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A B S T R A C T  

 

This study examined and presents an effective method for detection of failure of conductor bars in the 
winding of rotor of induction motor in low load conditions using neural networks of radial-base 

functions. The proposed method used Hilbert method to obtain the stator current signal push. The 

frequency and signal amplitude of the push stator were used as the input of the neural network and the 
network outputs were rotor fault state, and the number of conductive bars with broken fault. Moreover, 

particle-swarm optimization algorithm was used to determine the optimal network weights and neuron 

penetration radius in the neural network. The results obtained from the proposed method showed the 
optimal and efficient performance of the method in detecting conductive bars broken fault in induction 

motor in low load conditions. 

doi: 10.5829/ije.2018.31.11b.11 
 

 
1. INTRODUCTION1 
 
Today, the issue of monitoring and maintaining the 

induction motor is very important given the widespread 

use of these motors in various transportation, aviation, 

and home industries. One of the most important and 

prominent methods in maintenance of induction motors 

is the issue of detection of faults in these motors, which 

leads to more reliability of the system. Induction motor 

faults are due to mechanical and electrical events [1]. 

Mechanical factors are usually related to overloads and 

sudden changes in load that can cause bearing faults and 

breakage of the rotor bar. Electrical factors are generally 

dependent on source power [2]. 

 Among the cases where monitoring is necessary; 

when the rotor bars of the induction motor break down. 

In this case, the current passing through the broken- bar 

becomesvery low and the current of the bars around the 

broken bar increases [3]. Sometimes this increase in the 

current causes the melting of the bars and the emission 

of faults and temperature rise, as well as the creation of 

an electric arc in the induction motor and ultimately 
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leads to the loss of the rotor. Thus, the problem of 

trouble shooting of breakingfault of the rotor bars of the 

induction motor is of particular importance [4]. 

 So far, various studies have been conducted on 

detection of faults in motor rotors. In literature [5], the 

detection of the rotor break fault of a permanent magnet 

synchronous motor was dealt using random forest 

classification method. One of the most practical 

methods used to detect faults in induction motors is 

Hilbert transform. Fault locating in the induction motor 

rotor using push signal analysis [6], detecting the 

presence of broken rotor bars [7], fault detection in the 

induction motor by rotational deviation technique [8], 

and multi-class fault diagnosis scheme for induction 

motor [9] are some applications of Hilbert transform. If 

the conductive bars in the rotor's winding become faulty 

(breakage or outage), both geometrically and 

magnetically, the motor will suffer imbalance, which 

will create harmonics in the stator current range. These 

harmonics are proportional to (1 ± 2ks)f frequencies, 

where f is the base frequency, s is the slip and k=1, 2, 3. 

Thus, by analyzing these frequencies and the amplitude 

of these harmonics, one can diagnose the state of the 

fault occurred in the rotor conductor bars. However, at 

small slips, these harmonics are near base frequencies, 
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so it is difficult to detect them. Nonetheless, it is 

possible to detect the effect of the rotor fault by using 

the field domain of the oscillator signal's frequency 

amplitude. This fault is related to the frequency 

component 2sf [10, 11]. Neural network of the radial 

base functions will be used to analyze this signal and to 

determine the status of the rotor fault in this paper. As 

neural networks are very effective and flexible in 

solving nonlinear and complex structures, and do not 

need an accurate mathematical model of the system to 

identify faults, great attention has been paid to their use 

in detecting and detecting faults in various systems, 

specially engines [10-13]. 

 This paper proposed a method to improve the fault 

detection function of an induction motor rotor in low 

load conditions, which will be based on the Hilbert 

transform and neural network and the radial base 

function optimized with the particle-swarm optimization 

algorithm. Hilbert transform is used to extract the push 

signals of stator current, and then to extract the fault 

component from the push signal of the stator current, 

2sf harmonic position, and its amplitude will be used as 

input to the neural network. In addition, particle-swarm 

optimization algorithm will be used to determine the- 

optimal network weights and neuronpenetration radius 

in the neural network. In the process of presenting the 

paper, the first step is to introduce and investigate the 

induction motor equations as well as the analysis of the-

stator current flow. In the third section, we will 

investigate the neural network to detect the stator state 

and the particle-swarm optimization algorithm. Section 

4 presents the results of this study. The main idea and 

the nevelty of this work is to create an optimal neural 

network and perform- optimization on the system and 

anerro r detection method, such as finding optimal 

pparameters, optimizing the error detection procedure, 

and avoiding the determination of parameters by manual 

methods. 

 

 

2. ANALYSIS OF PUSH CURRENT STATOR 
 

2. 1. Dynamic Model of Induction Motor with 
Faulty Rotor       Figure 1 shows the diagram of the 

induction motor circuit, in which the broken conductor 

bars are modeled with the equivalent resistance on the 

base d-q. Accordingly, themathematical model of the 

three-phase induction motor on thee base d-q and 

relative to the rotor's side is as follows [14]: 

𝑥̇(𝑡) = 𝐴(𝜔)𝑥(𝑡) + 𝐵𝑢(𝑡)  

  𝑦(𝑡) = 𝐶𝑥(𝑡)  
(1) 

𝑥 = [𝑖𝑑𝑠 𝑖𝑞𝑠 𝜙𝑑𝑟 𝜙𝑞𝑟]  

  u = [
Uds

Uqs
] .  y = [

ids

iqs
]  

(2)   

 
Figure 1. The model of induction motor with faulty rotor [14] 
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(4) 

And Req equals: 

𝑅𝑒𝑞 = 𝑅𝑟 +
𝑎

1−𝑎
𝑄(𝜃0)𝑅𝑟  (5)  

Here, θ0 shows the faulty winding position (broken 

conductor bars of rotor) relative to the first phase of 

therotor. This parameter can be 0, 
2𝜋

3
 or 

2𝜋

4
, depending 

on-whether the faulty winding is in phase a, b, or c from 

the rotor, respectively. Matrix Q (θ0) is as follows: 

𝑄(𝜃0) = [
cos2(𝜃0) cos(𝜃0) sin(𝜃0)

cos(𝜃0) sin(𝜃0) 𝑠𝑖𝑛2(𝜃0)
]  

𝑎 =
2

3
𝜂0 . 𝜂0 =

3𝑛𝑏𝑐

𝑛𝑏
  

   (6) 

In Equation (6), parameter η0 shows the ratio of the 

faulty conductor bar (𝑛𝑏𝑐) to all conductor bars (𝑛𝑏) in 

the rotor. ωr is the mechanical speed of the rotor, which 

can be linkedto the state variables by means of the 

following equations: 

𝜔̇𝑟 =
1

𝐽𝑟
(𝑇𝑒𝑚 − 𝑇𝐿)  

𝑇𝑒 = 𝑝(𝑖𝑞𝑠𝜙𝑑𝑟 − 𝑖𝑑𝑠𝜙𝑞𝑟)  

   (7) 

In the above equations, Tem is the electromagnetic 

torque,TL is the torque load (mechanical torque), Jr is the 

torque of rotor inertia with the load, and p is the number 

of poles. 
 

 

2. 2. Signal Push of Stator Phase Current        As the 

real signals are non-stationary and non-linear, signal 

analysis methods must be able to adjust themselves with 

the signal. Among the many methods of signal analysis, 

Hilbert transform is one of the most important and 

efficient methods. Hilbert transform creates a mixed 

signal, the real part of which is the main signal and its 

fictional part is Hilbert signal transform [15]. 
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In this study, Hilbert transform is used for a real signal 

x(t), such as phase current, to extract the local features 

of that signal. From the mathematical point of view, 

Hilbert transform of the signal x(t) is defined as the 

convolution of the x(t) signal with the function 1 / t as 

follows: 

HT   (x(t)) = y(t) =
1

πt
∗ x(t) =

1

π
∫

x(t)

t−τ
dτ  

+∞

−∞
  (8) 

By coupling the signal x(t) to its Hilbert transform, the 

following signal, as the analytical signal x(t), is 

generated. 

𝑥⃗(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) = 𝑎(𝑡)𝑒𝑗𝜃(𝑡)  (9) 

Here, 𝑎(𝑡) = √𝑥2(𝑡) + 𝑦2(𝑡). a(t) is the moment 

domain of 𝑥⃗(𝑡), which can provide an image of how to 

change the energy of the signal x(t) relative to time. θ(t) 

is the momentary phase of the signal 𝑥⃗(𝑡) ،and |𝑎(𝑡)|is 

the push signal x (t). 

 

 

3. DETECTING STATOR STATUS 
 
3. 1. Particle-Swarm Optimization Algorithm       
Particle-swarm optimization algorithm was first 

introduced as a local movement model for a group of 

animals [16] and includes a swarm of particles, each of 

which can be an optimal response for the problem being 

optimized. 

 The algorithm continuously updates the position of 

each particle by calculating the particle velocity and its 

application to the particle position. If 𝑥𝑖(𝑡) is the 

position of the particle i intime t, the position of the 

particle at any time will be equal to: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)    (10) 

The algorithm repeatedly updates the position of each 

particle by calculating the particle velocity and its 

application to the particle position. If xi (t) is the 

position of the i-th particle at time t, the position of the 

particle at any time will be equal to: 

𝑣𝑖.𝑗(𝑡 + 1) = 𝜔𝑣𝑖.𝑗(𝑡)  

+𝑐1𝑟1.𝑗[𝑦𝑖.𝑗(𝑡) − 𝑥𝑖.𝑗(𝑡)]  

+𝑐2𝑟2.𝑗[𝑦̂𝑗(𝑡) − 𝑥𝑖.𝑗(𝑡)]  

 (11) 

The structure of the algorithm is in such a way that all 

particles are fully interconnected. In each time cycle, all 

particles are updated with the position of the best 

particle in the whole particle. The velocity equation is as 

follows. Here 𝑣𝑖.𝑗(𝑡)is the velocity of the particle i in 

the dimension j at time t. The velocity density is ωi and 

the constants 𝑐1 and 𝑐2 are coefficients of velocity. 

 

3. 2. Neural Network to Detect Rotor Status        In 

this study, the neural network of radial base function 

was used to analyze the stator current push signal and to 

determine the status of the rotor fault. The first step in 

using a neural network is the use of a series of training 

data that uses the neural network to learn. There are 

several ways to train a neural network that can be 

divided into general, supervised, and unsupervised 

methods. In the supervised methods, the training data 

are as input-output data pair (X-Yd). Thus, for X input, 

the optimal output Yd is available and the target is to 

find the mapping between the input and the output. In 

unsupervised training mode, the input data X is 

available only together with a cost function and the 

purpose is to find a mapping of X, so that that cost 

function is minimized.  

 In supervised training, the cost function canbe the 

sum of the squares of the error between input and output 

on the pair of training data. In this paper, the supervised 

method is used as the input and output pairs are 

available. The pair of training data is selected as 

follows: 

1. Neural Network input: Push signal specifications of 

the stator current. 

2.  Neural network output: Rotor faults status (the 

number of conducting bars with fault in the rotor). 

The mentioned training data is generated using the 

dynamic model of the induction motor with a faulty 

rotor. The neural network is intended to detect the 

rotor's state with 12 neurons in the hidden layer 

according to Figure 3. In Figure 3, the input of the 

neural network is two- dimensional vector 𝑥 =
[𝑥1 𝑥2]𝑇 , and y output will be a scalar with values 1 

to 3. The functions fi (x) as activation functions of the 

neurons are all considered as Gaussian.  

𝑓𝑖(𝑥) = 𝑒
−(

‖𝑥−𝑚𝑖‖

𝜎𝑖
)
2

  
 (12) 

In the above equation, mi is a two-dimensional vector 

representing the center of the Gaussian function fi, the 

scalar parameter σi is the radius of neuron penetration 

and wi is the weights of the neural network. The neuron 

outputs are added up and form the final output of the 

neural network y after weighed by wi. By specifying the 

parameters wi, σi and mi, the neural network can fully be 

defined. 

 

 

4. SIMULATION RESULTS 
 
The motor examined in this paper is an induction motor 

50Hz, 220v, 4-pole with a nominal power of 1.1kW, 

and the number of rotor conductor bars is 𝑛𝑏= 28. The 

parameters of the induction motor system are presented 

in Table 1. The stator phase current signal (for an axis at 

d-q base) with its push and the signal strength spectrum 

will be like Figure 4. By changing the number of faulty 

bars or torque load TL the location and harmonic 

amplitude of 2sf frequency will change. 



1879                         T. Yektaniroumand et al. / IJE TRANSACTIONS B: Applications   Vol. 31, No. 11, (November 2018)   1876-1882 
 

 
Figure 3. RBFN neural network with 12 neurons in the hidden 

layer to detect the rotor status [17, 18] 
 

 
TABLE 1. Induction Motor Engine Parameter 

Parameter The amount of 

Output power (𝑃𝑜𝑢𝑡) 1.1 𝑘𝑊 

Stator Voltage (Vs) 220/380 𝑉 

Stator nominal current (Is) 2.6/4.3 A 

Stator nominal velocity(n) 425 𝑟𝑝𝑚 

Rotor resistance (Rr) 3.83 Ω 

Stator resistance (Rs) 9.81 Ω 

Coupling inductance (Lm) 436 mH 

Stator leak inductance (Lf) 76.2 mH 

Number of rotor conductor rods (𝑛𝑏) 28 

 

 

 
Figure 4. (a) signal of stator current with its push, (b) push 

signal power spectrum 

As already mentioned, in this research, the amplitude 

and frequency of the harmonic 2sf in the stator phase 

current-signal strength spectrum are the inputs of 

theneural network and the output is the status of the 

rotor barsis the number of broken bars. Thus, by 

changing the parameters of the torque load TL and the 

number of broken conductor bars, and observing the 

status of the stator phase current-signal power spectrum, 

the training data for the training of the neural network 

will be generated. As seen in Figure (b-4), the neural 

network is trained with 500 training data. 

The horizontal axis in Figure 5 shows the number of 

pairs of training data. Figure 5 (a) shows the harmonic 

amplitude of the 2sf in the stator voltage current signal 

strength spectrum. The above data varies in quadruple 

categories associated with different load torques and the 

number of broken conductors. The data of Figure 5 are 

shown in Table 2.  
 

 

 
Figure 5. Training data for training the neural network 

 

 

TABLE 2. Educational data for the neural network 

Neural network input   Neural network output 

(two-dimensional)       (one-dimensional) 

A(dB) 𝐱𝟏𝐟𝐛𝐛(𝐇𝐳) 𝐱𝟐y 

0 0.515 1 

0 1.5781  

0 2.55 1 

0 4.007 1 

-32.48 0.571 2 

-32.48 1.571 2 

-32.48 2.664 2 

-33.3 4 2 

-28.34 0.493 3  

-25.64 1.364 3 

-26.24 2.542 3 

-27.61 3.821 3 
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In Table 2, y = 1 means flawless rotor y = 2 means a 

rotor with a broken bar and y = 3 corresponds to a rotor 

with two broken bars. Neural network neurons center, 

i.e. mi vector is considered the training inputs in Table 

2, but σi and Wi were obtained using PSO method. Thus, 

the vector of optimization variables in PSO algorithm 

will be a vector with 24 elements, of which the 12 first 

elements are related to the weights Wi and the 12 second 

are related to σi. The parameters of PSO algorithm are 

considered as c1 = c2 =1.4962, ω = 0.7298 [19]. 

 The PSO algorithm cost function is also the sum of 

the absolute magnitude of the error on all training data 

and is considered as follows: 

𝐽𝑐𝑜𝑠𝑡 = ∑ |𝑒𝑘|12
𝑘=1 .    𝑒𝑘 = 𝑦𝑑 − 𝑦     (13) 

In Equation (13), yd for k = 1,2, ..., 12 is the same data 

from rows 1 to 12 related to column y in the table. The 

method of changing the cost function by PSO algorithm 

is shown in Figure 6. 

As shown in Figure 6, after 1000 sages of generation 

production, optimization with PSO algorithm has 

reached the value of the cost function jmin = 0.0883. 

Weight variations in the optimization process are shown 

in Figure 7. 

As shown in Figure 7, weights have converged to 

constant values. The final values of these weights are 

placed in the neural network and the network is 

evaluated for both training data and experimental data. 

The changes in the neuron neuronal penetration radii in 

the optimization process are shown in Figure 8. 

As shown in Figure 8, the penetration radii converge 

toconstant values. In Figure 9, the results of the 

detection of the rotor status, which is obtained by the 

neural network according to the training data, were 

compared with the main values. As seen, the neural 

network has detected the high accuracy of the rotor's 

state. 
 

 

 
Figure 6. Variations in cost function (Total sum of absolute 

faults on training data) by PSO optimization process 

 

 
Figure 7. Variations in neural network weights in the 

optimization process 
 

 

It is worth noting that in addition to the training data, 

the neural network must also be correct for experimental 

data that falls within the training data range. In doing so, 

select a couple of experimental dataset are selected, the 

neural network obtained for them is tested, and the 

results were compared with the original results. 

Figure10 shows the curve for experimental data, and 

the results obtained from the neural network are shown 

in Figure 11. As seen, the desired neural network has 

been able to detect the rotor's position for experimental 

data correctly and accurately. 



1881                         T. Yektaniroumand et al. / IJE TRANSACTIONS B: Applications   Vol. 31, No. 11, (November 2018)   1876-1882 
 

 

 
Figure 8. The changes in the neuron neuronal penetration radii in 

the optimization process 

 
 

5. CONCLUSIONS 

 
This paper examined an effective and precise method 

for determining the breakage fault of rotor bars of the 

induction motor in low load conditions. In order to 

improve the error detection process, Hilbert transform 

was used to extract the stator current signal. Neural 

network inputs are radial based function, 2sf harmonic 

position and its amplitude. Moreover, to improve and 

optimize the performance of the neural network, PSO 

algorithm was used to find optimal network weights and 

neuron penetration radii. The results obtained show the 

exact and desirable performance of the proposed 

method in determining the number of broken rotors in 

the induction motor. 
 
 

 
Figure 9. Neural network evaluation and its results compared 

with the real results for the training data 
 
 

 
Figure 10. Training data for testing the neural network 

 

 

 
Figure 11. Results from the neural network versus Original 

results for experimental data 
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 دهیچک

 

تور موتور القایی وپیچی رسیم در رسانا هایمیله شکستگی شناسایی مؤثرجهت روش یک بررسی و ارائه شبه هژورپ ایندر

روش پیشنهادی جهت بدست این های عصبی توابع پایه شعاعی پرداخته شده است. در در شرایط بار کم با استفاده از شبکه

پوش سیگنال جریان استاتور از هیلبرت استفاده شده است. از فرکانس و دامنه سیگنال پوش استاتور بعنوان ورودی آوردن 

ای رسانای دارای خطای شکستگی، هتور، تعداد میلهوشبکه عصبی استفاده شده و خروجی شبکه وضعیت خطای ر

های شبکه و شعاع نفوذ نرون در شبکه عصبی بهینه وزنسازی انبوه ذرات جهت تعیین باشد. همچنین از الگوریتم بهینهمی

دهنده عملکرد مطلوب و کارآمد روش در جهت تشخیص استفاده شده است. نتایج بدست آمده از روش پیشنهادی نشان

 .باشدتور موتور القایی در شرایط بار کم میوهای رسانا در رخطای شکستگی میله
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