
IJE TRANSACTIONS A: Basics  Vol. 31, No. 10, (October 2018)   1723-1733 
 

  

Please cite this article as: Y. Zare Mehrjerdi, M. Alipour, A. Mostafaeipour, Integrated Order Batching and Distribution Scheduling in a Single-
block Order Picking Warehouse Considering S-Shape Routing Policy, International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics  
Vol. 31, No. 10, (October 2018)   1723-1733 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Integrated Order Batching and Distribution Scheduling in a Single-block Order 

Picking Warehouse Considering S-Shape Routing Policy 
 

Y. Zare Mehrjerdi*, M. Alipour, A. Mostafaeipour 

 
Department of Industrial Engineering, Yazd university, Yazd, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 21 November 2017 
Received in revised form 12 May 2017 
Accepted 17 August 2018 

 
 

Keywords:  
Warehouse 
Order Picking System 
Order Batching 
Picker-to-Part Systems 
Distribution Scheduling 

 

A B S T R A C T  
 

 

In this paper, a mixed-integer linear programming model is proposed to integrate batch picking and 

distribution scheduling problems in order to optimize them simultaneously in an order picking 

warehouse. A tow-phase heuristic algorithm is presented to solve it in reasonable time. The first phase 
uses a genetic algorithm to evaluate and select permutations of the given set of customers. The second 

phase uses the route first-cluster method to obtain an effective schedule for a given permutation of 

customers. Computational experiments represent that integrated approach can lead to significant 
reduction in the makespan. Moreover, Empirical observations on the performance of the heuristic 

algorithm are reported. 

doi: 10.5829/ije.2018.31.10a.15 

 

 
1. INTRODUCTION1 
 
The process of retrieving items from storage shelves in 

a warehouse in order to satisfy customer demands, is 

named order picking. Since incoming items in a 

warehouse are received and stored in large-volume and 

customers order small volumes, order picking problem 

arises. The negative impact of unsatisfactory customer 

service as a result of long processing and delivery times 

on the one hand and high labor and delivery costs on the 

other hand, may reduce the competitiveness of the 

warehouse [1]. In this paper, we consider a picker-to-

parts order picking system in which pickers walk or ride 

through the warehouse and collect the required items. In 

a picker-to-part order picking system, customer orders 

are generally combined to form picking batches (order 

batching) which can increase the efficiency of 

warehouse operations considerably by reducing the 

picking time and cost [2]. The main concentration of 

this paper is on the order batching problem. 

Customers prefer to receive their requested products at 

the same day or the day after ordering at minimal cost 
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[3, 4]. Low cost delivery imposes higher costs on 

companies. To meet what customers expect, companies 

need to optimize their distribution processes along with 

optimizing internal processes of their warehouses [5]. 

Since there are dependencies between order picking and 

order distribution, we can integrated these problems and 

optimize them jointly to obtain a global optimum 

solution rather than considering them uncordinated and 

optimizing them separately. According to the 

uncoordinated approach, order picking processes are 

separated from delivery processes by a fixed departure 

time [6-9]. In the integrated approach unlike the 

uncoordinated approach, the order picking and the 

distribution processes can overlap in time. As a result, 

the warehouse has more flexibility in executing the 

distribution process [5]. 

In this paper, decisions related to picking and 

distribution of customer orders are integrated. It is 

supposed that customer orders are batched before being 

picked and there are one order picker and one vehicle in 

the warehouse to pick and distribute customer orders, 

respectively. A mathematical model will be proposed to: 

1) construct batches from customer orders, 2) schedule 

the picking process of the constructed batches, 3) 

 

 

mailto:yzare@yazd.ac.ir


Y. Zare Mehrjerdi et al./ IJE TRANSACTIONS  A: Basics  Vol. 31, No. 10, (October 2018)   1723-1733                                1724 

 

schedule the distribution process of the completed 

batches. The objective is minimizing the makespan, the 

time it takes to deliver the last batch to its corresponding 

customers. This objective was chosen because it 

requires close cooperation by the order picking and the 

distribution phases. 

 

 

2. LITERATURE SURVEY 
 
The integrated order picking and distribution scheduling 

(IOPDS) and the integrated production and distribution 

scheduling problems (IPDS) both have production and 

distribution phases. Therefore, they share some similar 

characteristics. The IPDS has been widely studied in 

recent years. IPDS models in the literature can be 

classified according to five major characteristics [10]: 

machine configuration in the production plant(s), order 

parameters, objective function, delivery process and the 

number of customers. In the model of this paper, the 

single machine configuration is considered since one 

order picker exists in the warehouse (order picker is 

considered as a machine), the objective function is 

minimizing the makespan and the delivery method is the 

routing-based batch delivery method. The difference 

between IPDS and IOPDS is that the processing time in 

IPDS in generally constant, whereas in IOPDS, an NP-

hard optimization problem (batching problem) needs to 

be solved to obtain the processing time of a batch.  

Similar studies which are the most relevance to our 

study, considering the production terminology, are 

conducted by Low et al. [11-13] which tried to integrate 

practical scheduling and VRP problems in a distribution 

center. These studies are different from our work since 

they do not consider the order batching problem. 

Therefore, we need to discuss the review of order 

batching models. 

Order batching has an important role in optimizing 

order picking processes [14]. A mixed integer 

programming approach is proposed by Bozer and Kile 

[15] to obtain near-optimal solutions for the order 

batching problem. The proposed approach is only 

applicable for instances with small number of orders (up 

to 25). Gademann and Velde [16] presented a branch-

and-price method to solve small-sized order batching 

problem in reasonable computational time. Since the 

order batching problem in NP-had [16], heuristic 

approaches should be used to solve the large-sized order 

batching problems in reasonable computational time. 

There are four types of heuristic approaches in the 

literature that are utilized to solve the order batching 

problem [14]: seed algorithms [17], saving algorithms 

[2], priority rule based algorithms [18], and meta-

heuristic algorithms [19-23]. 

Few researches have tried to model the IOPDS. 

Zhang et al. [9] integrated order picking and distribution 

operations considering a B2C e-commerce context. 

They assumed that distribution operations are 

implemented by a 3PL service provider. As a result, 

fixed departure times are considered at which the 3PL 

service provider starts the delivery process of customer 

orders. Thus, the decisions related to vehicle routing are 

not taken explicitly into account by the study. Moon et 

al. [5] are the only authors who integrated order picking 

and vehicle routing decisions. They proposed a 

mathematical model for the integrated order picking and 

vehicle routing problem considering time windows but 

they did not consider batching of customer orders in 

order picking. In this paper, however, the order picking 

and distribution problems are integrated by taking into 

account decisions related to both batching of orders and 

routing the vehicle. To the authors' best of knowledge, 

this study is the first one which integrates batch picking 

and distribution operations explicitly. Our model solves 

these decision issues: (1) which customer orders should 

be in the same batch; (2) when should the picking 

process of each batch be started; (3) at which time 

should be started delivery process of each batch. The 

objective function is minimizing the makespan, the time 

needed to deliver the last batch to its corresponding 

customers.  

This paper is structured as follows. In section 3, we 

proposed a mathematical model for the integrated order 

batching and distribution scheduling problem. The 

heuristic solution approach is presented in section 4. 

The genetic algorithm is explained in section 5. In 

section 6, we compared the presented integrated model 

with the uncoordinated approach in terms of the 

achieved makespan and computational times. Moreover, 

results of the heuristic algorithm is compared to results 

which obtained from MILP solver to assess 

performance of the heuristic algorithm. Finally in 

section 7, conclusions and future research directions are 

discussed. 

 

 

3. INTEGRATED MODEL DESCRIPTION AND 
FORMULATION 

 
3. 1. Integrated Model Description       In this 

section, an integrated model will be proposed to define a 

global solution for both the order picking and the order 

delivery problems. In the following, we will explain the 

order picking and order delivery processes.   
In the order picking system, orders which are 

received from a set of customers with definite 

geographic locations, are picked by an order picker. The 

picking process in an order picking warehouse can be 

described briefly as follows: the order picker begins to 

move from the depot with a pick list which represents 

the storage shelves of the requested articles and the 

number of items requested for each article. He/she 

walks or ride by a vehicle through the aisles of the 

warehouse and picks the requested items from different 
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shelves according to the pick list. Then he/she comes 

back to the depot and delivers the collected items. The 

route through which the order picker walks or rides to 

pick the requested items is determined by S-Shape 

routing policy [14]. 

In the order delivery system, a vehicle with limited 

capacity is used to deliver the orders for which the 

picking process is finished. Since the vehicle has a 

limited capacity, it will need to deliver the orders to 

customers by using multiple trips, i.e. the vehicle will 

need to come back to the warehouse several times 

during the planning period. In each trip, the vehicle 

starts from the depot, visits customer locations for a 

batch in sequence, and at last returns to the depot. It is 

supposed that each customer is demanded one order. 

Therefore, each customer is visited exactly once during 

the planning period. 

 

3. 2. Integrated Model Formulation          The 

following assumptions are made to construct the 

mathematical model for the integrated order batching 

and distribution scheduling problem: 
(1) The layout of picking area is a single-block 

warehouse which have two cross-aisles (see in [14]). 

This layout which is a common layout in the literature, 

is shown in Figure 1; (2) S-shape routing policy is 

utilized to define picking routes for batches since this 

method provides near-optimal straightforward routes 

[14]. An example for S-shape routing is illustrated in 

Figure 1;  (3) The order picker can handle a batch only 

when the picking process of the previous batch which is 

assigned to him/her is finished; (4) Each batch is 

distributed among its corresponding customers using a 

separate vehicle route; (5) The vehicle trip to deliver a 

batch can start only when the picking process of the 

batch is already finished and the vehicle is also 

available; (6) A truck is used by the order picker to pick 

customer orders in the warehouse which it’s capacity is 

nearly equal to the capacity of the distribution vehicle; 

(7) The time needed to rearrange batches for delivery is 

considerable. Therefore, the orders are delivered to 

customers as they batched for picking; (8) Splitting the 

orders among more than one batch is prohibited, since it 

would result in additional sorting effort. 

 

 
Figure 1. The layout of picking area 

The following sets, indices and parameters are used in 

the mathematical model : 

 0,1,2, ,M m  : set of customers and the depot, indices 

i and j , where 0i  indicates the depot 

 1,2, ,N n  : set of batches (vehicle trips), index k (an 

upper bound for m  can be m n ) 

 1,2, , A a  : set of aisles in the warehouse layout, index 

g  

 1,2, ,L l  : set of pick locations in each side of an aisle 

in the warehouse, index h  

travelv  : travel velocity of the order picker, distance that 

can be covered by the order picker per unit of time  

pickv  : pick velocity, number of items that can be 

searched and picked by the order picker per time unit 

distv  : vehicle velocity, distance that can be covered by 

the vehicle per unit of time 

ib  : number of items requested in the order requested by 

customer i  

C : batch capacity, i.e. maximum number of items in a 

batch 

,i jd : distance between  locations of customers i  and j  

b
setupt : batch setup time, i.e. time needed for 

administrative tasks for each batch 
v
setupt : vehicle setup time, i.e. time needed for packing 

customer orders and loading vehicle 

igh : 1 if the order requested by customer i  has at least 

one item to be picked in pick location h  of aisle g , 0 

otherwise 

ig : 1 if the order requested by customer i  has at least 

one item to be picked in aisle g , 0 otherwise 

W : distance between centers of two adjacent aisles in 

the warehouse 

L : length of each aisle 

r : number of pick locations (rows) of the warehouse 

The following decision variables are used in the 

mathematical model: 

ikx : 1 if the order requested by customer i  is assigned  

to batch k , 0 otherwise 

kijy : 1 if customer j  is visited after customer i  in k th 

trip of the vehicle 
pick
k

s : start time of picking batch k  

pick
k

f : finish time of picking batch k  

dist
k

s : start time of the k th trip of  the vehicle 

dist
ki

f : delivery moment for the order requested by 

customer i in k th trip of the vehicle (batch k ) 

k : number of aisles in which there are pick locations 

which must be visited for picking batch k  
l
k

 : number of the  leftmost  aisle  in  which  there  is  at 
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least one pick location which must be visited for picking 

batch k  
f

k
 : number of the rightmost aisle in which there is at 

least one pick location which must be visited for picking 

batch k  
f

k
 : distance from front aisle to the farthest item which 

must be picked in batch k  

kg : 1 if there is at least one pick location for batch k  

in aisle g , 0 otherwise 

f
kg

 : number of the last row to visit in aisle g  for batch 

k  

kdis : distance the order picker needs to travel in 

warehouse for picking batch k  

k : 1 if an even number of aisles must be visited for 

picking batch k , 0 otherwise 

k : An auxiliary integer variable 

The integrated order batching and distribution 

scheduling problem is formulated as follows: 
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Objective function (1) tries to minimize the makespan. 

Equation (2) indicates that each customer order must be 

assigned to only one batch. Inequality (3) guaranties 

that batches are opened sequentially. Inequality (4) is 

the capacity constraint of a batch. Inequality (5) 

indicates that the order picker can start picking of a 

batch only when picking of the previous batch is 

finished. Equation (6) computes the finish time of 

picking a batch. The finish time of picking a batch is the 

moment at which picking process of the batch finishes, 

which is obtained by adding the service time of the 

batch in the order picking sub-system to the start time of 

picking the batch. The service time of a batch is 

composed of setup time, travel time and picking time . 

Inequalities (7), (8) and (9) simultaneously ensure that 

the vehicle leaves the depot exactly once only for 

opened batches (batches that at least one customer order 

is assigned to them). According to inequalities (10), (11) 

and (12) in a trip of the vehicle, only those customers 

whose orders are assigned to that trip are visited exactly 

once and other customers are not visited. Inequality (13) 

specifies that the vehicle needs a setup before it can 

leave the depot for a trip. From inequality (14) it can be 

inferred  that the vehicle can start the delivery process 

of a batch only when picking of the batch is finished 

and the vehicle is already returned to the warehouse 

from the previous trip. Inequality (15) is to calculate the 

delivery moments for customers in each trip of the 

vehicle based on distances between customer locations 

and average speed of the vehicle. This inequality is also 

a sub-tour elimination constraint. 

We used the formula presented in literature [24] to 

calculate S-shape picking distance for a batch k . The 

formula is as follows: 

( 1) ( 1) ( 1) , is even

( 1) ( 1) 2 ( 1) ( 1) , is odd

disk

fl W L W Wk k kk k

f fl W L W Wk k kk k k
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     



      

        


 (30) 

To calculate disk , first we need to calculate k , l
k

 , f
k

  

and f
k

 . The mathematical relations (17) to (24) are to 

calculate k , l
k

 , f
k

  and f
k

  and the relations (25) to 

(26) help to calculate disk  based on the  obtained values 

for k , l
k

 , f
k

  and f
k

 . The Inequalities (16) and (17) 

is to calculate kg  for each k N and each g A . 

Considering batch k and aisle g  for example, if at least 

one item of batch k  is stored in aisle g , kg  will be 

equal to 1, otherwise kg  will be equal to zero. 

Equation (18) computes number of aisles that must be 

visited for picking a batch. Equations (19) and (20)  

help to obtain the first (leftmost) aisle number and the 

last (rightmost) aisle number which must be visited for 

picking a batch, respectively.  
f

k
  is calculated using formula  / 0.5

f f
k kg

L r    

from  reference [24]. Equations (21) and (22) try to 

obtain f
k

 using the abovementioned formula. 

First, f
kg

 is obtained for each k  and g using equation 

(21). Then, f
k

  is calculated for each k  based on the 

obtained values for f
kg

  according to equation (22). In 

equation (22), if f
k

g  , f
k

  will be equal to 

 / 0.5
f

kg
L r   . Inequalities (23) and (24) aim to define 

the evenness or oddness of the number of aisles that 

must be visited for a batch. Considering batch k  for 

example, if k is an odd number, k will be equal to 

zero, otherwise k  will be equal to 1. Equations (25) 

and (26) calculate picking distance disk  based on the 

evenness or oddness of k  and considering equation 

(30). Considering batch k  for example, if 1k   then 

inequality (25) triggers, otherwise inequality (26) will 

be active. Inequalities (27), (28) and (29) define the 

domains of decision variables.  

It should be clarified that the max function in 

objective function (1) and constraints (14), (20), (21), 

the min function in constraint (19) and the absolute 

function in constraints (22), (23), (24) are linearized 

using basic techniques of integer programming.  

 

 

4. HEURISTIC APPROACH 
 
4. 1. Finding a Feasible Set of Batches     According 

to the route first-cluster method [25], a feasible set of 

batches can be obtained for a given permutation of 

customers by finding a path on a directed graph. Let us 

define graph G  for permutation  of customers with 

nodes {0, (1), (2),..., ( )}GV n


    and edges GE


as follows: 

Definition 1. For each pair of nodes (customers), i  and 

j GV


   , where 0 i j n    and (0) 0  , there is a 

directed arc from  i  to j  ( i j  ) if and only if the 
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total weight of orders which belong to customers ( 1)i  , 

( 2)i  ,..., ( )j  does not exceed the batch capacity. Note 

that arc i j   indicates a batch which contains orders 

of customers ( 1)i  , ( 2)i  ,…, ( )j and is delivered by 

the vehicle using route 0 ( 1) ( 2) ... ( )i i j        . 

 

4. 2. Scheduling a Set Of Feasible Batches   
Consider that we have obtained a set of m  feasible 

batches for permutation   by finding a path on the 

corresponding graph G . Let ( )ki  represents the last 

customer visited in trip of batch k , where 1,...,k m , 

0 0i   and mi n . The picking time of batch k  can be 

calculated using the following equations: 

/ /
pick b

k travel k pick setupk
T dis v b v t    (31) 

where, kb  represents number of items in batch k . Other 

parameters were previously explained in section 3.2. 

The distance of the picking tour for batch k , kdis , can 

be obtained using equation (30).  

Parameters k , l
k

  and f
k

 , f
k

 , L  and W  were 

previously discussed in section 3.2. The time needed for 

the vehicle to deliver orders of batch k  can be obtained 

from the following formula: 

1

1

1

0, ( 1)

( ), ( 1)

1

(

( ( ),0)) /

k

k

k

dist
ik

i

k k k dist

j i

T d

d d i v



  











 

 


 (32) 

Parameters  ijd  and distV were previously presented in 

section 3.2. Now we present a linear programming 

formulation to find a schedule with minimum makespan 

for a given set of feasible batches. The mathematical 

model for scheduling a given set of feasible batches is 

as follows: 

minimize dist dist
m ms T  (33) 

1
, {1,..., 1}

pick pick pick
k k k

s s T k m


      (34) 

1
, {1,..., 1}dist dist dist

k k k
s s T k m


      (35) 

, {1,..., }
pick pickdist

k k k
s s T k m     (36) 

, 0, {1,..., }
pick dist
k k

s s k m    (37) 

Objective function (33) tries to minimize the makespan, 

the moment at which the vehicle returns to the depot 

from the last delivery trip. Inequality (34) states that 

picking of batch 1k   cannot be started until picking of 

batch k  has been completed. Inequality (35) indicates 

that distribution of batch 1k   cannot be started until 

distribution of batch k  has been completed. Inequality 

(36) specifies that distribution of batch k  cannot be 

started until picking of batch k  has been completed. 

Inequality (37) defines the domains of decision 

variables. Since the presented model is of minimization 

type and sequence of batches is specified, the optimal 

solution of the mathematical model can be found using 

the following set of recursive equations: 

1
, {1,..., 1}

pick pick pick
k k k

s s T k m


     , 
1

0
pick

s   (38) 

1 1 1
max{ , }, {1,..., 1}

pick pickdist dist dist
k k k k k

s s T s T k m
  

      , 

1 1 1
pick pickdists s T   

(39) 

Therefore, the problem of scheduling a given set of 

feasible batches can be solved in ( )O m . 

 

4. 3. Finding Final Schedule for a Given 
Permutation          In this section we will present the 

shortest path-based algorithm (SHPBA) which uses the 

elements of previous sections to choose a set of feasible 

batches with minimum total service time (picking and 

distribution times) for a permutation   of customers. 

This algorithm assigns customer orders to batches by 

finding the shortest path on the graph of feasible batches 

which discussed in section 4.1. The algorithm is 

presented in Algorithm 1. 
We can calculate complexity of the SHPBA by 

adding complexities of different elements of the 

algorithm. The complexity of creating graph G  for 

permutation   of n  customers equals ( log )O n n . The 

complexity of finding the shortest path on graph G  

using the reaching algorithm is equal to ( )O n  [26]. The 

complexity of scheduling a set of feasible batches is 

( )O m . Therefore, the complexity of the SHPBA is 

( log )O n n . 

 

 

Algorithm 1. Shortest path-based algorithm 

(SHPBA) 

Input: A permutation   of n  customers; 

Create graph G  for permutation   according to 

section; 

Calculate pick dist
k k

T T  for each arc k  (each batch) of 

graph G  according to section 4.2; 

Find a shortest path *p  from node 0  to node ( )n ; 

Schedule batches which are identified by path *p  

using the scheduling procedure in section 4.2. 
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5. GENETIC ALGORITHM 
 
A genetic algorithm is used as the first phase of our 

algorithm to generate permutations according to which 

customers are served. Permutations which are generated 

by the genetic algorithm are entered the second phase 

(SHPBA) to obtain an effective schedule based on the 

route first-cluster method. The SHPBA is used to guide 

the searching process of the genetic algorithm. 

Process of genetic algorithm starts by generating 

random permutation of customers as initial population. 

A schedule is found for each individual using the 

shortest path-based algorithm and fitness values are 

assigned to individuals based on the obtained 

makespans. In the next step, individuals are assigned to 

mating pool set stochastically based on their fitness 

values. Mating pool set is the same size as population 

set and it is possible for an individual to be assigned to 

mating pool multiple times. To assign individuals to 

mating pool, the binary tournament selection method is 

applied [27]. Then each two successive individuals in 

mating pool are paired together to form a couple. Each 

couple are combined using the order crossover [28] 

according to the crossover rate to form two new 

offspring. In the next step, each offspring is randomly 

mutated using the pairwise exchange mutation operator 

[28] according to mutation rate.  

 

 

6. COMPUTATIONAL STUDY 
 
6. 1. Purpose         In this section, several experiments 

are implemented to assess performance of the integrated 

model. The integrated model is compared to the 

uncoordinated approaches in terms of the achieved 

makespan and computational times to obtain benefit of 

integration. Moreover, results of the proposed heuristic 

algorithm is compared to the results obtained using a 

MILP solver to evaluate performance of the heuristic 

algorithm. 
 

6. 2. Data Generation         We rely on the 

assumptions reported in reference [14] to generate data 

for test instances. A common single block warehouse 

with two cross aisles is considered. Cross aisles are 

located in front and back of the picking area. The 

picking area contains 900 storage locations where a 

different storage location is considered for each article. 

These storage locations are organized in 10 aisles such 

that 45 storage locations are included in each side of an 

aisle. The length of each storage location is one length 

unit (1 LU) and the center to center distance between 

two neighbour aisles is 5 LU. The depot is 1.5 LU away 

from the first storage location of the first aisle (the 

leftmost aisle) and the distance between the depot and 

the front cross-aisle is 0.5 LU. It is also assumed that 

the order picker can travel 48 LU per unit of time and 

10 s is needed for the order picker to search and pick an 

item from a shelve, i.e. 48travelv   LU/min and pickv =6 

items/min. The setup time for each batch is 3 min. With 

regard to the distribution system, it is assumed that 

customers are located randomly in a square of 20 km by 

20 km and the depot is located on the center of square. 

The vehicle can travel 50 km per hour. The setup time 

for each trip of the vehicle is 5 min. 
It is supposed that items are stored in storage 

locations using a class-based storage policy. According 

to this policy, the articles are placed in three classes A, 

B and C, based on their demand frequencies. Articles 

with high demand frequency are included in class A and 

are stored in the first aisle. Articles with medium 

demand frequency are included in class B and are stored 

in the three subsequent aisles (aisles no. 2, 3 and no.4). 

Class C contains articles with low demand frequency 

which are stored in 6 remaining aisles. It is assumed that 

52, 36 and 12% of the requested articles belong to the 

articles in A, B and C, respectively. It is also assumed 

that articles are stored randomly within a class. 

Several classes of test instances are defined by 

considering 11 different values for number of customer 

orders ranging from 5 to 30 customer orders and two 

different values for batch capacity ( 45W   and 75W  ). 

Therefore, 22 classes of test instances are used for 

experiments. The quantity of items for each batch is 

uniformly distributed in  5,6,...,25 . The values for W  

and b are defined in a way that each batch averagely 

contains 3 to 5 customer orders. These assumptions are 

in line with those of reported in literature [14]. 

It should be noted that we use the Cplex solver of the 

NEOS optimization server [29-31] as a MILP solver to 

obtain the optimal solutions of the integrated and the 

uncoordinated approaches considering different test 

instances. We implemented the heuristic algorithm for 

all test instances using MATLAB R2014a on a Core i7 

processor 1.6 GHz and 4.0 GB RAM. 

 

6. 3. Computational Results        The results of 

applying the integrated and the uncoordinated 

approaches are presented in Tables 1 and 2. The 

uncoordinated model is solved by means of the MILP 

solver and the integrated model is solved using both the 

MILP solver and the heuristic algorithm. Table 1 

represents the computational times and Table 2 

represents the makespan obtained using the 

aforementioned approaches. As we can see in Table 1, 

the computational times for all test problems on the 

MILP solver is less than or equal to 8 hours. That is 

because jobs can run at most 8 hours on NEOS 

optimization servers. It should be noted that, for the test 

instances for which the solver could not find the optimal 

solution of the integrated or the uncoordinated 

approaches, the best makespan obtained by the MILP 

solver within 8 hours is recorded in Table 2. 
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To obtain a value for benefit of integration, we 

compare the makespan values obtained using the 

integrated and the uncoordinated approaches and define 

the makespan Reduction Rate (MRR) as follows: 

100 [( ) / ]unc uncMRR M Mint M    (40) 

where, uncM  and intM  represent the makespans 

obtained by solving the uncoordinated and the 

integrated models using the MILP solver respectively. 

As it can be seen in Table 1, with regard to the instances 

for which we could find the optimal solution (instances 

with 5 to 8 customer orders), the computational time 

needed to find the optimal solution for the integrated 

model increases exponentially as number of customer 

orders increases. 
 

 

TABLE 1. Computational times for all test instances (hours) 

implemented by means of the Cplex solver and the heuristic 

algorithm 

Number of 

customers 
W 

Integrated Uncoordinated 

Cplex Heuristic Cplex 

5 
45 0.014 0.006 0.009 

75 0.021 0.005 0.006 

6 
45 0.237 0.007 0.004 

75 0.246 0.007 0.009 

7 
45 1.031 0.009 0.037 

75 2.421 0.009 0.013 

8 
45 7.295 0.012 0.035 

75 8.000 0.011 0.018 

9 
45 8.000 0.014 0.017 

75 8.000 0.014 0.013 

10 
45 8.000 0.017 0.032 

75 8.000 0.017 0.028 

12 
45 8.000 0.023 3.959 

75 8.000 0.023 0.474 

15 
45 8.000 0.048 4.909 

75 8.000 0.050 0.582 

20 
45 8.000 0.090 8.000 

75 8.000 0.069 8.000 

25 
45 8.000 0.119 8.000 

75 8.000 0.096 8.000 

30 
45 8.000 0.170 8.000 

75 8.000 0.190 8.000 

TABLE 2. Comparison between the makespans obtained 

using the integrated and the uncoordinated approaches 

Number of 

customers 
W 

Integrated Uncoordinated MRR 

(%) Cplex Heuristic Cplex 

5 
45 69.39 69.39 81.29 14.6 

75 60.78 60.78 67.48 9.9 

6 
45 92.29 92.29 109.04 15.4 

75 80.45 80.47 86.85 7.4 

7 
45 87.25 87.26 121.38 28.1 

75 80.22 80.24 100.56 20.2 

8 
45 124.58 124.83 141.17 11.8 

75 102.02 102.70 123.70 17.5 

9 
45 134.97 135.30 164.99 18.2 

75 101.92 103.73 125.58 18.8 

10 
45 132.50 129.25 160.21 17.3 

75 109.41 110.29 132.82 17.6 

12 
45 167.55 159.28 192.85 13.1 

75 134.90 118.62 151.14 10.7 

15 
45 197.59 178.34 246.87 20.0 

75 156.43 142.21 182.88 14.5 

20 
45 268.09 247.82 358.00 25.1 

75 253.04 198.62 298.55 15.2 

25 
45 290.84 255.04 356.12 18.3 

75 242.63 195.45 285.14 14.9 

30 
45 512.11 382.98 576.37 11.1 

75 441.00 287.84 419.22 -5.2 

 

 

It indicates that heuristic solutions are required to solve 

realistic sizes of the integrated model in reasonable 

time. Figures 2a and 2b illustrate comparisons between 

the computational times of the integrated and the 

uncoordinated approaches considering instances for 

which we could obtain the optimal solution of the 

integrated model. As we can see in Figure 2, the 

uncoordinated approach needed much less 

computational time as compared to the integrated 

approach. But, we will illustrate that the integrated 

approach results in significant reduction in makespan in 

comparison to the uncoordinated approach. For this 

purpose, we compare the integrated and the 

uncoordinated approaches in terms of the achieved 

makespan by investigating the test instances in three 

different categories: 1) instances  for which we could 

find the optimal solution for both the integrated and the 

uncoordinated approaches: instances with 5 to 8 

customer orders and 45W  , and instances with 5 to 7 

customer orders and 75W  , 2) instances for which we 

could find the optimal solution of the uncoordinated 

approach but we could not find the optimal solution of 

the integrated approach: instances with 9 to 15 customer 

orders and 45W  , and instances with 8 to 15 customer 

orders and 75W   ,and  3) instances for which we could 

not find the optimal solution for any of the integrated 
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and the uncoordinated approaches: instances with 20 to 

30 customer orders and 45W  , and instances with 20 to 

30 customer orders and 75W  . Considering the 

instances with 45W   and 75W   in the first category of 

instances, the makespan values achieved by the 

integrated approach was averagely 17.5% and 12.5% 

better than the makespan values achieved by the 

uncoordinated approach respectively. It can be seen in 

Table 2 that, for the first category of test instances, 

integrating the order batching and distribution 

scheduling problems resulted in time saving up to 

28.1% and 20.2% for the 45W   and 75W   cases 

respectively. Considering the second category of 

instances with 45W   and 75W  , the makespan 

obtained for the integrated model within 8 hours, 

although not optimal, is averagely 17.1% and 15.8% 

better than the optimal makespan obtained by applying 

the uncoordinated approach. In this case, as we can see 

in Table 2, integrating the order batching and 

distribution problems leaded in time saving up to 20 and 

18.8% for the 45W  and 75W   cases respectively. 

Finally, with regard to the third category of instances 

with 45W   and 75W  , the makespan obtained for the 

integrated model within 8 hours is averagely 18.2 and 

8.3% better than the makespan obtained for the 

uncoordinated model within 8 hours. In this case, 

integrating the order batching and distribution problems 

resulted in time saving up to 25.1and 15.2% in 

comparison to the uncoordinated approach. Figure 3 

illustrates a comparison between the integrated and the 

uncoordinated approaches in terms of the achieved 

makespans. As we can see in Figure 3, the integrated 

approach is superior to the uncoordinated approach in 

terms of the achieved makespan in almost all instances. 

Figures 4a and 4b illustrate performance of the 

presented heuristic algorithm in solving the integrated 

model in comparison to the MILP solver considering 

different test instances with 45W   and 75W  , 

respectively. As we can see in Figures 4a and 4b and 

Table 2, considering the first category of instances for 

which we have the optimal solutions, the makespan 

obtained by the heuristic algorithm is only 0% and 

0.04% worse than the makespan obtained by the 

heuristic algorithm for instances with 45W   and 

75W  , respectively. Considering the second and the 

third categories of instances together, for which the 

obtained solutions by the MILP solver are not 

necessarily the optimal solutions, the makespan 

achieved using the heuristic algorithm is averagely 9 

and 12% and at its best performance  25 and 35% better 

than the makespan achieved using the MILP solver for 

instances with 45W   and 75W  , respectively. It also 

should be noted that the heuristic algorithm found the 

aforementioned makespan values for each of test 

instances in less than 0.2 hours. Figure 5 represents the 

computational times of solving the integrated model 

using the heuristic algorithm for different test instances. 

Given the above, the heuristic algorithm can obtain 

good solutions for the integrated order batching and 

distribution scheduling problem in reasonable time. 

 

 

  
(a) Instances with 45W   (b) Instances with 75W   

Figure 2. Comparison between the computational times of the integrated and the uncoordinated approaches 
 

 

  
(a) Instances with 45W   (b) Instances with 75W   

Figure 3. Comparison between the integrated and the uncoordinated approaches in terms of the achieved makespan 
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(a) Instances with 45W   (b) Instances with 75W   

Figure 4. Comparison between the heuristic algorithm and the MILP solver in terms of the achieved makespan 

 

 
Figure 5. The computational times of solving the integrated model using the heuristic algorithm 

 

 

7. CONCLUSIONS AND FUTURE RESEARCH 
DIRECTIONS 
 

In this paper, a mixed-integer linear programming 

model is proposed to model the integrated order 

batching and distribution scheduling problem by 

considering one order picker and one vehicle in the 

warehouse. The presented integrated model is compared 

to the uncoordinated approach in which the order 

batching and distribution scheduling problems are 

solved separately and in succession by means of several 

test instances and the benefit of integration is 

represented. Experiments represented that although the 

integrated approach needs much more computational 

time in comparison to the uncoordinated approach, it 

leads to significant time saving. A heuristic algorithm 

based on the route first-cluster method and the shortest 

path problem is proposed to solve the presented 

integrated model. Experimental results illustrated that 

the heuristic algorithm is able to find near-optimal 

solutions for the small-sized instances with 5 to 8 

customer orders. Considering the instances with more 

than 8 customer orders, solutions obtained by the 

heuristic algorithm are significantly better than the 

solutions obtained using the MILP solver within 8 

hours. 

Extending the model to consider multiple order 

pickers and multiple vehicles and also Extending the 

proposed integrated model to on-line context could be 

directions for future researches. 
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 چكيده

 

مختلط به منظور یکپارچه سازی و بهینه سازی همزمان مسائل برداشت -در این مقاله، یک مدل برنامه ریزی خطی صحیح

دسته ای سفارشات و توزیع سفارشات در یک انبار برداشت ارائه شده است. یک الگوریتم دو مرحله ای به منظور حل 

قبول طراحی شده است. در مرحله ی اول از الگوریتم ارائه شده، از یک الگوریتم ژنتیک به منظور   مدل در زمان قابل

از رویکرد  مسیریابی اولین خوشه  ایجاد و ارزیابی توالی هایی از مشتریان استفاده می شود. در مرحله ی دوم از الگوریتم،

اده می شود. نتایج عددی نشان می دهد که یکپارچه در نظر به منظور به دست آوردن یک برنامه ی زمان بندی مؤثر استف

گرفتن  این دو مسأله می تواند باعث کاهش چشم گیری در  زمان کل پاسخگویی به سفارشات مشتریان شود. همچنین، 

 مشاهداتی که بر روی عملکرد الگوریتم ابتکاری انجام شده است، گزارش شده است
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