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A B S T R A C T  
 

 

 

Maintenance can be the factor of either increasing or decreasing system's availability, so it is valuable 
work to evaluate a maintenance policy from cost and availability point of view, simultaneously and 

according to decision maker's priorities. This study proposes a Partially Observable Markov Decision 

Process (POMDP) framework for a partially observable and stochastically deteriorating system in 
which inspection and maintenance optimal policies of Condition Based Maintenance (CBM) must be 

determined to maximize the average profit and availability of the system simultaneously. A recent 

exact method named Accelerated Vector Pruning method (AVP) and some other popular estimating 
and exact methods are applied and compared in solving such problems. 

doi: 10.5829/ije.2018.31.12c.12 
 

 
1. INTRODUCTION1 
 

CBM technique is noticed as the most modern and 

popular maintenance technique in some references [1]. 

CBM spends high expenditure for monitoring and data 

processing, so it needs to precise planning [2, 3]. Beside 

cost and profit, availability optimization is a key 

objective in maintenance decision-making, aims to 

increase proportion of time that a system remains 

operational [4]. Maintenance actions can be the factor of 

either increasing or decreasing system's availability; 

because both failures and maintenance activities can 

shut down the system [5]. Maintenance cost 

optimization does not always lead to equipment 

availability optimization [6], and it is a challenge to 

optimize equipment availability in a cost-effective way 

[7]. So it is valuable to evaluate a maintenance policy 

when both availability and cost are considered [8]. 

Nevertheless, few structural results are known in CBM 

optimization considering availability remarks 

simultaneously with cost/profit goals. Some of such 

studies are introduced in two categoriesas below: 

                                                           

*Corresponding Author's Email: mhabooie@yazd.ac.ir (M. H. 

Abooie) 

First category includes multi objective studies with cost 

and availability related goals. The cost and downtime 

are objective functions and monitoring intervals are 

decision variables [9]. Similarly, as literature reported 

[10] unavailability and cost as objective functions and 

periodic Test Intervals (TI) and Test Planning (TP) as 

decision variables are considered. Also discussed in 

literature [11] determining inspection intervals with 

considering unavailability and cost was presented. 

Caballé and Castro [12] determined optimal 

maintenance strategy considering cost and availability, 

for systems under internal degradation and shocks. 

Kumar, et al. [13] presented optimal condition 

monitoring intervals to maximize availability 

considering maintenance resources usage. Qiu, et al. 

[14] proposed optimal inspection intervals determining 

down time threshold, where the system considered to be 

operating before that. Qiu, et al. [15] also determined 

optimal inspection interval with considering availability 

and total cost. 

In the mathematical studies of first category decision 

variables are mostly related to inspection not to the 

maintenance policy. Also, partial observability 

assumption that makes the model more difficult and also 

closer to real world is not included. A recent survey 

 

 

mailto:mhabooie@yazd.ac.ir


R. Ghandali et al/ IJE TRANSACTIONS C: Aspects  Vol. 31, No. 12, (December 2018)   2077-2084                          2078 
 

work about CBM optimization models for stochastically 

deteriorating systems, expresses that popularity of CBM 

strongly relies on stochastic deterioration models for 

partially observable systems, which are usually modeled 

in POMDP framework [16]. POMDP was applied in 

maintenance concept first in literature [17] and then 

introduced as an appropriate method for systems under 

uncertainty, especially for partially observable systems 

[18]. 

In the second category, some related studies to 

partially observable systems will be reviewed. Jin, et al. 

[19] investigated a POMDP framework for CBM 

problem to propose an optimal policy which can 

minimize total cost of a discrete-state deteriorating 

system. Papakonstantinou and Shinozuka [20] suggested 

a study in two parts to minimize total cost of a discrete-

state deteriorating structure in civil engineering, by 

determining inspection and maintenance policies using 

POMDP framework. They found that for solving this 

kind of problems Perseus method is very efficient. 

Present work is based on and takes advantage of the 

recently mentioned paper and notably extends it by 

considering availability concept for manufacturing 

systems (not structures), in a POMDP framework with a 

more precise form of maintenance actions including 

keep, regular maintenance (minor repair), overhaul 

(major repair) and replace. In the remaining of this 

study, the presented problem is modeled in a POMDP 

framework in section 2, by a particular attention to 

availability. Estimating and exact solution methods such 

as Perseus and AVP are applied in Section 3 while 

Section 4 reports computational results. 

 

 

2. PROBLEM FORMULATION 
 

The multi-objective CBM problem under study is first 

explained in 2.1 and then is modeled in 2.2. 

 

2. 1. Problem Statement    In the present work a 

CBM problem was studied to determine optimal 

maintenance/inspection policy, including best sequence 

of actions and non periodic inspections, with 

considering availability features such as Emergency and 

planned stopping times for each action, in order to 

simultaneously minimize the cost and maximize the 

availability of a partially observable stochastically 

deteriorating system. Assumptions are as following: 

- System under study is partially observable. 

- When "Keep" is selected manufacturing continues and 

there is not any planned stopping but there is a 

probability of unavoidable stopping. 

- When "Regular" is selected, some routine repair 

actions are done without any planned stopping so 

there is a probability of unavoidable stopping. 

- When "Overhaul" is selected, manufacturing stops  

then inspection and completely repair is done. In this 

action, true state of the system can be observed. 

- "Replacement" stops manufacturing and system state 

will be as new state (probability vector
1e ). 

- Customers demands are depended on system state. 

Companies have many situations for producing 

environment friendly productions leads to gain higher 

prices from environment sensitive customers [21]. 

 
2. 2. Problem Modeling       a POMDP framework 

with states, actions and observation sets S , A  and O  is 

used for modelling in which ( | , )p j i a  shows the transition 

probability from i S  to j S  when maintenance action 

is a A . Transition probabilities are members of 

transition matrixes P , P  and P  respectively to keep, 

regular and overhaul actions. 

 

2. 3. Parameters and Decision Variables       
Parameters: 

- X : Real system state that is a member of set S . 

- {1,..., ,..., ,..., }S i j n : Finite set of possible states in which 1 

denotes "as new" and n  is used for failure. 

- 
1{ ,..., ,..., }i n    : Probability vector of prior state, in 

which 
i  shows probability of being in i . All 

probabilities summation must be equal to one. 

- ( )V  : Expected total objective function value over 

infinite time horizon if system state is . 

- 
iD : Product demand produced in state i . 

- 
iC : Operating cost, if system state is i . 

- 
iR : Replace cost, if system state is i . 

- 
iR : Regular cost, if system state is i . 

- 
iR : Overhaul cost, if system state is i . 

- 
iT : Time to apply overhaul, if system state is i . 

- 
nT : Time duration for emergency replacing a part that 

usually occurs in "Keep" or "Regular". 

- 
FT : Time duration for applying "Replacement". 

- 
ijp : Transition probability ( i  to j ) under "Keep". 

- 
ijp : Transition probability under "Regular". 

- 
ijp : Transition Probability under "Overhaul". 

- 
1( ,..., ,..., )k LO o o o : L monitors' output vector. Monitors 

provide data as (1) ( ) ( )( ,..., ,..., )K LM M M M  where ( )KM  is 

K th monitor's output that is member of {1,..., ,..., }k ko m . 

-  : Conditional probability matrix that explains 

relationships between O  and real system state: 

1 1 1 1 1

1 1

1 1

(1,...,1) ... ( ,..., ) ... ( ,..., )

(1,...,1) ... ( ,..., ) ... ( ,..., )

(1,...,1) ... ( ,..., ) ... ( ,..., )

L L

j j L j L

n n L n L

o o m m

o o m m

o o m m
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where X j  denotes the real system state. 

- ( , )T O : Secondary state probabilities vector giving   

and O , under "Keep" action: 

1 2( , ) ( ( , ), ( , ),..., ( , ))nT O T O T O T O      (3) 
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- ( , )T O  : Secondary state probabilities vector giving   

and O , under "Regular" action: 

1 2( , ) ( ( , ), ( , ),..., ( , ))nT O T O T O T O         (6) 

1

1 1

( , )

n

i ij jo

i
j n n

i ij jo

j i

p

T O
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(7) 

 
2. 3. 1. Objective Function and Decision Variable   

( )V   shows objective function, whole expected 

objective function value over an infinite horizon, with 

initial state   and maintenance policy  . Decision 

variable is optimal maintenance policy, *( )  , where 
*( ) arg min ( )a AV

     optimally suggests type and time 

of actions and inspections give the minimum expected 

objective function value for  . 

 

2. 3. 2. Modeling     In the following, a new model is 

presented for partially observable manufacturing 

systems, using the popular POMDP framework. 

( ) min Keep, Regular, Overhaul, Replacement}V    (8) 

1

1 1 1

Keep

... ( ) ( ( , ))

L
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i i i i in n
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D C p T

Maxc

p V T
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1Replacement ( )

i i

Fi

R
T

V e
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 (12) 

where max( , , , )K O Rm RMaxc C C C C ,
K i i

i

C C , 

( )Rm i i i

i

C C R   , 
O i i

i

C R  , 
R i i

i

C R  and 

max( , , , )i in n i in n i i n

i i i

p T p T T T       . 

Objective function includes four actions "Keep", 

"Regular", "Overhaul" and "Replacement" that will be 

explained in detail separately: 

Equation (9) shows whole expected value of 

objective function when in current period "Keep" is 

selected and manufacturing continues without any 

planned stopping. So there are manufacturing process 

costs depending on the system state and also emergency 

downtimes can be occurred. Average system availability 

will decrease with an increase in the system downtime 

[4], so in order to simplify the model, downtime 

minimizing is considered instead of availability 

maximization. Total standardized cost of manufacturing 

process is expected cost of manufacturing process 

divided by maximum possible amount of it ( Maxc ), is 

shown in the first term of Equation (9). Probability of 

breakdown in term two of Equation (9) is shown by 

standardized expected value of system unavailability; 

(expected value of unavailability divided by maximum 

possible amount of it  ). For more studies about such 

standardization, refer to literature [22]. Equation (10) 

shows whole expected objective values when "Regular" 

is selected and manufacturing continues with some 

routine repairs without any planned stopping. In the first 

term of Equation (10) expected manufacturing process 

plus regular repair costs divided by the maximum 

possible amount of it ( Maxc ) is shown. Downtime 

probability (probability of transition from current state 

to failure state) is shown in term two of Equation (10). 

Term three in Equation (10) shows objective values 

summation for remaining periods if current maintenance 

action is "Regular". Equation (11) shows whole 

expected value of objective function when in current 

period maintenance action is "Overhaul" and 

manufacturing stops then major repair according to real 

system state will be applied. So manufacturing process 

cost will be omitted and as it is shown in the first term 

of Equation (11), Expected cost of major repair divided 

by the maximum possible amount of it ( Maxc ) that shows 

total standardized cost of overhaul. There is planned 

stopping in "Overhaul" dependent on the system state, 

that in term two of Equation (11) is shown by 
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standardized expected value of system unavailability. 

Term three in Equation (11) shows objective function 

expected value summation for remaining periods if 

current action is "Overhaul". Equation (12) shows whole 

expected objective values when in current period, 

maintenance action is "Replacement" and manufacturing 

stops then the intended parts are replaced by new ones. 

Manufacturing process cost is omitted and total 

standardized replacement cost that is dependent on the 

system state is as the first term in Equation (12). In term 

two of Equation (12) 
FT  (value of unavailability) 

divided by maximum possible amount of it (  ) shows 

standardized expected value of system unavailability. 

Term three in Equation (12) shows summation of 

objective function expected value for remaining periods 

after current period with "Replacement" action that 

transits the system from every state to as new state (
1e ). 

 
 
3. SOLUTION APPROACH 
 
Although highly attention to POMDP framework, it's 

optimal solving for large problems was left for a long 

time (until 2010) because of the natural complexity and 

data gathering difficulty. In this section, some efficient 

methods of solving POMDPs that are presented in two 

categories, optimal and approximate methods, were 

studied. First category includes Standard Dynamic 

Programming (SDP) as a traditional method and 

Modified Dynamic Programming (MDP) as revised 

version of it beside the Generalized Incremental Pruning 

(GIP) as a popular exact method and AVP as a recent 

efficient version of it. Second category includes Perseus 

as the most popular approximate method [23]. Optimal 

solving of the presented problem is done by SDP only 

for small problems and MDP only for small and medium 

problems, because of time and memory limitations, in 

section 3.1. For approximate solving, Perseus is applied 

for large scale problems in section 3.2. For optimal 

solving large scale POMDPs, in recent years some 

methods were proposed in literature [24, 25]. Walraven 

and Spaan [25] introduces AVP as a pruning method 

makes fastest kind of them and can improve other 

existing pruning methods' efficiency. Optimal solving of 

presented problem for relatively large scales is 

addressed by AVP in section 3.3. 

 

3. 1. SDP and MDP     presented model can be solved 

optimally in finite horizon by SDP introduced by 

Bellman in 1950's [26]. For this reason backward 

minimization recursive algorithm is coded in C++. 

Computational results show that for large/medium scale 

POMDPs this method is not efficient because of its 

consumedly need to time and memory. In the present 

paper some C++ methods such as dynamic memory 

allocation and creating private heap are used to improve 

SDP efficiency. MDP increases allocated memory and 

decreases processing time of SDP. Table 1 is related to 

solving model by SDP and MDP. 

 
3. 2. Perseus      For large scale problems usually exact 

POMDP solving methods are inefficient sosome 

approximate methods such as Perseus have become 

popular [27]. In the present paper, Perseus as a 

randomized Point-Based Value Iteration algorithm will 

be used thatin its process first selects a relatively large 

belief points set B  from the belief space. 

 

 

TABLE 1. Solving time of SDP and MDP in finite horizon 

No. 
# of 

stg 

primary state 

probability 
vector 

Computing time (s) 

SDP MDP 

State 

gen 

Decision 

making 

State 

gen 

Decision 

making 

1 5 (1,0,0) 42 67 0.55 0.98 

2 6 (1,0,0) 66 86 0.63 1.7 

3 7 (1,0,0) 702 850 2.6 3.1 

4 10 (1,0,0)     17 29 

5 20 (1,0,0)     305 472 

6 30 (1,0,0)         

7 5 (0,1,0) 48 69 0.68 1 

8 6 (0,1,0) 73 98 1.7 2.2 

9 7 (0,1,0) 857 922 4.5 5 

10 10 (0,1,0)     23 38 

11 20 (0,1,0)     369 530 

12 30 (0,1,0)         

13 5 (0,0,1) 120 179 1.5 1.87 

14 6 (0,0,1) 819 883 2.4 3.6 

15 7 (0,0,1)     5.3 6.5 

16 10 (0,0,1)     28 49 

17 20 (0,0,1)     426 610 

18 30 (0,0,1)         

19 5 (0.7,0.2,0.1) 46 65 0.6 0.99 

20 6 (0.7,0.2,0.1) 69 88 1.2 2 

21 7 (0.7,0.2,0.1) 792 870 3.3 4.5 

22 10 (0.7,0.2,0.1)     20 34 

23 20 (0.7,0.2,0.1)     372 547 

24 30 (0.7,0.2,0.1)         

25 5 (0.15,0.2,0.65) 162 230 1.8 2.2 

26 6 (0.15,0.2,0.65) 908 1057 3.7 4 

27 7 (0.15,0.2,0.65)     5.2 7.6 

28 10 (0.15,0.2,0.65)     43 68 

29 20 (0.15,0.2,0.65)     600 725 

30 30 (0.15,0.2,0.65)         
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Then an initial value function will be computed as an 

approximated lower bound usually by 
,

1
min ( , )

1 s a
R s a


. 

After back up process is started that is explained briefly 

using a flowchart in Figure 1. In Table 2 some results of 

solving model by Perseus is reported in wich "# of stg" 

shows the horizon length and "state gen" shows state 

generation time. 

 
3. 3. AVP       Recent AVP method speeds up existing 

pruning methods. Value functions in POMDPs are 

piecewise linear and convex [28] and this is the base of 

pruning methods to present value function by a finite set 

of |S|-dimensional vectors and remove dominated (non-

necessary) vectors. Mentioned finite set can be written 

as 0 1{ , ,..., }k     where value of belief point b  is 

( ) max .n
nV b b





  and .  is "dot product" [29]. In the 

following, the presented model vector form is shown as 

a combination of simpler value functions based on 

literature [30]. Equations (13) to (22) show piecewise 

linear and convex functions related to proposed model. 

( ) max ( )a
a AV V    (13) 

1

1

,O

1 1

( ) ... { ( )}

L

L

m m

a a

O O

V V

 

     
(14) 

1

1

Keep Keep,O

1 1

( ) ... { ( )}

L

L

m m

O O

V V

 

     
(15) 

1

1

Regular Regular,O

1 1

( ) ... { ( )}

L

L

m m

O O

V V

 

     
(16) 

 
 

 
Figure 1. flowchart of the Perseus algorithm 

TABLE 2. Solving time of Perseus, GIP and AVP for infinite 

horizon 

No. | |S  
primary state 

probability 
vector 

Computing time (s) 

Perseus 
GIP AVP 

% error Time 

1 2 (0.7,0.3) 0 0.23 38 29 

2 2 (0.35,0.65) 0 0.5 118 82 

3 2 (0.7,0.3) 0 24 161 55 

4 2 (0.35,0.65) 0 72 462 125 

5 2 (0.7,0.3) 6.5E-8 41 270 208 

6 2 (0.35,0.65) 9.8E-7 99 781 595 

7 2 (0.7,0.3) 9.0E-7 69 762 418 

8 2 (0.35,0.65) 9.7E-7 207 1816 956 

9 4 (0.7,0.1,0.1,0.1) 6.7E-8 9.2 64 57 

10 4 
(0.11, 

0.11,0.13,0.65) 
9.7E-5 36 172 149 

11 4 (0.7,0.1,0.1,0.1) 9.5E-7 25 239 140 

12 4 
(0.11, 

0.11,0.13,0.65) 
9.6E-5 59 709 364 

13 4 (0.7,0.1,0.1,0.1) 0 60 587 351 

14 4 
(0.11, 

0.11,0.13,0.65) 
9.5E-5 142 1539 1004 

15 4 (0.7,0.1,0.1,0.1) 9.2E-7 97 948 495 

16 4 
(0.11, 

0.11,0.13,0.65) 
9.7E-5 227 2484 1369 

17 4 (0.7,0.1,0.1,0.1) 9.5E-6 133 1431 625 

18 4 
(0.11, 

0.11,0.13,0.65) 
9.6E-4 328 4329 1780 

19 8 (0.7,…) 9.6E-5 117 1504 632 

20 8 (…,0.65) 9.5E-4 350 4196 1653 

21 8 (0.7,…) 9.2E-5 165 2191 1085 

22 8 (…,0.65) 9.7E-4 315 7032 2855 

23 12 (0.7,…) 9.2E-6 21 119 72 

24 12 (…,0.65) 9.5E-4 54 438 180 

25 12 (0.7,…) 9.5E-6 73 795 429 

26 12 (…,0.65) 9.8E-4 215 2562 1336 

27 20 (0.7,…) 9.5E-5 116 1275 869 

28 20 (…,0.65) 9.7E-4 297 3281 2090 

29 28 (0.7,…) 9.6E-4 44 312 105 

30 28 (…,0.65) 9.8E-4 108 865 283 

31 40 (0.7,…) 9.5E-4 225 1871 1103 

32 40 (…,0.65) 9.8E-4 602 5427 2964 
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Purged setsare presented by ()purg  that for ( )V  , ( )aV   

and ,O ( )aV   are ( )  , ( )a   and ,O ( )a  : 

( ) ( ( ))a
a Apurg       (23) 

,O( ) ( ( ))a a
o Opurg        (24) 
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j S

R i a
S P o a j P j a i j
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(26) 

 defined as { | , }A B a b a A b B      for sets A  and B . 

Detecting dominated vectors is time consuming in 

mathematical methods done by solving some Linear 

Programming problems. In present paper pruning is 

done using two different LP related methods; a well 

known pruning algorithm, GIP [31] and a new AVP 

algorithm. Related steps are shown in Figures 2 and 3. 

GIP flowchart is shown in Figure 2 where LP parts 

are bold. 

lex

 shows lexicographic ordering that is 

completely described in literature [32]. In Figure 3 AVP 

method is illustrated where decomposing the mentioned 

linear programs is done by Benders decomposition. 

 
Figure 2. Classical pruning (GIP) flowchart 

 

 

 
Figure 3. AVP's LP part flowchart 

 
 
Except to LP part, other AVP steps are similar to GIP 

but AVP is faster because just a small part of classical 

LP's constraints is considered in decomposed LP. 

In the next section illustrated methods will be compared 

in solving the presented model. 
 

 

4. COMPUTATIONAL RESULTS 
 

In this section computational results of coding and 

running SDP, MDP, Perseus, IP and AVP in C++ and 

Java using a PC with 2.4 GHz Pentium are presented. 
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In Table 1, solving time of SDP and MDP is 

compared in small instances with maximum 20 stages, 2 

monitors and 3 states (as new, middle and damaged) and 

some intuitive primary states probabilities as (1,0,0) for 

as new, (0,1,0) for middle, (0,0,1) for damaged primary 

states and (0.15, 0.2, 0.65) and (0.7, 0.2, 0.1) for fairly 

damaged and fairly new primary states. Solving the 

model includes two parts: state generation and decision 

making. "Memory limitation" occurs in some cases 

shown by "  ". Results show that although MDP needs 

less time and memory than SDP but is unable to solve 

problems larger than 20 stages. 

Perseus, GIP and AVP are applied to solve infinite 

horizon problems in Table 2, for primary states 

probabilities with first member 0.7 for a most likely 

healthy system (70%) and with last member 0.65 for a 

most likely damaged system (65%). 

Table 2 shows that AVP is very successful in 

optimal solving infinite horizon problems and improves 

GIP performance in all cases. Also Perseus generates 

estimated solutions with low errors. 

 
 
5. CONCLUSIONS 
 
In the present paper CBM model is notably extended by 

considering availability concept for manufacturing 

systems by a more precise form of maintenance actions 

in a POMDP framework. Emergency and planned 

stopping times as the most important factors of 

unavailability are considered in formulation of each 

action. For both finite and infinite horizon the model is 

solved approximately by Perseus and exactly by the new 

method AVP. Computational results show that AVP is 

effective to solve proposed model and this kind of 

problems can be solved exactly by that. Considering 

multiple objectives (sometimes conflicting) and 

weighting them according to Decision Maker's point of 

view is valuable work and brings the model closer to the 

real-world. Availability and cost related terms in the 

presented POMDP model can be weighted to analysis 

sensitivity of the total objective function. In systems 

with heavy downtime aftereffects such as power plants, 

availability related term may be weightier. Also in some 

systems availability related term can be omitted by 

weight zero. Optimal related weight for each term can 

be computed depending on especial condition of the 

problem under study and relevant managers' point of 

view. 
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 چکيده

 

 

 

پذيري تواند هم عامل افزايش دسترسبر و در عين حال سودآور ميعنوان فعاليتي هزينهبه )نت( نگهداري و تعميرات

طور همزمان و با پذيري بهيک سياست نت از لحاظ هزينه و دسترس سيستم باشد و هم عامل کاهش آن، بنابراين ارزيابي

ريزي جامع براي ايجاد توازن بهينه بين اهداف مذکور ي يک برنامههاي فرد تصميم گيرنده جهت ارائهاولويتتوجه به 

ي نت وضعيت محور در قالب ريزي رياضي مسئلهتواند بسيار ارزشمند باشد. مطالعهحاضر چارچوبي نوين براي برنامهمي

ي جزئي رو به زوال تصادفي در يزات قابل مشاهدهجهگيري مارکف قابل مشاهده جزئي، در مورد تفرآيند تصميم

ي سياست پذيري و نيز روابط ما بين آنها، در جهت ارائههاي توليدي، با در نظر گرفتن فاکتورهاي هزينه و دسترسسيستم

 .نمايدي بازرسي و نت، پيشنهاد ميبهينه
doi: 10.5829/ije.2018.31.12c.12 

 
 


