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A B S T R A C T  

 

Electric potential measurement technique (tomography) was introduced as a nondestructive method to 

evaluate concrete properties and durability. In this study, numerical meshless method was developed to 
solve a differential equation which simulates electric potential distribution for concrete with inclusion in 

two dimensions. Therefore, concrete samples with iron block inclusion in different locations were cast. 

Then, via a pair of electrodes attached to the samples, DC current was injected into concrete and electric 
potential was measured through 14 electrodes placed in the perimeter of the samples. In total, 35 different 

pair electrode configurations were planned for current injection. Bayesian theorem was employed to 

perform probabilistic tomography as well as to calculate the optimal shape coefficient in the numerical 
meshless method. Results of this study indicated that shape coefficient in multiquadratic radial-based 

function (MQ-RBF) model does significantly depend on boundary conditions. Furthermore, when the 

main current line is long, distribution of random variables c and e fits well with normal distribution, 
which is in agreement with the study assumption. Also, results reveal that probabilistic tomography is 

more precise than deterministic tomography even without using prior functions. Experimental results 

showed that MQ-RBF model has good performance in electrical tomography. This is due to uncertainty 
of concrete physical properties in real conditions which can be resolved by meshless method using 

optimization of shape coefficient.  

 

 
1. INTRODUCTION1 
 
Reinforced or plain concrete has been used for decades 

in many countries. However, these structures are 

gradually being deteriorated and need inspection for 

early rehabilitation or repair [1]. Accordingly, proper 

non-destructive techniques need to be developed and 

applied. Present techniques provide information about 

concrete strength [2], the position, size and orientation of 

inclusions like bar and fiber, condition of corrosion [3], 

state of humidity and probable corrosive ions, and the 

degree of cracking in concrete.  

Various non-destructive techniques are currently used 

to monitor the safety and condition of construction and 

material like concrete structures without causing damage. 

They include acoustic emission, ultrasonic methods, 

image-based methods, x-ray tomography, laser methods 

[4], and electrically-based methods. Electrical methods 
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are generally attractive since they can be performed 

rapidly and are relatively inexpensive. 

Electrical inspection methods, which are easy to 

manipulate, are applied for large structures, for which 

there may not be ease of direct access. According to a 

number of studies mentioned below, some attributes of 

concrete can be detected via electrical measurements. 

Electrical resistance measurement −using both 

alternate and direct currents (AC and DC)− have been 

applied in some studies. Despite their advantages, one of 

the major problems with DC methods is the measurement 

error produced by polarization of the specimen. 

Polarization is the separation of negative and positive 

ions trapped within the cement pores; as ions separate, 

less current is carried which results in a reduction in the 

conductivity measurement [5]. In AC methods, 

frequency should be kept as low as possible to avoid 

inductance effects owing to the long cables connecting 
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electrodes to the ERT measurement device, and on the 

other hand, the frequency has to be high enough to avoid 

electrode polarization effects. Electrical Impedance 

Spectroscopy (EIS) based on AC has been utilized for 

detecting fiber orientations [6], fiber distributions [7], 

corrosion rate of reinforcing bars [8], and detection of 

cracks [9]. DC electrical measurements have been 

applied to monitor strain and crack in cement-based 

materials and fiber reinforced cement-based materials 

[10]. Although EIS and DC electrical measurements can 

give information about the presence of fibers and cracks, 

they are unable to model geometry of target accurately . 

In Electrical Resistance Tomography (ERT), the 

spatial variations of the conductivity is reconstructed on 

the basis of a set of electrical measurements taken from a 

set of electrodes attached to the object boundary. Electric 

current is injected through electrodes, and the voltage 

produced on the object surface is recorded using several 

electrode pairs. Then an estimate of spatial distribution of 

conductivity (or its mutual resistivity) is computed. The 

possibility of ERT operation to monitor fibers, cracks, 

and moisture in concrete and other cement-based 

materials has been reported in previous studies. Hou and 

Lynch [11] applied ERT for detection of cracks in fiber 

reinforced cement composites loaded by axial cyclic 

loads and three-point bending. Karhunen et al. [12] 

demonstrated that ERT is able to detect diverse 

conductive and nonconductive inclusions in concrete. 

Hallaji et al. [13, 14] applied ERT for quantitative and 

qualitative imaging of damage detection in concrete and 

tracing moisture flow in cementitious materials. 

Several computational methods, namely, finite 

element method (often termed the complete electrode 

model (CEM) in ERT), finite difference method, and 

boundary element method have widely been applied for 

modeling electric current flow to numerically solve 

governing physicallybased partial differential equation 

(PDE). However, the major difficulty of these traditional 

methods is their need to make a mesh in the solution 

domain or on its boundary, and consequently, their over-

reliance on computational meshes. This hinders their 

application if the study domain is highly irregular and 

complex . 

In order to overcome the difficulty mentioned above, 

mesh-free or meshless method was developed to 

establish a system of (linear) algebraic equations for 

entire domain of problem without creating pre-defined 

meshes. This method has mostly been used in hydraulic 

engineering problems in last two decades. Diverse types 

of meshless methods have been developed, like local 

Petrov-Galerkin [15], the boundary knot method, the 

kernel method, the H-p clouds method, and radial basis 

function (RBF)-related methods [16]. Among these 

meshless methods, RBF-related methods (Kansa’s 

collocation method) [16] are the most interesting due to 

the following advantages [17]: 1) It doesn’t require 

domain and boundary meshing; 2) there is no need for 

integration in domain and boundary; 3) point location is 

the only variable in RBF functions which makes it 

suitable for high dimensional problems; 4) RBF is easy 

to code and implement. A popular form of RBF is 

multiquadratic (MQ) function which was first applied by 

Hardy [18, 19] and later by Kansa [16] for the 

interpolation of scattered geographical data.  

One challenging issue related to MQ-RBF method is 

the calibration of shape coefficient which is a case-

sensitive parameter and will be discussed in section 3.1. 

The MQ interpolator performance strongly depends on 

the picked value of the shape coefficient. Kansa and 

Carlson [20] showed that interpolation accuracy can be 

improved by taking variable shape coefficient. Nourani 

and Mousavi [21] observed that the geometry of the 

problem and the governing PDE have important impact 

on shape coefficient in the MQ formulation whereas 

boundary condition has less effect. Golberg et al. [22] 

made use of statistical method of cross validation to 

determine the optimal shape coefficient. Bayesian 

approach is used in this paper to optimize shape 

coefficient.  

Problems in ERT are classified into diffuse 

tomography modalities and ill-posed inverse problem. 

Ill-posed inverse problem solutions are severely sensitive 

even to a moderate error in modeling and measurement 

noise. In general, a valid solution of an inverse problem 

needs exact modeling of the measurements which leads 

to nonlinear equations. The traditional approach to 

inverse problem is to implement regularization methods 

[23]. Recently, Bayesian statistical approach has been 

used worldwide. In Bayesian framework, uncertainties 

like unknown conductivity distributions, shape 

coefficient and errors arising from differences between 

calculated and measured (observed) voltages are 

explicitly formulated with probability density functions 

(PDF). The explicit statistical models for the desired 

unknowns are called prior. For example, if the target 

inclusion inside concrete is a block of iron, the geometry 

of block would be the prior and the position of iron block 

should be determined. In this research, MQ-RBF is used 

in conjunction with Bayesian approach to calibrate shape 

coefficient and to reconstruct conductivity of domain by 

taking probable measurement noise into account in order 

to achieve an accurate model.  

MQ-RBF is used to numerically solve differential 

equations of ERT formulation in two dimensions. Using 

Bayes’ theorem, the related inverse problem changes to a 

statistical nonlinear problem in which the unknowns are 

the conductivity distribution and shape coefficient. In this 

study an experimental study is conducted to validate the 

proposed method. Accordingly, rectangle concrete 

samples were made and the electrical potential in 

different boundary nodes were measured. In order to 

solve the problem, Markov chain-Monte Carlo method 

(MCMC) [24–27] was used. Although computational 

cost of MCMC can apparently be high, by taking an 



1072                             N. Taghizadieh and S. Movahedi / IJE TRANSACTIONS C: Aspects  Vol. 33, No. 6, (June 2020)   1070-1084 

 

appropriate prior, results quickly converge. Furthermore, 

RBF has low computational cost which makes it suitable 

beside MCMC. MCMC methods belong to the class of 

algorithms which, for sampling from a PDF, depend on 

constructing a Markov chain that has a known 

distribution. Target accuracy improves as a function of 

the number of iterations.  

In this paper, the ability of RBF meshless method in 

conjunction with Bayesian approach to simulate the 

electrical current flow in concrete are evaluated. It will 

be proven that RBF method are applicable in electrical 

tomography in order to find the location of inclusions 

inside concrete slab.  

Section 2 introduces experimental setup and 

describes the preparation of slab sample as well as the 

tomography device which is used to inject electric current 

and measure potential through electrodes. Next, 

governing differential equation is introduced and 

meshless MQ-RBF method is presented in details. The 

bayesian theorem defined for ERT will be explained at 

the end of this section and a flowchart illustrates the 

proposed approach. The main results and conclusions are 

presented in sections 4 and 5, respectively. 

 

 

2. MATERIALS AND METHODS 
 
2. 1. Experimental Setup              Electrical measurement 

of outer accessible surface of concrete is the first step for 

ERT. Then, concrete inclusion detection is done using 

numerical meshless method and statistical Bayesian rule. 

To do this, concrete slab samples with iron block 

inclusion, based on standards ASTM C136 (2006), 

ASTM C33 (1979) and ASTM C778 (2002) in dimension 

16×12×3 cm were prepared. The dimension scaled for the 

slab is resembling the real floor pannel in construction. 

While casting, iron block in dimensions 2×2×1 cm were 

placed inside concrete in which most common Portland 

type II cement was used, and sand’s FM was 2.9. The 

coarsest aggregate diameter was 10 mm which is one-

third of slab thickness. Copper Electrode was attached to 

mold in order to inject electric current before casting 

(Figure 1). 

Total number of electrodes to inject and measure 

electric current was 14 which were attached in an equal 

distance around concrete sample (Figure 1). Then, using 

tomography device, a 5 volt DC current was injected into 

a pair of electrodes via copper wires connected to 

electrodes. In this manner, one electrode gets zero volt 

potential (ground) and the other one gets 5 volt potential. 

Afterwards, the potential in the rest of electrodes which 

were charged due to electric field was measured. Figure 

2 shows tomography device. 

 

2. 2. Governing Differential Equation     The 

governing differential equation simulating the electrical 

current  flow  and electrical potential  distribution within 

the 2D domain is given as follows [28]: 

𝛻. (𝜎𝛻𝑢) = 0  (1) 

the following boundary conditions were applied: 

𝜎(𝑥→)
𝜕𝑢(𝑥→)

𝜕𝑛
= 0 𝑥→ ∈ 𝜕𝛺1  (2) 

𝑢(𝑥→) = 𝑢0(𝑥
→) 𝑥→ ∈ 𝜕𝛺2  (3) 

where 𝑥→ indicates 2D coordinate vector (𝑥, 𝑦); 𝜎 =

𝜎(𝑥→) is the conductivity; 𝑢 = 𝑢(𝑥→) is the electric 

potential in the region 𝛺; 𝛻 is the differential operator; 𝛺 

is the current flow region; 𝜕𝛺 is the boundary region 

where 1  implies electrode-free boundary and 𝜕𝛺2 

implies boundaries with electrodes(𝜕𝛺1 ∪ 𝜕𝛺2 = 𝜕𝛺); 
𝜕/𝜕𝑛 is the normal derivative; 𝑛 is an outward unit 

normal; 𝜎0(𝑥
→) is the potential measured through 

boundaries. 

 

 

 

 
Figure 1. Concrete sample with electrodes in perimeter 

(Top) and schematic picture illustrates iron block location 

and electrode numbers (Bottom) 
 

 

 
Figure 2. ERT measurement fixture; Tomography device 

and the specimen 
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The boundary condition (2) implies that there is no 

current flow through the electrode-free boundary 

outwards, and the boundary condition (3) indicates the 

amount of potential measured in electrode boundaries. It 

is worth noting that despite ignoring contact impedance 

between electrode and target surface, it is automatically 

modeled by calibrating and optimizing shape coefficient. 

 

2. 3. Meshless MQ-RBF Method for ERT       As 

discussed earlier, the RBF collocation technique is set up 

to solve PDEs which has been effectively applied in a 

wide range of engineering fields. The PDE of a general 

steady-state problem in d-dimension  is as per 

the following equations: 

𝑅𝑢 = 𝑓(𝑥→)   in   Ω,            

𝐵𝑢 = 𝑔(𝑥→)   on   ∂Ω  
(4) 

where 𝑢 is the function (in this study, 𝑢 is potential), 

𝑅and 𝐵are differential operators which are to be imposed 

to region (𝛺) and boundary (𝜕𝛺) points of the 

computational domain, respectively. {𝑃𝑖 = (𝑥
→
𝑖)}𝑖=1

𝑁  

indicates 𝑁 collocation nodes of the domain where, 

{(𝑥→𝑖)}𝑖=1
𝑁𝐼  are interior nodes, {(𝑥→𝑖)}𝑖=𝑁𝐼+1

𝑁  are boundary 

nodes. Therefore, a solution for Equation (4) can be 

approximately written as follows [29]: 

𝑢(𝑥→) = ∑ ℎ𝑗
𝑁
𝑗=1 𝛩𝑗(𝑥

→)  (5) 

where {ℎ𝑗)}𝑗=1
𝑁𝐼  are unknown coefficient vectors which 

will be calculated; and 𝛩𝑗(𝑥
→) = 𝛩(‖𝑃 − 𝑃𝑗‖) denotes as 

radial based function (RBF). Here, 𝑟 = ‖𝑃 − 𝑃𝑗‖ 

represents the Euclidean distance between two nodes. 

The most commonly used RBF is multi-quadratic (MQ) 

function like 𝛩(𝑟) = (𝑟2 + 𝑐2)𝑚 in which𝑚 usually 

takes 0.5; 𝑐 is shape coefficient which is assumed 

constant in this study and will be optimized using Bayes’ 

approach. By merging Equation (5) in Equation (4): 

∑ 𝑅𝑁
𝑗=1 [𝛩𝑗(𝑥

→
𝑖)]ℎ𝑗 = 𝑓(𝑥

→
𝑖), 𝑖 = 1,2, . . . , 𝑁𝐼  

for nodes inside the region 
(6) 

∑ 𝐵𝑁
𝑗=1 [𝛩𝑗(𝑥

→
𝑖)]ℎ𝑗 = 𝑔(𝑥

→
𝑖),       

𝑖 = 𝑁𝐼+1, 𝑁𝐼+1, . . . , 𝑁          for boundary  nodes  
(7) 

By solving the above simultaneous linear equations, 

coefficient vectors {ℎ𝑖}𝑖=1
𝑁  can be calculated at {(𝑥→𝑖)}𝑖=1

𝑁 . 

By imposing MQ-RBF meshless Equations (6) and (7) on 

current flow Equations (1), (2), and (3), the following 

equation can be obtained for homogenous domains as an 

example: 

𝛻2𝜎 = 0 → ∑ ℎ𝑗𝛻
2[𝛩𝑗(𝑥

→
𝑖)]

𝑁
𝑗=1 = 0        

𝑖 = 1,2, . . . , 𝑁𝐼                  for interior nodes  
(8) 

∑ ℎ𝑗𝛩𝑗( 𝑥
→
𝑖)

𝑁
𝑗=1 = 𝜎0(𝑥

→
𝑖)      𝑖 = 𝑁𝐼+1, 𝑁𝐼+1, . . . , 𝑁   

for boundary with electrode  nodes

 

 
(9) 

∑
ℎ𝑗𝜕𝛩𝑗(𝑥

→
𝑖)

𝜕𝑛

𝑁
𝑗=1 = 0

→
       𝑖 = 𝑁𝐼+1, 𝑁𝐼+1, … ,𝑁  

 for electrode-free boundary nodes

  

(10) 

MQ function in the form of 2D is as follows [30]: 

𝛩𝑗( 𝑥
→) = √(𝑥 − 𝑥𝑗)

2 + (𝑦 − 𝑦𝑗)
2 + 𝑐2  (11) 

Afterward, by calculating {ℎ𝑗)}𝑗=1
𝑁𝐼 , the approximate 

value for 𝑢at any point of 𝑥⃗𝑖 is 

𝑢̂(𝑥→) = ∑ ℎ𝑗 [√(𝑥 − 𝑥𝑗)
2 + (𝑦 − 𝑦𝑗)

2 + 𝑐2]𝑁
𝑗=1   (12) 

Then, Equations (8)-(10) can be expressed in the matrix 

form of: 
𝑼 = 𝜣𝒉  (13) 

where 𝑼a vector whose arrays are either zero (right side 

of Equations (8) and (10)) or voltages measured from 

boundary with electrode (right side of Equation (9)), 

𝛩𝑖(𝑥𝑖) function of nodes𝑥𝑖, and interpolation coefficient 

vector ℎ𝑖(𝑖 = 1:𝑁) can be solved by simultaneous linear 

equations (Equation 13). Accordingly, Equation (12) can 

be utilized to evaluate the potential at interior nodes of 

the medium (𝑥𝑖  for  𝑖 = 1, 2, . . . , 𝑁𝐼). By employing 

meshless technique, it is possible to calculate potential in 

all region given the conductivity distribution, which is in 

general called forward problem that has unique solution 

and is a mathematically well-behaved problem. 

However, the problem we encounter in this research is 

inverse problem which reconstructs the conductivity 

distribution given the boundary electric potential 

measurements and is a mathematically badbehaved 

problem. 

If Equation (12) is Applied to electrode nodes, the 

same voltages will be obtained that were measured and 

used in Equation (13) beforehand, because the coefficient 

vector is computed via precise linear equations solution. 

In the same vein, it is impossible to regulate shape 

coefficient and verify the results. Therefore, in the 

proposed method, 50% of measured voltages were used 

for calibration and 50% for verification. Then, the 

difference between omitted voltages and real observed 

voltages can be determined: 
𝑼𝟎 = 𝑼̂ + 𝒆  (14) 

where 𝑼𝟎 is observed voltages for verification and 𝑼̂is 

corresponding estimated voltages using meshless 

method. It is clear that 𝑼̂is a function of 𝑐 and𝜎, and their 

variations lead to change in𝑼̂. And𝒆 corresponds to noise 

vector. 
 

2. 4. Bayesian Theorem            A statistical approach 

for dealing with inverse problems is Bayes’ theorem [31]: 

𝜋𝑝𝑠𝑟(𝑐, 𝜎|𝑢) =
𝜋(𝑢|𝑐,𝜎)𝜋𝑝𝑟(𝑐,𝜎)

𝜋(𝑢)
  (15) 

where, 𝜋𝑝𝑟(𝑐, 𝜎) is the joint prior density function of 

shape coefficient 𝑐and conductivity vector 𝜎, 𝜋(𝑢|𝑐, 𝜎) 
is likelihood density function of measured potential 𝑢 

given unknown 𝑐and 𝜎, 𝜋(𝑢) is marginal density 

function of potential which acts as a normalizer and is 

usually neglected, 𝜋𝑝𝑠𝑟(𝑐, 𝜎|𝑢) is posterior density 

function of unknown𝑐and 𝜎, given measured potential 𝑢. 

)3,2,1( =d
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By neglecting 𝜋(𝑢), Equation (16) takes the following 

form: 

𝜋𝑝𝑠𝑟(𝑐, 𝜎|𝑢) ∝ 𝜋(𝑢|𝑐, 𝜎)𝜋𝑝𝑟(𝑐, 𝜎)  (16) 

The likelihood density function 𝜋(𝑢|𝑐, 𝜎) is a 

conditional density of observations given the unknowns 

and thus describes the relation between the observation 𝑢 

and unknown 𝜎 and 𝑐. If it is assumed that (𝑐, 𝜎) and 𝑒are 

mutually independent, the likelihood becomes [32]: 

𝜋(𝑢|𝑐, 𝜎) = 𝜋𝑒(𝑈0 − 𝑈̂)  (17) 

where 𝜋𝑒 is the probability function of the noise 𝑒. 

Additionally, if measured noise 𝑒 is considered as the 

normal distribution with zero mean and covariance 𝛤𝑒 , 

the likelihood can be written: 

𝜋(𝑢|𝑐, 𝜎) ∝ 𝑒𝑥𝑝 (−
1

2
𝑒𝑇𝛤𝑒

−1𝑒)  (18) 

If 𝜎 and 𝑐 are mutually independent, then: 

𝜋𝑝𝑟(𝑐, 𝜎) = 𝜋(𝑐)𝜋(𝜎)  (19) 

Also, if 𝜎 and 𝑐 are assumed normal distribution with 

𝜎∗and 𝑐∗ mean and covariance 𝛤𝜎  and 𝛤𝑐 , respectively, 

prior density function can be written: 

𝜋𝑝𝑟(𝑐, 𝜎) = 𝑒𝑥𝑝 (−
1

2
(𝑐 − 𝑐∗)𝑇𝛤𝑐

−1(𝑐 −

𝑐∗)) ∗ 𝑒𝑥𝑝 (−
1

2
(𝜎 − 𝜎∗)𝑇𝛤𝜎

−1(𝜎 − 𝜎∗)) 
(20) 

eventually posterior density takes the following form: 

𝜋(𝑐, 𝜎|𝑈) ∝ 𝑒𝑥𝑝

(

 
 
−
1

2
𝑒𝑇𝛤𝑒

−1𝑒 −

1

2
(𝑐 − 𝑐∗)𝑇𝛤𝑐

−1(𝑐 − 𝑐∗) −

1

2
(𝜎 − 𝜎∗)𝑇𝛤𝜎

−1(𝜎 − 𝜎∗)
)

 
 

  (21) 

Although solution of posterior density in Equation 

(22) is the real solution of statistical inverse problem, it 

is impractical and time-consuming in high dimensional 

problems. Some points are often estimated from posterior 

density. In this study, constant shape coefficient is 

applied in meshless method, therefore c is a scalar. 

Maximum a posteriori (MAP) is the most widely used 

technique for estimation of statistical point: 

(𝜎, 𝑐)𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
(𝜎,𝑐)

𝜋(𝜎, 𝑐|𝑈)  (22) 

Equation (23) gives the most probable point of the 

posterior density. If the negative exponent is ignored in 

Equation (22), the problem is changed to minimization: 

(𝜎, 𝑐)𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛
(𝜎,𝑐)

𝐹(𝜎, 𝑐|𝑈)  (23) 

where, Functional 𝐹(𝜎, 𝑐; 𝑈) is of the form: 

𝐹(𝜎, 𝑐; 𝑈) =
1

2
𝒆𝑇𝛤𝒆

−1𝒆 +
1

2
(𝜎 − 𝜎∗)𝑇𝛤𝜎

−1(𝜎 − 𝜎∗) + 

1

2
(𝑐 − 𝑐∗)𝑇𝛤𝑐

−1(𝑐 − 𝑐∗) = ‖𝐿𝒆𝒆‖
2 + ‖𝐿𝝈𝝈‖

2 + (
𝑐−𝑐∗

𝜎𝑐
)
2
 

(24) 

In Equation (24), 𝐿𝒆 and 𝐿𝜎are the upper triangular 

Cholesky factor of covariance matrices of noise and 

conductivity, respectively. Regarding the nonlinearity of 

Equation (24), computation of MAP estimation leads to 

nonlinear minimization.  

Minimizers usually employ gradient-based iterative 

techniques. Considering the high dimensional problems, 

these methods do not necessarily converge. As an 

alternative way, Monte Carlo- Markov Chain (MCMC) 

technique can be utilized. Although MCMC is 

computationally expensive, the solution of Equation (24) 

would quickly converge in combination with the MQ-

RBF method which is a low cost technique. MCMC has 

extensive applications and is used to solve the problem 

of sampling from a complicated distribution. Figure 3 

shows the flowchart of the proposed meshless Bayesian 

model. 

 

 

3. RESULTS AND DISCUSSION 
 
In this research, meshless method, as an alternative 

numerical method, was employed to estimate electric 

potential in concrete with inclusions. To this end, 

concrete  samples with  iron  block inclusion in different 

 

 

 
Figure 3. Flowchart of the proposed meshless-bayesian 

model 

Calculating F value 
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electrode points using 
MQ-RBF 
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places were cast. Totally, 117 concrete samples were 

prepared. Later, DC current was injected via a pair of 

electrodes attached to the samples in different points, 

using tomography device. Next, electric potential was 

measured in all 14 electrodes. The number of pair 

electrode configurations for current injection was 35, out 

of which 7 configurations were pair electrodes opposite 

to each other, 14 pair electrodes adjacent to each other, 

and 14 pair electrodes in an alternate order. In every 

configuration, 7 electrode measurements were used for 

calibration of shape coefficient and the 7 remaining 

measurements were used for making noise vector and 

verification. In Table 1; configurations’ number and 

corresponding pair electrodes are tabulated, in which the 

first electrode is ground connection with zero volt and 

the second one is charged with 5 volt.  

In numerical modeling, measured voltages were 

employed in MQ-RBF model to estimate the potential in 

desired point of concrete sample where there was no 

measurement record. As an ability of MQ-RBF method 

for solving differential equation, both boundary 

conditions and internal condition can be utilized as the 

local boundary conditions. It is notable that the Kansa’s 

[16] method accuracy depends on the determination of 

shape coefficient 𝑐 in MQ-RBF model (Equation (12)). 

Determination of  is still an open question in the 

research field. 

 
3. 1. The Optimum Value of Shape Coefficient        
Hardy [18, 19] recommended that the value of c be 

proportional to the mean distance of each data point to its 

nearest neighbor (dave), as c = 0.815dave. Golberg et al. 

[22] used statistical method of cross validation to 

determine the optimal shape parameter. Chen et al. [33] 

showed that in spite of appropriate ability of MQ-RBF 

modeling, choice of optimal c relies on problem type and 

there is no specific mathematic theory to determine shape 

coefficient in diverse problems. Nourani et al. [34] made 

use of colony optimization algorithm as one of the 

optimization methods in engineering problems for 

solving differential equation in contaminant transport 

problems. They demonstrated that c can vary based on 

physics and conditions of the problem. In this paper, 

statistical Bayesian method was used to optimize shape 

coefficient.  

In the similar way, using Equation (24) regarding 

noise vector e and mean value of shape coefficient (𝑐∗), 
optimal value of c can be determined. Based on previous 

studies, primal value of 𝑐∗ which ranges between 0.1 and 

4.0 was applied in Equation (24). According to Equation 

(24) in order to minimize function F, vector values e and 

σ and scalar value c must be optimized. In other words, 

the aim of solving Equation (24) is to obtain the vector 

values of e and σ and scalar value of c in order to make 

F the possible lowest value near zero. Monte Carlo 

method was used for this purpose. Based on the 

aforementioned explanations, the value of c can 

efficiently change the output of Equation (24) in which 

the mean and variance of c must be known. To this end, 

contour of optimized value of c for different location of 

iron block and electrode configurations is depicted. 

Figure 4 demonstrates the contour for electrode 

configurations 2, 15 and 26. In configuration 2 it is 

considerable that the c mean value is 1.8 for all block 

locations, this means it is electrode configuration that is 

effective, and the location has no effect on the mean 

value. As a result, knowing that in configuration 2, 

maincurrent line between electrode 3 and 9 is far from 

concrete sample edge, it can be concluded that main 

current line distance from edge is one of the effective 

parameters in c determination. On the other hand, as 

block approaches the center of sample, dispersion value 

of c reduces so that maximum variance belongs to 

location (4, 3) and the minimum variance is related to (7, 

5). In configuration 15, analogous to the configuration 2, 

mean value of c is not affected by block location and 

equals 1.0; but, its dispersion is much lower than that of 

configuration 2 and generally is less than 0.03. Since the 

 

 
TABLE 1. Configuration of pair electrodes used in current injection by tomography device 

Elect.   Config. Number of Configuration 

Opposite Pairs 
Config. Number 1 2 3 4 5 6 7 

Pair Electrodes 4,8 3,9 2,10 1,11 5,14 6,13 7,12 

Adjacent Pairs 

Config. Number 8 9 10 11 12 13 14 

Pair Electrodes 1,2 2,3 3,4 4,5 5,6 6,7 7,8 

Config. Number 15 16 17 18 19 20 21 

Pair Electrodes 8,9 9,10 10,11 11,12 12,13 13,14 14,1 

Alternate Pairs 

Config. Number 22 23 24 25 26 27 28 

Pair Electrodes 1,3 2,4 3,5 4,6 5,7 6,8 7,9 

Config. Number 29 30 31 32 33 34 35 

Pair Electrodes 8,10 9,12 10,12 11,13 12,14 13,1 14,2 

c
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(a) block at (4,8) (d) block at (7,8) (g) block at (11,8) 

   
(b) block at (4,5) (e) block at (7,5) (h) block at (11,5) 

   
(c) block at (4,3) (f) block at (7,3) (i) block at (11,3) 

Figure 4. Contour of shape coefficient for different block locations for configuration 2, 15 and 26. The square inside represents the 

block position. 

 

 

main current line has the lowest distance from the edge, 

hence the more two electrodes get close together the less 

the mean value of c will be. In configuration 26. it is 

shown that mean value of c ranges from 0.9 to 1.1 and 

block location slightly influences the c in a way that as 

pair electrodes approach the iron block the mean value 

of c decreases. However, dispersion of c is 0.02 and 

lower than that of configuration 15. 

For further assessment, optimized c value contour for 

opposite and alternate configurations of block location 

(5, 5) is depicted in Figure 5. From opposite 

configuration contour, it is found that for configurations 

close to the edge i.e. configurations 1, 4 and 5, the mean 

value of c is near 1.0 and the variance is low resembling 

adjacent and alternate configurations. In contrast, for 

configurations far from the edge i.e. 2, 4 and 6, the mean 

value is about 1.8 and its variance is increased. 

For alternate configurations, results corroborate that 

by approaching main current line to the edge the mean 

value and variance of c decreases. The results of different 

block locations confirm the previous results. However, 

they are not presented here because of limited space. In 

general, when main current line is near the edge, mean 

value of c is 1.0 and when it is far from edge the mean 

value is 1.8. it is worthy to note that mean value and 

variances of c are considered as prior information and 

will be discussed in the next section. Low effect of block 

location in mean value of c is another outcome. 

 

3. 2. e and c Random Variables           According to 

Equations (18) and (20) e and c random variables are 

assumed normal distribution. Therefore, it is important 

to evaluate them for some cases. In Figure 6, e and c 

histogram and fitting normal distribution for 

configuration 2 is illustrated.  Regarding this fact that the 

half of electrodes which used for verification are not 

random variables and the remaining electrodes are 

random  variables  and  should  be  optimized,  thereupon, 



 

 

   
(a) config. 1 and 22 (c)  config. 3 and 26 (e)  config. 5 and 30 

   
(b)  config. 2 and 24 (d)  config. 4 and 28 (f)  config. 6 and 32 

Figure 5. Contour of shape coefficient for block (5,5) for opposite and alternate configurations. The square inside represents the block 

position. 

 

 

   
(a) block at (4,5) (b) block at (7,8) (c) block at (11,3) 

Figure 6. histogram of random variables c and e for configuration 2. X axis represents the random variable value and Y-axis represents 

the number of iterations. 

 

 

for maximum 7 number of electrodes histogram is 

demonstrated. it is remarkable that c distribution fits well 

with normal distribution so that it is fluctuated around 

the mean value discussed in former section and ranges 

between 0.5 and 2.5 which represents good dispersion. 

In e histogram it is shown that noise values are scattered 

around zero mean as expected and are generally in good 

agreement with normal distribution which influence 

tomography precision, because normal distribution 

assumption correctness which will be discussed in the 

following section has great impact on likelihood 

function. 

Similarly, histogram of e and c for configuration 15 

is plotted in Figure 7 which does not fit well with normal 

distribution. Dispersion is limited and variance is low. In 

accordance with Equation (24), low and zero variance 

value as denominator causes large calculation error and 

reduces tomography precision. On the other hand, 

histogram of e has good fitness with normal distribution, 

although in some electrodes fluctuation is not around 
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Furthermore, probabilistic tomography is possible 

with and without prior, but without likelihood it is not 

possible. So it is clear that conformity of assumptions for 

noise vectors e is more significant than shape coefficient 

c. Therefore, identification criterion for convenient 

configuration is greatly based on well-fitting of e for 

which results show the good ability of opposite 

configuration 2. 

For comprehensive assessment, whole opposite 

configurations for block (5, 5) are illustrated in Figure 8. 

Results identify that e and c are in good agreement with 

normal distribution and e is scattered around zero means 

for all configurations whose main current line is far from 

the edge. Because of space limitations, histograms of 

remaining configuration are not presented here and only 

general conclusions are stated as follows: 1) Altering 

ranges of c for all configurations whose main current line 

is near the edge including opposite, adjacent and 

alternate configurations is between 0.8 and 1.4 and for 

main current line far from edge is between 0.5 and 2.5. 

2) The longer the current line, the more random variables 

fit the normal distribution such as configuration 6 in 

proportion to configurations 2 and 3. 3) Iron block 

location has minor effect on distribution manner and 

values of random variables so this can make tomography 

difficult and ill-posed. 4) By approaching the electrodes 

to the main current line, noise values increase and the 

distributions become asymmetric. 

 

 

 

   
(a) block at (4,3) (b) block at (7,8) (c) block at (11,5) 

Figure 7. histogram of random variables c and e for  configuration 15. X axis represents the random variable value and Y-axis 

represents the number of iterations. 

 

 

  

 

(a)  config. 2 (b)  config. 4 (c)  config. 6 

Figure 8. histogram of random variables c and e for block (5,5). X axis represents the random variable value and Y-axis represents 

the number of iterations. 
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zero. Configuration 26 histograms show that although e 

is scattered around zero, it does not fit with normal  

distribution. It should be noted that e and c are random 

variables corresponding to likelihood and prior 

functions, respectively. 



 

   
(a) config. 2 (b)  config. 15 (c)  config. 26 

Figure 9. Correlation of electrodes versus current path length for  configurations 2, 15 and 26 for block (7,5) 

 
 
3. 3. Covariance of Random Variables           One of 

the important advantages of probabilistic tomography is 

using distribution functions like multivariate normal 

distribution whose main parameters is covariance of 

random variables. Therefore, if in Equation (24) prior 

function is ignored and likelihood function is used 

merely (in some cases without having enough 

information, inevitably, it is impossible to make use 

prior) covariance is the only difference between 

probabilistic and deterministic tomography. In fact, 

covariance is linear relation among random variables and 

proper distribution of posterior can be obtained if this 

relationship is available. Hence, in this section 

relationship  among  random  variables  will be 

evaluated. 

Figure 9 represents correlation between possible 

electric current path length of electrodes (not direct 

distance between electrodes) and noise values for each 

electrode with other 6 remaining electrodes for 

configuration 2, 15 and 26 for block (7, 5). In 

configuration 2, results show that there is a logical 

correlation between current path length and noise values; 

this means that by lengthening current path, correlation 

value decreases and vice versa. However, the least 

correlation value is 0.5 which reveals good linear 

relationship between electrodes.  

Consequently, using linear regression, the 

relationship between current path length and noise values 

can be predicted. It is considerable that block location 

has trivial impact on correlation which is confirmable for 

configurations 15 and 26. In configurations 15 and 26, it 

can be seen that there is no clear relation between current 

path length and noise values and the covariance can’t be 

predicted. 
 
3. 4. Probabilistic and Deterministic Tomography          
As mentioned in previous sections, according to 

Equation (24) differences between classic tomography 

i.e. deterministic tomography and probabilistic 

tomography is prior function which is former knowledge 

from random variables σ and c such as distribution 

manner and also e covariance value for likelihood 

function. In this section a comparison between 

deterministic and probabilistic tomography without prior 

function is done to make it clear that which one is 

superior in iron block detection using different 

configurations. It is worth noting that solo usage of 

configuration is not adequate for detecting the block 

location, and output of Equation (24) from various 

configuration should be combined in order to get the 

precise conclusion. Accordingly, one of the issues under 

study is to find the best combination of configurations to 

reach the goal. In Figure 10 deterministic and 

probabilistic tomography without prior for blocks (4, 3), 

(4, 5) and (4, 8) for combination of opposite, adjacent 

and alternate configurations 2, 15 and 26, are illustrated. 

The vertical axis displays the invert value of noise (1 ÷ 

F(σ,c|U)) and the horizontal axes show the plan of 

concrete sample. For location (4, 3) it is considered that 

probabilistic method has more accurate result than 

deterministic method, but for locations (4, 5) and (4, 8) 

results of both methods are satisfactory. It is emphasized 

that differences between two methods in this section is 

just covariance of noise values. 

In Figure 11, tomography for block (9, 9) is shown 

with various configuration combinations. In picture (b) 

which is output of the combination of configurations 2 

and 26, probabilistic method is satisfactory and precise 

compared to deterministic method (picture (a)). Picture 

(d) represents outputs from combination of alternate 

configurations 22, 24, 26, 28, 30, 32 and 34 which 

verifies accepted outcome of both methods. Picture (f) 

confirms high accuracy of probabilistic method using 

combo of opposite configurations 1, 2, 3, 4, 5, 6 and 7. 

Finally by merging output from pictures (d) and (f), exact 

conclusion can be gained for probabilistic method. 

Although doing tomography using combo from large 

number of configurations can cause to high precision 

results, it is obvious that it requires high calculation and 

time. Therefore the minimum number of configurations 

is considered. 

Figure 12 demonstrates tomography for blocks (3,3) 

and (5,5) for combo of 1, 2, 3, 4, 5, 6 and 7 and validates 

the exactness of this combo. Generally, conclusions from 

this section can be summarized as follows: 1) Large 

number of configurations combo lead to high precision.  
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(a) Deter. Tomography. Block (4,3) (c) Deter. Tomography. Block (4,5) (e) Deter. Tomography. Block (4,8) 

   
(b) Prob. Tomography. Block (4,3) (d) Prob. Tomography. Block (4,5) (f) Prob. Tomography. Block (4,8) 

Figure 10.  Deterministic and probabilistic Tomography map of blocks (4,3), (4,5) and (4,8) for combination of configuration 2, 15 

and 26. The yellow square added to the map only represents the block position. 

 

 
2) Combination of opposite configurations results in 

better outcomes than alternate ones, and combination of 

adjacent configurations generally fail. 3) Probabilistic 

method is more precise than deterministic method even 

without using prior functions. 4) The low cost 

combination is made from one opposite and one alternate 

configurations such as 2 and 26. Furthermore, the best 

combo is a combination from number of opposite and 

alternate configurations.  
 
3. 5. Probabilistic Tomography with prior 
Functions                Superiority of Bayes’ theorem is in 

its use of former knowledge related to the problem which 

is called prior. Two prior functions mentioned above are 

σ and c priors. In order to use these functions it needs to 

know about vector σ and scalar c values. As discussed 

comprehensively in previous sections, it is feasible to 

gather statistical information about c e.g. mean and 

variance. But, it is generally not possible for σ, unless 

approximate place of iron block is known. For further 

evaluations, in Figure 13, probabilistic tomography of 

iron blocks (3, 3), (5, 5) and (9, 9) are depicted for 

combination of configurations 2 and 3 in three cases: 

without priors, with prior function c, with prior function 

σ. The results clearly proved that given prior information 

about the approximate location of block i.e. σ vector, 

tomography will be done with exact accuracy. In 

addition, results will improve with only prior function c. 

4. SUMMARY 
 
The aim of this study was to evaluate the possibility of 

meshless method to perform electrical tomography of 

concrete in order to detect iron inclusion. The electrical 

tomography enables to obtain conductivity of medium, 

i.e. σ in Equation (24). In meshless method, following 

the placement of a set of points on medium, σ vector is 

derived from the conductivity of corresponding points 

set up into a one-dimensional array. By optimizing and 

mapping σ vector, inclusions can be detected. For 

homogeneous material, the corresponding σ is vector of 

ones and has no role in Equation (1) and for 

heterogeneous material, σ vector plays the main role in 

Equation (1). 

It should note that plain concrete is not homogeneous 

material due to pore and different sizes of aggregate. 

Also, concrete conductivity is only affected by moist 

cement paste and aggregate is not electrically 

conductive. However, provided that aggregates, cement 

paste and pores are distributed regularly, then concrete 

can be considered homogeneous which is not a practical 

condition and is of the uncertainty of the problem. 

Therefore, in numerical methods like finite element 

method, arrays of σ vector related to plain concrete 

domain cannot be assumed constant which causes large 

calculation costs and if it is assumed constant it causes 

calculation errors and leads to low accuracy. In contrast, 
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in meshless method, optimization of shape coefficient c 

makes it possible to take arrays of σ vector related to 

plain concrete domain constant without losing the 

accuracy. By this way, calculation speed will increase 

greatly. 
In this research, it was shown that RBF approach is a 

proper conjugate for tomography of concrete to detect 

inclusions. Monte Carlo, as a minimizer, is used to find 

the optimum of σ to minimize F value in Equation (24). 

The main reason for this can be seen in Figures 10-13. It 

is obvious in some cases (for example Figure 12(b)) that 

there are multiple relative minimums in which most 

other minimizers are not able to find absolute minimum. 

Consequently, Monte Carlo in conjunction with 

meshless method result good outputs and can solve 

highly nonlinear problems. On the other hand, it is 

shown that to have a statistical problem, Bayesian 

theorem is an appropriate approach. This means that in 

classic approach, it is not feasible to use prior 

information in order to find maximum probability. 

Whereas, using Bayesian method, as proven in this 

paper, prior information from noise values, c value and 

approximate location of inclusion can be applied in 

model as covariance of noise value, c prior and σ prior, 

respectively. 
As noticed before, shape coefficient used in this 

research is scalar and constant for entire domain and 

results became well. The advantage of scalar c is its easy 

application and optimization. To this point, optimum c 

for  main  current  line  near  and  far  from  the edge was 

 

 

   
(a) Deter. Config. 2,26 (c) Deter. Config. 22,24,..,34 (e) Deter. Config. 1,2,...,7 

   
(b) Prob. Config. 2,26 (d) Prob. Config. 22,24,..,34 (f) Prob. Config. 1,2,...,7 

Figure 11. Deterministic and probabilistic tomography map of blocks (9,9) for combination of opposite and alternate congurations. 

The yellow square added to the map only represents the block position. 

 

 

  
(a) Prob. Tomo. Block (3,3) (b) Prob. Tomo. Block (5,5) 

Figure 12. Probabilistic Tomography map of blocks (3,3) and (5,5) for combination of all opposite configurations. The yellow square 

added to the map only represents the block position.   
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(a) Deter. (3,3) (e) Deter. (5,5) (i) Deter. (9,9) 

   
(b) Prob. w/o prior. (3,3) (f) Prob. w/o prior. (5,5) (j) Prob. w/o prior. (9,9) 

   
(c) Prob. w/prior c. (3,3) (g) Prob. w/prior c. (5,5) (k) Prob. w/prior c. (9,9) 

   
(d) Prob. w/prior σ. (3,3) (h) Prob. w/prior σ. (5,5) (l) Prob. w/prior σ. (9,9) 

Figure 13. Deterministic and probabilistic Tomography map of blocks (3,3), (5,5) and (9,9) for combination of configurations 2 and 

3. The yellow square added to the map only represents the block position. 

 

 
computed 1.0 and 1.8, respectively, which can be 

utilized in all cases without need to optimize repeatedly. 

In this way, calculation time was saved. However, the 

ability of variable c or vector form of c is left to future 

works. It is worth to note that RBF used in this study is 

of the form of MQ (Equation (11)) and two other 

common forms IMQ ((𝑟2 + 𝑐2)−1/2) and Gaussian 

(𝑒−(𝑟/𝑐)
2
) never resulted good conclusions, as expected. 

The reasoning would be: when the distance between two 

points increases, the influence of electrical potential to 

each other decreases which is involved in MQ function 

in contrast with IMQ and Gaussian. 
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5. CONCLUSION 
 
The present paper combined numerical Multi-Quadratic 

Radial Based Function technique as a meshless method 

with statistical Bayesian rule to solve a two-dimensional 

differential equation which simulates electric potential 

distribution in concrete with inclusion. The proposed 

MQRBF model has some advantages including: there is 

no need for meshing, it is easy to use in high dimensions, 

it can solve the problems with incomplete or 

undetermined boundary conditions and complicated 

geometry. Thus, the proposed method is suggested here 

as an effective technique to solve the differential 

equation of electric potential distribution. 

Results of this study indicated that shape coefficient 

in MQ-RBF model is significantly depended on 

boundary condition in a way that when main current line 

moves from the edge to the sample center, mean value of 

c changes from 1.0 to 1.8, respectively. Also, range of c 

for main current line near the edge is between 0.8 and 1.4 

and for main current line far from the edge is between 

0.5 and 2.5 in all configurations. Furthermore, in 

opposite configurations especially those whose main 

current line is long, distribution of random variable c and 

e fits well with normal distribution, which is in 

agreement with the study assumption. 

On the other hand, iron inclusion doesn’t affect c and 

e values and distribution manner very much, which 

makes using prior function difficult and results in an ill-

posed problem. Noise covariance values play a key role 

in probabilistic tomography and possibility for 

estimating covariance matrix. The study shows that for 

opposite configurations, when current path is 

lengthened, correlation reduces almost linearly and 

becomes predictable. As expected, block location has 

minor effect on noise correlations. Results show that 

probabilistic method is more precise than deterministic 

method even without using prior functions. In order to 

obtain exact outputs, large number of configuration 

combinations is suggested. In total, opposite 

configuration combinations function well in detecting 

iron block location. Finally, tomography will end with 

best results if prior functions σ and c are used. 
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Persian Abstract 

 چکیده 

ون شبکه برای  گیری پتانسیل الکتریکی )توموگرافی( به عنوان روش غیرمخرب برای ارزیابی ویژگی و دوام بتن مطرح شده است. در این مطالعه، روش عددی بدتکنیک اندازه

های بتنی با قطعه آهنی داخل با قطعه داخل آن به صورت دو بعدی مورد استفاده قرار گرفت. بدین منظور نمونه ساز توزیع پتانسیل الکتریکی در بتن معادله دیفرانسیل شبیهحل 

الکترود واقع در پیرامون    14ریق و پتانسیل الکتریکی در های مختلف آماده شد. سپس، از طریق جفت الکترودهای متصل به نمونه، جریان مستقیم به داخل بتن تزآن در محل

ریزی شد. قضیه بیزی جهت انجام توموگرافی احتمالاتی و نیز محاسبه ضریب  آرایش جفت الکترودی مختلف برای تزریق جریان برنامه 35گیری شد. در مجموع ونه اندازهنم

باشد. همچنین، اگر طول ایط مرزی می وابسته به شر مشخصاً MQ-RBFشخص می کند که ضریب شکل در مدل شکل بهینه در روش عددی به کار رفت. نتایج این مطالعه م

ها نشان داد که توموگرافی احتمالاتی مطابقت خوبی با توزیع نرمال دارد که جزو فرضیات این مطالعه بود. بعلاوه، خروجی  eو    cجریان اصلی بلند باشد توزیع متغیرهای تصادفی  

عملکرد خوبی در توموگرافی الکتریکی دارد. این به   MQ-RBFباشد. نتایج آزمایشگاهی نشان داد که مدل تر از توموگرافی متعین می ون استفاده از توابع پیشین دقیق حتی بد

 باشد.سازی ضریب شکل میشبکه از طریق بهینهاست که قابل رفع وحل با استفاده از روش بدون  های فیزیکی بتن در شرایط واقعیدلیل وجود عدم قطعیت در ویژگی

 

28. Telford, W.M., Telford, W.M., Geldart, L.P., Sheriff, R.E. and 

Sheriff, R. E., “Applied geophysics”, Cambridge university 

press, (1990) 
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