. They 

attempted to develop a new theoretical model to 

investigate the effects of the layer thickness and density 

on the pressure field scattered from the bubble. In 2013, 

Aired et al. [17] investigated the dynamics of the coated 

bubble near three different types of the wall, two different 

distances from the wall, and three different initial radii. 

They studied the changes of fundamental and second 

harmonic frequencies. Garashchuk et al. [18] also 

considered different models of coated bubbles and 

investigated their multi-dynamic stability and the 

occurrence of complex three-dimensional nonlinear 

dynamics. Dvinikov et al. [15] investigated the 

interaction of bubbles and walls at arbitrary distances to 

complete their earlier theory. Their simulation results 

showed that the bubble resonance frequency near the wall 

is dependent on the distance from the wall and the elastic 

properties of the wall. 

In the present study, a Rayleigh-Plesset equation 

modified by Doinikov is used to simulate the UCA 

microbubble behavior near an elastic wall of finite 

thickness to investigate how the elastic wall proximity 

affects the microbubble behavior and the acoustic 

response of the microbubble. Therefore, for the first time, 

for a coated bubble near an elastic wall with finite 

thickness, the occurrence of the nonlinear oscillations 

and its resulting components (such as harmonic 

components and compression-only behavior) have been 

simulated. Due to the importance of nonlinear bubble 

oscillations in medical applications, the focus of this 

paper is on the nonlinear behavior of the UCA 

microbubble near an elastic wall. The bubble oscillation 

behavior is simulated using the fourth-order Runge-Kutta 

method and the Doinikov equation and is compared with 

the experimental results. 
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2. THEORY 
 
Up to now, several types of Rayleigh-Plesset equations 

have been derived for coated bubbles, but for a coated 

bubble several factors influence its dynamic behavior 

(including the presence of a wall near the bubble). Today, 

there are varieties of ultrasound medical technologies 

that use UCAs, in which, the microbubble interactions 

occur with different boundaries. In clinical applications, 

such as ultrasound imaging, these boundaries could be 

the blood vessel wall, while in the laboratory applications 

could be the wall of laboratory containers made of 

various materials. 

 

2. 1. Coated Bubble in Infinite Fluid and Near an 
Elastic Wall           Almost  all the mathematical models 

of microbubble dynamics are based on modifications of 

the Rayleigh-Plesset equation, which is for the growth 

and collapse of a gas bubble and can be expressed in a 

new context. Assuming a polytropic law for bubble gas 

and regardless of the vapor pressure inside the bubble, the 

following form of the modified Rayleigh-Plesset 

equation can be used to model the dynamics of coated 

microbubbles in an infinite fluid [19]: 

𝜌𝑙 [𝑅𝑅̈ +
3

2
𝑅̇2] = (𝑃0 +

2𝜎(𝑅0)

𝑅0
) (

𝑅0

𝑅
)

3𝑘
(1 −

3𝑘𝑅̇

𝑐
) −

2𝜎(𝑅)

𝑅
−

4𝜇𝑅̇

𝑅
−

4𝑅̇

𝑅2 𝐾𝑠(𝑅, 𝑅̇) − 𝑃0 − 𝑃𝑎𝑐(𝑡)  

(1) 

where R is the bubble radius, R0 the initial bubble radius, 

k the ratio of specific heats of the gas, P0 the hydrostatic 

ambient pressure, μ the fluid viscosity, σ(R) the effective 

surface tension of the bubble, c the speed of sound at 

ambient, ρ the density of the surrounding liquid, Ks the 

shell viscosity and Pac(t) the external excitation pressure 

applied to the bubble. To model the pressure field 

scattered from the bubble in an infinite fluid, one obtains 

[19]: 

𝑃𝑠𝑐𝑎𝑡𝑒𝑟(𝑟, 𝑡) =
𝜌𝑙𝑅

𝑟
(𝑅𝑅̈ + 2𝑅̇2)  (2) 

where Pscater is the scattered pressure from the bubble and 

r the measured distance from the center of the bubble 

[20]. Nevertheless, the theoretical models that predict the 

effect of a wall on the dynamics of a coated microbubble 

receive much attention, because, in medical applications 

(laboratory, therapeutic, and imaging), the UCA 

microbubbles move near different boundary surfaces. 

Figure 1 shows a schematic of a coated bubble near 

an elastic wall of finite thickness. The bubble is at a 

distance d from the wall (environment 2) and h is the 

thickness of the wall. The wall material is assumed to be 

an elastic solid with a density of ρ2, a bulk modulus Kwall, 

and a shear modulus μwall. The back wall environment is 

also assumed to be an ideal and incompressible fluid with 

a density of ρ3. 

Because the presence of a wall affects the behavior of 

the UCA microbubbles, Doinikov et al. [13] developed a 

 
Figure 1. Schematic of a bubble near an elastic wall with 

finite thickness 

 
 

modified Rayleigh-Plesset family of equation for a 

coated microbubble near an elastic wall of finite 

thickness to investigate the effect of the presence of a 

wall on the UCA microbubble acoustic response. These 

equations are as follows [13]: 

𝑅̈𝑅(1 − 𝛼) +
3

2
𝑅̇2 (1 −

4𝛼

3
) =

1

𝜌𝑙
[(𝑃0 +

2𝜎

𝑅0
) (

𝑅0
3−𝑎3

𝑅3−𝑎3
)

𝛾

−
2𝜎(𝑅)

𝑅
−4𝜇

𝑅̇

𝑅
− 𝑃0 − 𝑃𝑎𝑐(𝑡) − 𝑆]  

(3) 

The variable α is as follows [13]: 

𝛼 = (
𝜌1−𝛽

𝜌1+𝛽
)

𝑅

2ℎ
− (

𝛽−𝜌2

𝛽+𝜌2
)

𝑅

2(ℎ+𝑡)
+

(𝜌1−𝛽)(𝛽−𝜌2)

(𝜌1+𝛽)(𝛽+𝜌2)

𝑅

2𝑡
  (4) 

Equation (3) neglects the radiation damping due to the 

liquid compressibility. This effect can be taken into 

account by one of the most common modified Rayleigh-

Plesset equations for compressible fluids such as Keller-

Miksis equation. These equations are as follows [13]: 

𝑅̈𝑅 (1 − 𝛼 −
𝑅̇

𝑐
) +

3

2
𝑅̇2 (1 −

4𝛼

3
−

𝑅̇

3𝑐
) =

1

𝜌𝑙
(1 +

𝑅̇

𝑐
+

𝑅

𝑐

𝑑

𝑑𝑡
) [(𝑃0 +

2𝜎

𝑅0
) (

𝑅0
3−𝑎3

𝑅3−𝑎3
)

𝛾

−
2𝜎(𝑅)

𝑅
− 4𝜇

𝑅̇

𝑅
− 𝑃0 −

𝑃𝑎𝑐(𝑡) − 𝑆]  

(5) 

where S is the term describing shell effect and a is the 

radius of the bubble’s van der Waals hard core. The 

acoustic pressure wave scattered from the coated bubble 

near an elastic wall at L distance from the center of the 

bubble is as follows [13]: 

𝑃𝑠𝑐𝑎𝑡𝑒𝑟 =
𝜌𝑙(𝑅2𝑅̈+2𝑅𝑅̇2)

𝐿
[1 − (

𝜌1−𝛽

𝜌1+𝛽
)

𝐿

√𝐿2+4𝑑2−4𝑑𝑧𝑙

−

(
𝛽−𝜌3

𝛽+𝜌3
)

𝐿

√𝐿2+4(𝑑+ℎ)2−4(𝑑+ℎ)𝑧𝑙

 

+
(𝜌1−𝛽)(𝛽−𝜌3)

(𝜌1+𝛽)(𝛽+𝜌3)  

𝐿

√𝐿2+4ℎ2−4ℎ𝑧𝑙

] 

(6) 

If L is large compared to d and h, Equation (6) can be 

rewritten as follows [13]: 

𝑃𝑠𝑐𝑎𝑡𝑒𝑟 =
𝜌𝑙(𝑅2𝑅̈+2𝑅𝑅̇2)

𝐿

4𝛽𝜌3

(𝜌1+𝛽)(𝛽+𝜌3)
  (7) 

After that, in 2013, Aired et al. [17] considered some 

modifications to improve an equation for the coated 

bubble dynamics near an elastic wall using the De Jong 

shell as follows [13]: 
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𝑅̈𝑅(1 − 𝛼) +
3

2
𝑅̇2 (1 −

4𝛼

3
) = [(𝑃0 +

2𝜎

𝑅0
) (

𝑅0

𝑅
)

3𝛾
(1 −

3𝛾

𝑐
𝑅̇) −

2𝜎(𝑅)

𝑅
−4𝜇

𝑅̇

𝑅
− 𝑃0 −

𝑃𝑎𝑐(𝑡) − 4𝜒 (
1

𝑅0
−

1

𝑅
) −

4𝐾𝑠𝑅̇

𝑅2
]  

(8) 

where Ks and χ are shell viscosity and shell  elasticity, 

respectively. Marmottant et al [21] also introduced a shell 

model that is suitable for high amplitude oscillations. 

This model assumes an elastic shell with buckling and 

rupture states. Three important factors are involved in the 

performance of this shell model. 

1-the buckling radius which plays a major role in 

predicting the compression-only behavior, 2-the 

compressibility of the shell material and 3-the rupture 

radius which plays the major role in predicting the 

disappearance of compression-only behavior [19–22]. 

𝜎(𝑅) =  

0   𝑅 ≤ 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔  

(9) 𝜒 (
𝑅2

𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
2 − 1)  

𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 ≤ 𝑅 

&   𝑅 ≤ 𝑅𝑟𝑢𝑝𝑡𝑢𝑟𝑒 

𝜎𝑤𝑎𝑡𝑒𝑟    𝑅 ≥ 𝑅𝑟𝑢𝑝𝑡𝑢𝑟𝑒  

𝐾𝑠(𝑅) = 𝐾𝑠 

𝑓0 =
1

2𝜋𝑅0
√

1

𝜌
(3𝛾𝑃0 +

4𝜎(𝑅0)

𝑅0
(3𝛾 − 1) +

4𝜒

𝑅0
)  (10) 

And the critical radius of this model is as follows [21]: 

𝑅𝑟𝑢𝑝𝑡𝑢𝑟𝑒 = 𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔(1 + 𝜎𝑤𝑎𝑡𝑒𝑟/𝜒)1/2  (11) 

𝑅𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 = 𝑅0(1 + 𝜎(𝑅0)/𝜒)−1/2  (12) 

In the Marmottant model, the effective surface tension 

operates within a certain range; for the values more than 

Rrupture the bubble behaves like a free gas bubble, and for 

the values less than Rbuckling the bubble shell folds. For the 

latter, the effective surface tension is considered to be 

zero. 

 
2. 2. Validation of Numerical Model            In section 

2.2, the numerical outputs are validated with 

experimental results to ensure the accuracy of the 

simulation results. First, by using the Rayleigh-Plesset 

model, the dynamics of a free bubble is simulated, and 

then by using the modified Rayleigh-Plesset improved by 

Doinikov for the coated bubbles, the dynamics of a 

coated bubble is simulated. Figure 2 is obtained using the 

experimental results by Lofstedt et al. [22], and Figure 3 

is established using the experimental results by Garbin et 

al. [14]. The latter authors had recorded the dynamic 

behavior of a coated bubble by high-speed cameras near 

an elastic wall. In the validation section, the excitation 

pulse is applied as a Gaussian pulse with the frequency 

and amplitude according to the experimental conditions.  

 
Figure 2. Validation of numerical solution and the 

experimental data for radial oscillation of a free bubble 

(Rayleigh–Plesset equation), (R0 = 1.6μm, Pa = 0.2 MPa, f = 

2 MHz) 
 

 

 
Figure 3. Validation of numerical solution and the 

experimental data for radial oscillation of an encapsulated 

bubble near an elastic wall (modified Rayleigh–Plesset 

equation by Doinikov), (R0 = 1.7 μm, Pa = 58 KPa, f = 2.5 

MHz, χ = 0.32 N/m, Ks = 2.10-9 kg/s, d = 100 μm) 

 

 

It can be seen from Figure 3 that both numerical and 

experimental results oscillate around the equilibrium 

radius of 1.7μm with the same trend and at the top of the 

graph, there is an average difference of 0.6% in 

amplitude. It is also observed that the numerical results 

predict the process of changing the oscillatory, 

compression, and expansion behavior of the bubble are 

well in accordance with the experimental results. The 

fourth-order Runge-Kutta method has been used for 

simulation. This method has been used due to resistance 

to divergence and stiff problems. Validations were 

performed under the following physical conditions (for 

Figure 3) [14]:  

R0 = 1.7 (μm)  γ = 1.07 σL = 0.072 (N/m)  

Ks = 0.72e−8 (Kg/s)  d = 50 (μm) χ = 0.51 (N/m) 

μL = 0.001 (Pa. s)  Pa = 200 (KPa) Pa = 200 (KPa)  

P0 = 101325 (Pa) h = 75(μm)  c = 1500 (m/s)  

ρL = 1000 (kg/m−3)  ρwall = 1060 (kg/m−3)  

Pac(t) = Pasin (2πft)exp [−(
2ft

N
)4]  

Besides, the numerical outputs in the field of 

frequency response are validated by comparing with the 

experimental results. Figures 4 and 5 are presented by 
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applying a Marmottant nonlinear shell model to the 

coated bubble dynamic equation and then by employing 

Equation (7). By applying Fast Fourier Transform (FFT) 

on the pressure wave propagated from the bubble, the 

frequency responses of the fundamental and subharmonic 

components are obtained and compared with the 

experimental results by Paul et al. [19]. Validations were 

performed under the following physical conditions (for 

Figures 4 and 5) [19]: 

R0 = 1.6 (μm)  P0 = 101325 (Pa)  γ = 1.07  

Ks = 1.2e−8 (Kg/s)  χ = 0.51 (N/m)  c = 1500 (m/s)  

μL = 0.001 (Pa. s)  Pa = 1.6 (MPa)  f = 3 (MHz)  

ρL = 1000(kg/m−3)  σL = 0.072 (N/m)  

Pac(t) = Pa sin(2πft)  

Figure 6 shows the frequency response spectrum 

emitted from a coated bubble using a Marmottant 

nonlinear shell model. 

 

 

3. DISCUSSION 
 

When the bubble is excited by an acoustic pulse, the 

pressure waves are propagated by the bubble oscillation. 

The wave propagated by the bubble may have different 

frequency components depending on the intensity of the 

 

 

 
Figure 4. Validation of numerical solution and the 

experimental data for fundamental response of Sonazoid 

bubble (f = 3 MHz) 
 

 

 
Figure 5. Validation of numerical solution and the 

experimental data for subharmonic response of Sonazoid 

bubble (f = 3 MHz) 

 

 
Figure 6. Frequency spectrum of a Sonazoid bubble (Pa = 

1.6 MPa, f = 3 MHz) 
 

 

excitation. In this scattered pressure wave from the 

bubble, there is always a fundamental component which 

is the frequency of excitation of the bubble. As the 

excitation intensity increases, the higher harmonic 

components, which are integer coefficients of the 

fundamental component (such as nfi), can also appear in 

the Fourier spectrum of the bubble frequency responses. 

As the excitation pulse intensities increase, nonlinear 

components, such as sub-harmonic and ultra-harmonic 

components, also appear in the pressure spectrum 

scattered from the bubble, where the sub-harmonic 

components are as the coefficient of 1/2fi, and the ultra-

harmonic components are as the coefficient of 2.3fi. As 

the excitation pulse intensities increase, the bubble 

oscillation frequency response spectrum enters the 

saturation phase with severe noises. The nonlinear 

components are integrated into these noises and are no 

longer detectable. Since the wave propagated from the 

bubble contains a set of mentioned above frequencies, it 

is therefore necessary to extract and analyze each of these 

waves by applying the Fourier series to the time domain 

transfer. The current simulation study aims to show how 

the presence of an elastic boundary affects the radial and 

frequency response of a UCA bubble in a nonlinear 

oscillatory regime. The bubble and shell properties used 

in the numerical simulation are listed in Table 1. 

Simulations were performed under the following 

physical conditions [13]: 

μ
L

= 0.001 (Pa. s)  σL = 0.072 (N/m) γ = 1.07  

μ
wall

= 1.34 (GPa)  P0 = 101325 (Pa) d = 2R0  

ρL = 1000 (kg/m−3)  K = 3.75 (GPa)  R0 = 1.6 (μm)  

ρwall = 1060 (kg/m−3)  c = 1500 (m/s) h = 75 (μm)  

In the simulation steps, the excitation pulse is applied as 

a burst sinusoidal pulse with a specified frequency and 

amplitude. 

 

 
TABLE 1. Marmottant Model Parameters [21] 

𝐊𝐬(𝐊𝐠/𝐬) 𝛘(𝐍/𝐦) 

1.2 × 10−8 0.53 
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3. 1. Investigation of the Nonlinear Bubble 
Oscillation and Compression-only Behavior Near 
an Elastic Wall                   The coated bubble oscillations 

are linear or nonlinear depending on the magnitude of 

their excitation pressure. In the low excitation 

amplitudes, the behavior of the coated bubble is quite 

linear and does not affect the nonlinear factors in the 

radius-time graph and its frequency response spectrum. 

Most of the linear shell models presented for the linear 

oscillations assume a bubble surface tension as a constant 

number, but, at higher excitation pressure amplitudes, the 

coated microbubble behavior tends to become nonlinear. 

Therefore, the nonlinear factors will appear in the radius-

time graph and its frequency response spectrum (such as 

ultra-harmonic and sub-harmonic components).  Under 

these conditions, the bubble in the compression phase 

will experience the buckling state of the bubble shell due 

to the zero value of the surface tension. On the other 

hand, in the expansion phase of the bubble, the surface 

tension of the shell has increased rapidly, and this sudden 

change causes asymmetry in the bubble radial behavior 

in the radius-time graph. This phenomenon is called the 

compression-only behavior and was discovered by De 

Jong during the high-speed imaging of phospholipid-

coated microbubbles. In the compression-only behavior, 

the changes of the bubble radial in the compression phase 

(ΔR- = R0 - Rmin) are greater than that in the expansion 

phase (ΔR+ = Rmax - R0). Only the nonlinear shell models 

can detect the compression-only behavior and the 

nonlinear bubble oscillation because they assume that the 

bubble shell behavior is physically different in the 

expansion and compression phase. In fact, the main 

disadvantage of the early models for the bubble dynamics 

is the linearity of their shell descriptors. Therefore, they 

are not capable to describe the nonlinear effects such as 

the compression-only behavior and the dependence of the 

shell material properties on the initial bubble radius. For 

this reason, a Marmottant nonlinear shell model is used 

here to investigate the nonlinear oscillation regime of the 

bubble. 

According to Figures 7 and 8, and regarding the 

amplitude of excitation pressure and excitation 

frequency, the bubble experiences linear oscillations. 

Both the linear and nonlinear shell models used in this 

simulation have clearly shown the differences in the 

magnitude of bubble oscillation amplitude. The 

compression-only behavior is observed in the 

Marmottant nonlinear shell model, while the De Jong 

linear shell model does not predict it because the bubble 

buckling state is not considered in the compression 

phase. It can be seen that in the nonlinear shell model, the 

bubble oscillation amplitude is 0.45 μm and the 

dimensionless parameter E/C (the ratio of expansion to 

the bubble compression) is 0.5; but in the linear shell 

model, these values are 0.26 μm and 1.15, respectively. 

In this case,  except for the fundamental component  (f0)  

 
Figure 7. Radius-time curve for a 1.6 μm Sonazoid bubble 

in the linear oscillation regime for the linear De Jong shell 

and the nonlinear Marmottant shell (Pa = 0.1 MPa, f = 3 

MHz) 
 

 

 
Figure 8. Frequency spectrum curve for a 1.6 μm Sonazoid 

bubble in the linear oscillation regime (Pa = 0.1 MPa, f = 3 

MHz) 
 

 

and the higher harmonics (2f0), no nonlinear component 

is seen in the bubble frequency response spectrum. 

But, regarding Figures 9 and 10 and the nonlinear 

oscillation conditions for the bubble, it is observed that in 

addition to the asymmetry and nonlinearity of the bubble 

radial behavior in the frequency response spectrum, 

nonlinear components such as sub-harmonic (1/2 f0) and 

ultra-harmonic components (3/2 f0) have also appeared. 

It is also observed that the compression-only behavior 

disappears after a certain excitation pressure amplitude 

due to the rupturing of the bubble shell and the coated 

bubble becomes a free bubble. The shell rupture occurs 

due to violent bubble oscillations and high bubble 

expansions. Consequently, when the bubble surface 

tension is fixed (σ = σwater), the bubble no longer exhibits 

the compression-only behavior (since the variable 

surface tension in the Marmottant model plays a major 

role in the prediction of the compression-only behavior). 

Then, with increasing the excitation pressure amplitude, 

the bubble radius in the expansion phase becomes larger 

than the compression phase (ΔR+> ΔR-), in contrast to the 

compression-only behavior. When the excitation 

frequency increases, this behavior will be delayed by 

decreasing the mechanical index of the bubble (MI =

Pa/√f where Pa is the amplitude of the excitation pressure 
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and f is the excitation frequency). Therefore, at higher 

excitation frequencies the compression-only behavior 

disappears at higher excitation pressure amplitudes. 

Figures 11 shows the radius-time graphs for a coated 

bubble at two excitation frequencies of 3 MHz and 6 

MHz and at different excitation pressure amplitudes. The 

linear and nonlinear changes in bubble oscillations can be 

studied using these figures. It is observed that the bubble 

oscillations near the elastic wall are more restricted than 

those in the infinite fluid, although for the lower 

excitation frequencies this radial oscillation suppression 

is more significant. It is also observed that as the 

excitation frequency increases, nonlinear bubble 

oscillation is suppressed and the bubble needs higher 

excitation pressure amplitude for nonlinear oscillations. 

On the other hand, in the low excitation pressure 

amplitude the bubble oscillations are linear and at the 

same time the bubble experiences compression-only 

behavior. While, with increasing amplitude of excitation 

pressure, the bubble has nonlinear oscillations and the 

compression-only behavior is also disappeared. Also, as 

previously stated, by increasing the excitation frequency 

and consequently decreasing the mechanical index, the 

compression-only behavior of the bubble is delayed.  For 

 
 

 
Figure 9. Radius-time curve for a 1.6 μm Sonazoid bubble 

in the nonlinear oscillation regime for the linear De Jong 

shell and the nonlinear Marmottant shell (Pa = 1 MPa, f = 3 

MHz) 
 

 

 
Figure 10. Frequency spectrum curve for a 1.6 μm Sonazoid 

bubble in the nonlinear oscillation regime (Pa = 1 MPa, f = 3 

MHz) 

more explanation, in Figures 11a to c with an excitation 

frequency of 3 MHz, the compression-only behavior 

gradually disappears with increasing the amplitude of 

excitation pressure; whereas, in Figures 11d to f with an 

excitation frequency of 6 MHz, with increasing 

excitation pressure amplitude the compression-only 

behavior is still observed. 

 

 

 
(a) Pa = 0.1 MPa, f = 3 MHz 

 
(b) Pa = 0.8 MPa, f = 3 MHz 

 
(c) Pa = 1.5 MPa, f = 3 MHz 

 
(d) Pa = 0.1 MPa, f = 6 MHz 
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(e) Pa = 0.8 MPa, f = 6 MHz 

 
(f) Pa = 1.5 MPa, f = 6 MHz 

Figure 11. Radius-time curves for a 1.6 μm Sonazoid bubble 

according to the presence of the wall 
 

 

In the following, the compression-only behavior of 

the coated microbubble is investigated by the E/C 

dimensionless parameter in terms of different excitation 

pressure amplitudes. As shown in Figure 12, at a constant 

excitation frequency (3 MHz) and a constant excitation 

pressure amplitude, the bubble near the elastic wall has a 

less tendency to maintain the compression-only behavior. 

Hence, by increasing the amplitude of the excitation 

pressure from 0.1 to 1.6 MPa, the difference of the 

dimensionless E/C parameter between the two diagrams 

of the cases with and without wall increases from 0 to 

0.619. In other words, the bubble shell when the bubble 

is oscillating near an elastic wall will rupture at lower 

pressure amplitude compared to oscillation in an infinite 

fluid. It may be due to the suppression of the bubble 

oscillations near the elastic wall. Oscillation of the 

bubble near a wall causes a reflected wave from the wall. 

This reflected wave suppresses bubble Oscillations and  
the bubble is less likely to retain the compression-only 

behavior. It is also seen in Figure 13 that for a coated 

bubble oscillating near an elastic wall, increasing the 

excitation pressure amplitude, as previously mentioned, 

attenuates the compression-only behavior, and whatever 

the excitation frequency will be higher, the disappearance 

of the compression-only behavior would be delayed. It 

can be seen that at the excitation frequency of 3 MHz, the 

compression-only behavior disappears at the excitation 

pressure of 0.5 MPa. While, at the excitation frequency 

of 6 MHz even at the excitation pressure amplitude of 1.6  

 
Figure 12. E/C values for a 1.6 μm Sonazoid bubble as a 

function of excitation pressure in both cases, the bubble 

oscillates near an elastic wall and an infinite liquid (f = 3 

MHz) 
 

 

 
Figure 13. E/C values for a 1.6 μm Sonazoid bubble as a 

function of excitation pressure at different frequency (in the 

case of the bubble oscillates near an elastic wall) 

 

 

MPa this phenomenon still exists, and at the excitation 

pressure of 1.6 MPa and for both the excitation 

frequencies of 3 and 6 MHz, the difference of E/C 

parameter value is 1.6. Since by increasing the excitation 

frequency the nonlinear bubble oscillations are limited. 

Hence, rupturing of the bubble shell requires more 

excitation pressure amplitude, therefore, the 

compression-only behavior disappears. 

 

3. 2. Investigation of the Frequency Response of 
Coated Bubble Near an Elastic Wall              In Section 

3.2, the physical properties of both the bubble and wall 

and the nonlinear shell model are selected as before. The 

sub-harmonic components in modern medical imaging 

methods are so important, therefore their detection and 

prediction are imperative. On the other hand, the sub-

harmonic components appear in the nonlinear bubble 

oscillation regime and accordingly at high excitation 

pressure amplitudes. These components will disappear 

after a critical excitation pressure amplitude and the 

bubble frequency-response spectrum will be saturated. 

Therefore, the nonlinear components cannot be 

distinguished from noise. Based on this, it is very 

important to determine the threshold of the excitation 

pressure amplitude. 
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In Figure 14, the sub-harmonic thresholds for a 

Sonazoid bubble with an initial radius of 3 μm and with 

similar physical properties to that of previously 

mentioned are given for two states of the nonlinear 

bubble oscillation near an elastic wall and an infinite 

fluid. In this graph, the sub-harmonic threshold value as 

a function of the excitation frequency divided by the 

bubble resonance frequency is investigated for the 

nonlinear Marmottant model. In the simulation process, 

the sub-harmonic components are not present at low 

excitation pressures, but with increasing the amplitude of 

the excitation pressure at a certain pressure value, the first 

sub-harmonics components will appear in the bubble 

frequency-response spectrum. In fact, the sub-harmonics 

thresholds occur at a certain value of excitation frequency 

within a particular excitation pressure range. The figure 

shows that at a given excitation frequency, the coated 

bubble near an elastic wall has a higher sub-harmonic 

threshold. It may be due to the effect of the reflected 

waves from the wall on the adjacent bubble that makes 

the bubble to be more resistant against nonlinearity than 

the bubbles in the infinite fluid. Therefore, the bubble 

requires more excitation pressure amplitude to produce 

sub-harmonic components. Thus, it can be concluded that 

the presence of a wall, in general, does not change the 

behavior of sub-harmonic components qualitatively, but 

in terms of quantitative measures, it will change (the sub-

harmonic threshold level increases). 

 

 

 
Figure 14. Subharmonic threshold curve for a 3 μm 

Sonazoid bubble in both cases, the bubble oscillates near an 

elastic wall and an infinite liquid 

 
 

4. CONCLUSION 

 
In this paper, the nonlinear behavior of a coated 

microbubble with a focus on the proximity of an elastic 

wall is investigated. Initially, as the ability of the selected 

shell model to predict the nonlinear components is 

crucial, the effect of the selective shell model on the 

simulation results for a coated bubble near the elastic wall 

was investigated using both the De Jong linear shell 

model and the Marmottant nonlinear shell model. It was 

found that both models well described the compression-

only behavior and difference in the bubble oscillation 

amplitude. Then, due to the importance of nonlinear 

bubble oscillations in medical applications, the 

oscillations of a bubble near an elastic wall in several 

different excitations have been studied to investigate the 

nonlinear behavior of the bubble and its compression-

only behavior. It was observed that the bubble near the 

elastic wall is less prone to maintain the compression-

only behavior than the bubble in the infinite fluid, and 

change in the excitation frequency can delay the 

disappearance of the compression-only behavior. As the 

excitation pressure amplitude increased from 0.1 to 1.6 

MPa, the difference between the two diagrams in the 

dimensionless E/C parameter in both with and without 

wall cases enlarged from 0 to 0.619. It was also found 

that for the bubble oscillation near the elastic wall, with 

increasing excitation pressure amplitude the intensity of 

compression-only behavior of the bubble weakened, and 

whenever the excitation frequency was higher, the 

disappearance of the compression-only behavior was 

delayed. Furthermore, because there is a great deal of 

focus on sub-harmonic components in modern medical 

imaging techniques, the sub-harmonic threshold has been 

investigated. Investigations showed that at a given 

excitation frequency, the coated bubble near an elastic 

wall has a higher sub-harmonic threshold than the bubble 

in the infinite fluid. 
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Persian Abstract 

 چکیده 
سازی حاضر  شبیه یمطالعه این پژوهش هدف  ،ی رگ خونی هستندتصویربرداری فراصوتی عوامل تقابلی فراصوتی در حال ضربان در مجاورت دیواره  فرایندکه در  جا  از آن

بر پاسخ آکوستیک شعاعی و فرکانسی یک میکروحباب عامل تقابلی فراصوتی که در حال نوسان در یک رژیم   سانکش  یدیوارهاین است که بررسی کنیم چگونه حضور یک  

- ایلیدار با استفاده از کدنویسی در متلب و یک معادله رسازی عددی رفتار دینامیک یک میکروحباب پوششهمین دلیل در این مقاله شبیهگذارد. بهتاثیر می  ،غیرخطی است

 یهارمونیک از یک مدل پوستهزیرمنظور بررسی نوسانات غیرخطی حباب، رفتار انقباض غالب آن و مولفه غیرخطی  پلیست اصلاح شده توسط دوینیکف انجام شده است. به

طی و غیرخطی برای دو نوع مدل پوسته بررسی شده دار در دو رژیم خبهره گرفته شده است. ابتدا نوسانات حباب پوشش  ،غیرخطی که توسط مارموتنت و همکاران ارائه شده

هارمونیک برای  زیرهای  ظهور مولفه  ی( آستانه FFTدار با استفاده از تبدیل فوریه ) هارمونیک در نوسان غیرخطی حباب پوششزیر  یبه دلیل اهمیت مولفه   ،درنهایت  است.

 کران مقایسه شده است.گردیده و با حالت نوسان در مایع بی بررسی  سانکش یدار در نزدیکی یک دیوارهیک حباب پوشش
 

 


