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In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, 
which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis 
method based on morphological component analysis (MCA) and ensemble empirical mode 
decomposition (EEMD) was proposed. Based on the advantages of the morphological component 
analysis method in the signal separation, using the morphological difference of the components in the 
automatic vibration signal, different sparse dictionaries were constructed to separate the components, 
eliminates the noise components and extracted the effective fault characteristic component, the 
extracted impact components are decomposed by EEMD and the energy feature of each IMF 
component is calculated as the fault features, then put the fault features into SVM (Support Vector 
Machine) and identify the faults. Through the construction simulation example and the typical fault 
simulation test of automatic machine, it showed that the morphological component analysis method 
had better noise reduction and signal separation effect. Compared with the traditional EEMD method, 
the feature extraction method based on the MCA-EEMD can distinguish automaton fault types more 
effectively. 

doi: 10.5829/ije.2019.32.06c.12 
 

 1. INTRODUCTION  
Automaton is the core part of the antiaircraft weapon 
system, it contains numerous parts and the mechanism 
movement of automaton is complex. Because of the high 
load and badly working environment (high temperature, 
high pressure), the automaton is prone to a series of 
faults and failures, such as wear, ablation and fatigue 
occurred in components. The vibration signal contains 
abundant running state information in the mechanical 
system [1], acquiring the vibration signal from 
automaton for feature extraction is an important method 
for fault diagnosis.1  

When a fault occurs in automaton, the vibration signal 
measured is complex, non-stationary, non-linear, non-
periodic and the vibration of automaton usually contains 
some unknown interference components and background 
noise. It is a challenge for automaton fault diagnosis 
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because the weak fault characteristics is always 
submerged in signals with complex compositions. In 
recent years, researchers have proposed many effectively 
method to detect faults for automaton. Zhang and Pan [2] 
proposed a method based on empirical mode 
decomposition (EMD) and fuzzy C means clustering 
(FCM) to detect and identify automaton problems. Pan 
and Cui [3] used several chaotic parameters (correlation 
dimension, kolmogorov entropy) to extract the fault 
features in automaton fault diagnosis. Cao and Pan [4] 
used wavelet transform to extract the state characteristics 
to realize condition monitoring and fault diagnosis. 
However, the above methods extract features directly 
from the original vibration signal and do not consider 
separating effective components from the complex 
signals, these shortcomings make the accuracy of 
automaton fault diagnosis is not very satisfactory. 

The automaton’s operating characteristics determine 
that the impact component contains most of the fault 
information in the vibration signal, so the key to 
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automaton fault diagnosis is to separate the impact 
component from original signal. Xu and Pan [5] used the 
independent component analysis (ICA) method to 
remove the interference signal and noise from automaton 
signals, but statistically independent assumptions 
components of ICA limited the separation effect. Starck 
and Robin [6] proposed morphological component 
analysis (MCA), it is a signal processing method based 
on sparse characterization. According to the differences 
in the morphological components of signals, different 
sparse representation dictionaries are used to separate the 
components in MCA. At first, MCA was applied to 
image processing [7]. In recent years, the MCA method 
has been applied in the field of mechanical signal 
analysis. Li et al. [8] used the MCA method to realize the 
effective separation of the gearbox vibration signal and 
improved the ability to extract transient shock signatures 
from a strong noise environment. Chen et al. [9] 
proposed the morphological component analysis method 
based on semi-soft threshold and achieved good results 
in the early stage of rubbing fault diagnosis of the rotor. 
Xu et al. [10] applied the double tree complex wavelet 
noise reduction method based on morphological 
component analysis (MCA) to gear fault diagnosis and 
obtained clear fault feature frequency, which provided a 
new method for early fault feature extraction of gears. 

EEMD method was first introduced by Huang et al. 
[11], it is a self-adaptive decomposition method and is an 
improved form of EMD method that can effectively 
solve the modal aliasing defects existing in the EMD 
method, EEMD has a good performance for feature 
extraction in the machinery vibration signals.  

In this paper, we proposed an effective method for 
automatic machine fault diagnosis. Firstly, the MCA 
method is applied to the preprocessing of automatic 
vibration signals to achieve noise reduction and separate 
the impact components from complex original signal. 
After that, the EEMD method is used to analyze the 
impact component, then the energy of the several IMFs 
is obtained as fault features. Finally, the fault features 
were entered into the support vector machines (SVM) for 
fault type identification. 

 
 2. TECHNICAL BACKGROUND  2. 1. The Review of Morphological Component Analysis        MCA is a sparse decomposition 

method based on the morphological diversity of signal 
components. The specific principle is as follows:  

Assume that the real signal S  is a linear combina
tion of N  different forms of signal ns :
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In Equation (2), λ  is the given threshold. When the 
overcomplete dictionary is known, the sparse 
representation of ns  is as follows: λn n ns = Φ α  (3) 
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From the implementation process of morphological 
component analysis, the threshold is continuously 
updated based on an increase in the number of 
iterations. At present, there are mainly three threshold 
processing methods for transform coefficients: soft 
threshold method, hard threshold method and semi-
soft threshold method. 
The soft threshold method is: 
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Among them, sgn( )x  is a symbolic function, that 
is, when 0x > , the value is 1 and when 0x < , the 
value is -1. Soft thresholding method can ensure the 
continuity of the signal, but it may weaken the useful 
signal and lead to poor decomposition. 
Hard threshold method: 
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The hard threshold method is not continuous at the 
threshold point, which will give the signal a large 
variance. 

For the shortcomings of soft threshold processing 
and hard threshold processing, Gao and Brucc [12] 
proposed a semi-soft threshold method, as shown in 
Equation (7).  



F. Wang and L. Fang / IJE TRANSACTIONS C: Aspects  Vol. 32, No. 6, (June 2019)   877-883                 879 
 

( )
1

2 1
1 2

2 1

2

0

sgn( )

n n

n n k
n n n n n

n n

n n n

α δ

δ α δ
α α δ α δ

δ δ

α α δ

 ≤


−
= × < ≤

−
 <

 
(7) 

In the formula, 2nδ is the upper threshold, 2nδ is the 
lower threshold, generally, 2 12n nδ δ= . 

Compared with the soft threshold method and the 
hard threshold method, the semi-threshold method can 
reduce the mean square error more effectively while 
suppressing noise. In this paper, semi-soft threshold is 
used as the threshold of morphological component 
analysis.  2. 2. Ensemble Empirical Mode Decomposition (EEMD)          In the original EMD, the IMF 
components contain very different feature time scales 
or similar feature time scales distributed in different 
IMF components, this results in aliasing of two 
adjacent IMF waveforms and lead to modal aliasing 
phenomenon. EEMD method is mainly based on the 
principle that added white noise can populate the 
whole time–frequency space uniformly. According to 
the constituting components of different scales, when 
the signal is added with white noise, the signal will be 
continuous at different scales to reduce the degree of 
modal aliasing.  

In EEMD method, there are two parameters that 
need to be decided. They are the number of ensemble 
M and the noise amplitude a. From the conclusion of 
the literature [13], when M = 100, a = 20%, EEMD 
has satisfying result. Hence, in this paper these two 
parameters were set as M = 100, a = 20%.  2. 3. Fault Feature Extraction: EEMD Energy Feature       When the signal is decomposed to 
several IMFs by EEMD, then selected the several IMF 
components based on the principle of correlation 
coefficient and calculated the energy feature. The 
method for calculating the energy of each IMF is as 
follows: 
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where, Ei is the energy of ith IMF, E is the sum of 
energies of IMFs and Vi represents the percentage of 
energy of ith IMF in the whole signal energy E.  
 
 3. SIMULATION ANALYSIS  
 
In order to verify the effect of the morphological 

component analysis method on the separation of the 
impact components in the vibration signal, a synthetic 
simulation signal is constructed to analyze by MCA. 

The synthetic signal is generated by harmonic 
components, impact components, and Gaussian white 
noise components. The harmonic components is 
produced by mixing a sine component with a 
frequency of 60 Hz and a cosine component with a 
frequency of 90 Hz, as shown in Figure 1(a), the 
impact signal is a series of impact components is show 
in Figure 1(b). The power of the added Gaussian 
white noise is 2dBW as shown in Figure 1(c). The 
sampling frequency of the synthetic simulation signal 
is 1024Hz and the sampling time is 0.5s and the signal 
is shown in Figure 1(d), the impact component is 
completely submerged in noise and harmonic signal, it 
is unable to distinguish the impact signal.  

Then morphological component analysis was used 
for the synthetic signal. In MCA. the number of 
iterations was set as 100, select discrete cosine 
transform (DCT) dictionary to characterize the 
harmonic components and using the dirac dictionary 
to symbolic the harmonic components. The 
decomposition results were shown in Figure 2. From 
the results, it can be seen that harmonic components 
and impact components can be accurately restored by 
the MCA from synthetic signal. This proves that MCA 
has good decomposition ability for mixed signals and 
can separate the required components according to the 
corresponding dictionary. 
 
 Figure 1. Simulation signals 

  Figure 2. Synthetic signal decomposition by MCA 
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(a) (b) 

(c) 

4. APPLACATION  4. 1. Technological Process of the Proposed Method      The original vibration signal of the 
automaton contains a large amount of interference 
signals and background noise, which makes it difficult 
to extract fault characteristics directly. Motived by the 
advantages of MCA in separating the impact 
components, a new feature extracting method is 
proposed for automaton fault diagnosis. The flowchart 
of this method is depicted in Figure 3. 

 4. 2. Experimental Platform        The proposed 
method was validated on an automaton experimental 
platform, the test platform consists of three parts: the 
automaton, the pneumatic control device and data 
collection system, as shown in Figure 4. In the 
experimental platform, the automaton is the main 
device, the sensor installation position is shown in 
Figure 4(a). It is a piezoelectric acceleration sensor, 
the type is CA-YD-193. Pneumatic device keeps the 
automaton working continuously, and the data 
acquisition system is used to collect the vibration 
acceleration signal along the axial direction of 
automaton, the sampling frequency is 10KHz and the 
sampling number is 1200 points. 
 4. 3 Fault Settings    In the actual working process 
of the automaton, due to the influence of high 
temperature, high pressure, strong ablation and high 
rate of fire conditions, the automaton’s locking block 
is prone to produce wear and pitting fault; the spring 
in the ballistic mechanism is prone to fatigue failure. 
The wear and pitting faults may cause the automaton 
latch could not reach the correct position, the fatigue 
failure may cause the breech bolt could not reach the 
 
  Figure 3. Flow chart of the of the proposed method   

(a) (b) 

 
(c) Figure 4. Automaton experimental platform. (a) automaton. 

(b) pneumatic control device. (c)data collection system 
 
 

normal re-entry position in time and reducing the 
shooting speed. Figure 5 is the process of fault 
experiment. The settings of the three faults are shown 
in Figures 6(a), 6(b) and 6(c). In the experiment, the 
data of normal state and 3 fault states are collected 
and 20 groups of data were collected for each 
condition, among these 20 groups data, 10 groups 
were used for training and the remaining were used 
for testing. These details are given in Table 1. 
 
 

 Figure 5. The flow chart of automaton typical fault 
experiments 

 
 

 Figure 6. Automaton fault setting (a) wear (b)pitting (c)spring 
fatigue 
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 TABLE 1. The detailed arrangements of the experimental data 
sets for classification Conditions Class label training data testing data 
healthy 1 10 10 

wear 2 10 10 

pitting 3 10 10 

fatigue 4 10 10 

 
 4. 4. Morphological Component Analysis (MCA) for Automaton Vibration Signal       In the 
experiment, the original vibration signal under four 
different conditions were shown in Figure 7. When the 
fault occurs in the automaton, the impact component 
in the vibration signal changes and the shock 
component contains most of the fault characteristics, 
so analyzing the impact components is the key to fault 
feature extraction [2-4]. However, the complexity of 
the working conditions of the automaton makes it 
difficult to extract the impact components from 
vibration signals which contain unknown interference 
components and background noise. We used MCA to 
separate the impact components from the original 
vibration signals. Before the decomposition, it needs 
to choose a dictionary, here using undecimated 
discrete wavelet transform (UDWT) as the analysis 
dictionary to match the impact components in the 
vibration signal, the wavelet function is symlet 8, 
semi-soft threshold was chosen as threshold function 
and the number of iterations was set to 100. Then 
perform the MCA under MATLAB and the separated 
impact component is show in Figure 8. 
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 Figure 7. The original vibration signals. (a) normal 
condition. (b)wear fault. (c) pitting fault. (d) spring fatigue  

0.05 0.1 0.15 0.2

-0.5

0

0.5

1

t/s

A

0.05 0.1 0.15 0.2

-0.5

0

0.5

1

t/s

A

0.05 0.1 0.15 0.2

-1

-0.5

0

0.5

1

t/s

A

0.05 0.1 0.15 0.2

-1

0

1

t/s

A

(b)(a)

(c) (d)Figure 8. The separated impact component by MCA from 
original signal.  

 
 
In order to quantitatively analyze the separation 

effect of the impact component, here we defined the 
signal-to-noise ratio between the impact component 
and the original signal. The calculation process is as 
follows: 
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where nS  is the original signal, nS is the impact 
component obtained by MCA decomposition, and N is 
the number of sampling points. A high value of snR  
indicates that the effect of noise reduction is better. 

rE  is the energy ratio of the impact component to 
the original signal. rE  was defined as follows: 
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0E  is the energy of original signal and imE is the 
impact component energy; The magnitude of rE  
reflects the proximity of the impact component to the 
original signal. it is expected to obtain a larger rE  in 
order to have a better decomposition result.  

Calculate the snR  and rE  for the vibration signals, 
the result are shown in Table 2. From the result, we 
can find the decomposed impact signals not only have 
a high signal-to-noise ratio, but also contain most 
energy of the original vibration signal. This shows that 
the MCA method has good noise reduction and impact 
component extraction capabilities. 

  TABLE 2. The result of snR  and rE and in four conditions Fault type Normal Wear Pitting Fatigue 
Signal 
number 

 Rsn(dB) Er(%) Rsn(dB) Er (%) Rsn(dB) Er(%) Rsn(dB) Er(%) 

1 11.3 87.62 11.5 89.10 12.4 90.52 11.7 89.86 

2 13.4 92.74 11.5 89.10 8.3 82.68 11.3 89.08 

3 11.4 87.94 10.0 88.45 8.5 85.97 12.4 90.10 
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impact signals obtained from MCA were decomposed 
by EEMD, the intrinsic mode functions（IMFs）1-
11 and residual component (r) are displayed in Figure 
9. Since the first five IMFs are highly correlated with 
the original signal, these components are selected to 
calculate the energy feature using Equation (13) as 
the fault feature vectors. Part of the results are shown 
in Table 3. 
 4. 6. Fault Identification       The fault feature 
vectors in four states were input into the SVM for 
identification, and the SVM parameters (penalty 
parameter C, kernel function parameter g) are optimized 
using the particle swarm optimization (PSO) algorithm 
[14]. The optimal parameters are C=1.145, g=0.2703, 
and the recognition results are as shown in Figure 10. 
As indicated in Figure 10, it can be observed that the 
automaton fault diagnosis model can recognize the 
fault types effectively. In order to verify the 
advantages of the method proposed in this paper, 
compare it with EEMD feature extraction method, the 
comparison results in Table 4 show that the proposed 
method’s fault correct recognition rate is superior to 
the direct feature extraction method. 

5. CONCLUSION  
 
In this study, a new automaton feature extraction 
algorithm has been proposed, this approach is a 
combination of MCA, EEMD and energy feature 
method. 
 
 

 Figure 9. The results based on EEMD for wear fault 
 

 
 TABLE 3. The energy feature of the first five IMFs IMF-energy IMF1 IMF2 IMF3 IMF4 IMF5 

normal 
0.5077 0.3895 0.0599 0.0256 0.0173 

0.5032 0.3841 0.0633 0.0329 0.0164 

wear 
0.4807 0.4372 0.0563 0.0183 0.0075 

0.4764 0.4389 0.0560 0.0204 0.0083 

pitting 
0.4970 0.3723 0.0897 0.0281 0.0128 

0.5015 0.3660 0.0870 0.0299 0.0156 

fatigue 
0.5485 0.4355 0.0733 0.0269 0.0157 

0.5506 0.4024 0.0614 0.0302 0.0054 
 
 

 Figure 10. The diagnosis result of test data 

TABLE 4. The recognition result comparison of EEMD and 
MCA-EEMD method Conditions EEMD MCA-EEMD Correct Accuracy (%) Correct Accuracy (%) 
normal 9 

82.5 

10 

95 
wear 8 9 

pitting 7 9 

fatigue 9 10 
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The effectiveness of the MCA approach is 
investigated and its advantages in fault feature 
extraction are validated using both the simulated and 
experiment signals. It has a good ability to remove the 
noise and extract the effective impact components 
from complex signal. Experimental results 
demonstrate that the proposed method can 
successfully identify multiple types of faults on 
automaton.   6. ACKNOWLEDGEMENTS 
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