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A B S T R A C T  
 

 

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from 

the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we 

propose a framework for face recognition by finding localized, part-based representations, denoted 
“Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost function 

is proposed in order to incorporate sparsity which is controlled by a specific parameter and weights of 

feature coefficients. This method extracts highly localized patterns, which generally improves the 
capability of face recognition. After extracting patterns by IWNS-NMF, we use principle component 

analysis to reduce dimension for classification by linear SVM. The Recognition rates on ORL, YALE 

and JAFFE datasets were 97.5, 93.33 and 87.8%, respectively. Comparisons to the related methods in 
the literature indicate that the proposed IWNS-NMF method achieves higher face recognition 

performance than NMF, NS-NMF, Local NMF and SNMF. 

doi: 10.5829/ije.2018.31.10a.12 
 

 
1. INTRODUCTION1 
 

Face recognition has been considered as one of the most 

challenging problems in computer vision and image 

processing communities since two decades ago. A well-

established and widely used method in face recognition 

is Eigen face [1] which is based on principle component 

analysis (PCA). It is performed directly on the entire 

patterns in order to extract the global feature vectors 

which are later utilized for classification task. As a result, 

the classification is achieved by a set of previously found 

global projectors from an existing training pattern set. 

The objective of this process is to achieve a mostly 

adequate subspace for face representation and 

recognition. However, there are many applications where 

localized features provide benefits for object recognition, 

such as stability to local deformations, partial occlusion, 

and lighting variations. Traditionally, PCA and LDA 

(Linear Discriminant Analysis) [2] have been the 

standard approaches to reduce the high-dimensional 

original pattern vector space into low-dimensional 

feature vector space [3]. A decade ago, an approach for 

obtaining a part-based linear representation of the facial 
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image has been proposed. This technique is known as 

Non-negative Matrix Factorization (NMF), firstly 

introduced by Lee and Seung [4]. NMF is an 

unsupervised method, solving real world problems with 

non-negative data. NMF has been widely used for many 

tasks such as data mining [5, 6], pattern recognition [7, 

8], and computer vision [9, 10]. In what follows, we 

briefly review some of the important NMF techniques. A 

new multiplicative update algorithm was proposed by Li, 

et al. [11] that minimizes the Euclidean distance between 

approximate and true values in original NMF cost 

function. It is proved that this algorithm converges faster 

than existing ones to a stationary point. In another work, 

a novel NMF method was proposed under noisy 

separability conditions. The proposed method reported in 

literature [12] is called ellipsoid-volume minimization 

based on NMF. It seeks for a minimum-volume ellipsoid 

centered at the origin and encloses the data columns x1, 

…, xn and their mirrors -x1, …, -xn. Then, under 

separability condition, the minimum-volume enclosing 

ellipsoid touches the data cloud at ±W(:,r) for r = 1,...,R. 

Zhang et al. proposed a correntropy supervised NMF 

(CSNMF) to mitigate the existing deficiencies [13]. The 
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approach is to maximize correntropy between the data 

matrix and reconstruction space. Conversely, CSNMF 

minimizes correntropy between two coefficients that 

have the same class labels. Non-negative  matrix 

factorization (NMF) is applied over data distribution for 

linear discriminant analysis which achieves good results 

[14]. A graph regularize non-negative  matrix 

factorization (GNMF) was proposed in literature [15], 

which has been later improved by Wang et al. [16]. They 

proposed graph regularized matrix decomposition with 

sparse coding (GRNMF SC) which extracts the basis 

vectors through the data space. An algorithm was 

proposed in literature [17] that improves the ability of 

new representation using class labels. Use of these labels, 

data samples can be divided into within-class and 

between-class features. Extreme Learning Machine 

(ELM) is a fast algorithm for Single-hidden Layer Feed-

forward Neural (SLFN) networks training that requires 

low human supervision [18]. Iosifidis et al. [19] propose 

a novel approximate kernel ELM (noted as AKELM 

hereafter) formulation. They demonstrated that the 

proposed approach performs extremely fast, comparing 

to the kernel ELM approach. At the same time, it 

achieves comparable performance with that of kernel 

ELM. A novel algorithm, called Optimal Expression-

specific Parts Accumulation (OEPA), was also proposed 

by Ali et al. [20] which accumulates the subset of facial 

parts. It divides the face images into four facial parts (Left 

eye, Right eye, Mouth, Nose). It then calculates which 

part is responsible for describing a specific expression. Li 

et al. [21] developed a novel NMF algorithm with fast 

convergence rate and high performance. This method 

takes advantages of choosing the step-length which is 

constrained to be greater than that of conventional NMF. 

In another facial application, Wang [22] proposed the 

block diagonal non-negative  matrix factorization 

(BDNMF) for color face representation and recognition. 

The approach uses block diagonal matrix with the aim of 

interpreting color information of various channels. In 

another work, the authors proposed a hybrid technique by 

combining Gabor Wavelet and Non-negative Matrix 

Factorization [23]. In this method, each image was 

independently processed and then convolved with Gabor 

kernel. Then, after feature extraction, the matrix 

dimensionality was reduced using NMF. Chen et al. [24] 

proposed a supervised kernel NMF for face recognition. 

The SKNMF compresses the within-class features and 

takes apart the between-class features. Liu and Wechsler 

[25] proposed a method using Fisher Linear Discriminant 

Analysis (FLDA), called Fisher Non-negative Matrix 

Factorization (FNMF). This method adds fisher 

constraint to the traditional NMF to maximize between 

class features and minimize within class ones. In this 

paper, we proposed a new iterative approach to solve face 

recognition problem with the sparsity constraint on both 

factorized matrices. The proposed method is an iterative 

weighted smoothing function in order to preserve strong 

features and to suppress the weak features. In fact, the 

main goal of IWNS-NMF is to find sparse structures that 

strengthen features according to their coefficient in the 

basis functions, which facilitates the subsequent 

classification process. 

 The rest of the paper is organized as follows. In 

Section 2, we mathematically represent the original NMF 

framework and its variants. In Section 3, the proposed 

model in this paper is presented. In Section 4 the 

experimental results of applying different methods are 

given and compared. Finally, the conclusion is drawn in 

Section 5. 

 

 
2. NON-NEGATIVE MATRIX FACTORIZATION AND 
ITS VARIANTS 

 
2. 1. Non-negative Matrix Factorization (NMF)       
Non-negative Matrix Factorization is composed of a 

group of multivariate rules based on linear algebra where 

a matrix V is factorized into two matrices W and H. Let 

matrix V be the product of the matrices W and H [4], 

𝑉 ≈ 𝑊 × 𝐻  (1)  

where 𝑉 ∈ ℛ𝑝×𝑛 is the input matrix with p rows and n 

columns, 𝑊 ∈ ℛ𝑝×𝑞 and 𝐻 ∈ ℛ𝑞×𝑛 are called the basis 

and encoding vectors, respectively. To find an 

approximate factorization 𝑉 ≈ 𝑊𝐻  we first need to 

define a cost function that quantifies the quality of the 

approximation. This can be achieved using some measure 

of distance between two non-negative matrices A and B. 

One useful measure is simply the square of the Euclidean 

distance between A and B. 

‖𝐴 − 𝐵‖2 = ∑ (𝐴𝑖𝑗 − 𝐵𝑖𝑗)2
𝑖𝑗   (2) 

This is lower bounded by zero, and clearly vanishes if 

and only if A = B. Another useful measure is 

𝐷(𝐴 ∥ 𝐵) = ∑ (𝐴𝑖𝑗 log
𝐴𝑖𝑗

𝐵𝑖𝑗
− 𝐴𝑖𝑗 + 𝐵𝑖𝑗)𝑖𝑗   (3) 

Similar to Euclidean distance, this measure is also lower 

bounded by zero, and vanishes if and only if A = B. 

However, it cannot be called a “distance”, since it is not 

symmetric in A and B. Hence, the term “divergence” of 

A from B is commonly used. It reduces to the Kullback-

Leibler divergence, or relative entropy, when ∑ 𝐴𝑖𝑗 =𝑖𝑗

 ∑ 𝐵𝑖𝑗 = 1 , so that A and B can be regarded as 

normalized probability distributions. 

As mentioned before all three matrices have non-

negative elements, and the columns of W are commonly 

normalized. Using Poisson likelihood the following 

objective function can be designed: 

𝐷(𝑉, 𝑊𝐻) = ∑ ∑ (𝑉𝑖𝑗 𝑙𝑛
𝑉𝑖𝑗

(𝑊𝐻)𝑖𝑗
− 𝑉𝑖𝑗 + (𝑊𝐻)𝑖𝑗)𝑛

𝑗=1
𝑝
𝑖=1    (4) 
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where it can be converted to (5) after some 

simplifications: 

𝐷(𝑉, 𝑊𝐻) = ∑ ∑ (∑ 𝑊𝑖𝑘 − 𝑉𝑖𝑗 𝑙𝑛 ∑ 𝑊𝑖𝑘𝐻𝐾𝑗
𝑞
𝑘=1

𝑞
𝑘=1 )𝑛

𝑗=1
𝑝
𝑖=1   (5) 

In order to solve (5), one simple method is to alternatively 

updating W and H by considering their derivatives. If we 

take the derivative with respect to H the following 

equation can be obtained: 

𝜕

𝜕𝐻𝑎𝑏
𝐷(𝑉, 𝑊𝐻) = ∑ 𝑊𝑖𝑎

𝑝
𝑖=1 − ∑

𝑉𝑖𝑏𝑊𝑖𝑎

∑ 𝑊𝑖𝑘𝐻𝑘𝑏
𝑞
𝑘=1

𝑝
𝑖=1    (6) 

Then, using the gradient descent algorithm, H can be 

obtained: 

𝐻𝑎𝑏 = 𝐻𝑎𝑏 − 𝜂𝑎𝑏
𝜕

𝜕𝐻𝑎𝑏
𝐷(𝑉, 𝑊𝐻)  (7) 

𝐻𝑎𝑏 = 𝐻𝑎𝑏 + 𝜂𝑎𝑏 [∑
𝑉𝑖𝑏𝑊𝑖𝑎

∑ 𝑊𝑖𝑘𝐻𝑘𝑏
𝑞
𝑘=1

− ∑ 𝑊𝑖𝑎
𝑝
𝑖=1

𝑝
𝑖=1 ]  (8) 

where ɳab is the step-size and can be defined such as: 

𝜂𝑎𝑏 =
𝐻𝑎𝑏

∑ 𝑊𝑖𝑎
𝑝
𝑖=1

  (9) 

Another form of update equation is using the 

multiplicative rules [4]: 

𝐻𝑎𝑏 = 𝐻𝑎𝑏

∑ (𝑊𝑖𝑎𝑉𝑖𝑏)𝑝
𝑖=1

∑ 𝑊𝑖𝑘𝐻𝑘𝑏
𝑞
𝑘=1

⁄

∑ 𝑊𝑖𝑎
𝑝
𝑖=1

  
(10) 

The same steps can be written for W. By computing the 

derivative of Equation (10) with respect to W 

𝜕

𝜕𝑊𝑐𝑑
𝐷(𝑉, 𝑊𝐻) = ∑ 𝐻𝑑𝑗 − ∑

𝑉𝑐𝑗𝐻𝑑𝑗

∑ 𝑊𝑐𝑘𝐻𝑘𝑗
𝑞
𝑘=1

𝑛
𝑗=1

𝑛
𝑗=1   (11) 

The gradient method: 

𝑊𝑐𝑑 = 𝑊𝑐𝑑 − 𝑉𝑐𝑑
𝜕

𝜕𝑊𝑐𝑑
𝐷(𝑉, 𝑊𝐻)  (12) 

𝑊𝑐𝑑 = 𝑊𝑐𝑑 + 𝑉𝑐𝑑 [∑ 𝑉𝑐𝑗
𝐻𝑑𝑗

∑ 𝑊𝑐𝑘𝐻𝑘𝑗
𝑞
𝑘=1

𝑛
𝑗=1 − ∑ 𝐻𝑑𝑗

𝑛
𝑗=1 ]  (13) 

The step size: 

𝑉𝑐𝑑 =
𝑊𝑐𝑑

∑ 𝐻𝑑𝑗
𝑛
𝑗=1

  (14) 

Gives: 

𝑊𝑐𝑑 = 𝑊𝑐𝑑

∑ (𝐻𝑑𝑗𝑉𝑐𝑗)𝑛
𝑗=1

∑ 𝑊𝑐𝑘𝐻𝑘𝑗
𝑞
𝑘=1

⁄

∑ 𝐻𝑑𝑗
𝑛
𝑗=1

  
(15) 

Formally, the detailed algorithm can be represented as 

follows: 

Repeat until convergence: 

For a = 1...q do begin 

For b = 1...n do 

𝐻𝑎𝑏 = 𝐻𝑎𝑏

∑ (𝑊𝑖𝑎𝑉𝑖𝑏)𝑝
𝑖=1

∑ 𝑊𝑖𝑘𝐻𝑘𝑏
𝑞
𝑘=1

⁄

∑ 𝑊𝑖𝑎
𝑝
𝑖=1

  
(16) 

For c=1...p do begin 

𝑊𝑐𝑎 = 𝑊𝑐𝑎

∑
(𝐻𝑎𝑗𝑉𝑐𝑗)

∑ 𝑊𝑐𝑘𝐻𝑘𝑗
𝑞
𝑘=1

⁄𝑛
𝑗=1

∑ 𝐻𝑎𝑗
𝑛
𝑗=1

  
(17) 

𝑊𝑐𝑎 =
𝑊𝑐𝑎

∑ 𝑊𝑗𝑎
𝑛
𝑗=1

  (18) 

End 

End 

 
2. 2. Local Non-negative Matrix Factorization 
(LNMF)       The Local Non-negative Matrix Factorization 

(LNMF) algorithm was proposed by Feng et al. [26]. This 

algorithm aimed at learning localized, part-based features 

in W for a factorization V=WH. It forces the sparseness 

constraints on coefficient matrix H and locally 

constraints on feature basis matrix W. Considering the 

problem given in Equation (1), we set aij = WtW and B = 

bij = HHt, where 𝐴, 𝐵 ∈ ℛ𝑞×𝑞. The following steps define 

the existing constraints in LNMF algorithm: 

1. Maximization of sparsity in H.H should have its 

most samples nearly zero and contain few non-zeros. 

This corresponds to minimization of basis elements. This 

is achieved by minimization of all aij. 

2. Maximization of expressiveness in W. This 

constraint is directly connected to the previous step. In 

other words, it is designed to incorporate maximum 

sparsity in H. Mathematically,  ∑ b𝑖𝑖
𝑞
𝑖=1  should be 

maximized. 

3. Maximum orthogonality of W. This constraint is 

considered in order to make the basis as orthogonal as 

possible and consequently to minimize the redundancy. 

This is achieved by minimizing ∑ 𝑎𝑖𝑗∀𝑖,𝑗,𝑖≠𝑗 . 

Combination of this constraint with stage 1 leads to an 

expression to minimize ∑ 𝑎𝑖𝑗∀𝑖,𝑗 .Such incorporation of 

the above constraints can be compactly written as the 

following divergence functions for LNMF: 

𝐷(𝑉, 𝑊𝐻) = ∑ ∑ (𝑉𝑖𝑗 𝑙𝑛
𝑉𝑖𝑗

(𝑊𝐻)𝑖𝑗
− 𝑉𝑖𝑗 +𝑛

𝑗=1
𝑝
𝑖=1

(𝑊𝐻)𝑖𝑗) + 𝛼 ∑ (𝑊𝑇𝑊)𝑖𝑗 − 𝛽 ∑ (𝐻𝐻𝑇)𝑖𝑗
𝑞
𝑖,𝑗=1

𝑞
𝑖,𝑗=1   

(19) 

where 𝛼, 𝛽 > 0 are constant scalars. These values can 

control the effect of additional constraints defined above. 

Using the following update rules, the LNMF algorithm is 

minimized. 

Repeat until convergence: 

For a =1...q do begin 

For b = 1...n do 

𝐻𝑎𝑏 = √𝐻𝑎𝑏 ∑ (𝑊𝑖𝑎𝑉𝑖𝑏)/ ∑ 𝑊𝑖𝑘𝐻𝑘𝑏
𝑞
𝑘=1

𝑝
𝑖=1    (20) 

For c = 1...p 

Update basis matrix W using Equations (17) and (18) 

End 

 

2. 3. Sparse Non-negative Matrix Factorization 
(SNMF)          Liu et al. [27] proposed a modification on 
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the method presented in literature [28]. Hoyer [28] used 

Kullback-Leibler (DKL) divergence term instead of 

Euclidean least-square term as used in the original NMF 

[4]. Thus, the objective function of SNMF [27] is defined 

as follows: 

𝐷(𝑉, 𝑊𝐻) = ∑ ∑ (𝑉𝑖𝑗 𝑙𝑛
𝑉𝑖𝑗

(𝑊𝐻)𝑖𝑗
− 𝑉𝑖𝑗 +𝑛

𝑗=1
𝑝
𝑖=1

(𝑊𝐻)𝑖𝑗) + 𝛼 ∑ 𝐻𝑖𝑗𝑖𝑗   
(21) 

where 𝛼 ≥ 0  is a constant, 𝑉, 𝑊, 𝐻 ≥ 0.  Using the 

following updates rules, the SNMF algorithm is 

minimized: 

𝐻𝑎𝑏 = 𝐻𝑎𝑏

∑ (𝑊𝑖𝑎𝑉𝑖𝑏)𝑝
𝑖=1

∑ 𝑊𝑖𝑘𝐻𝑘𝑏
𝑞
𝑘=1

⁄

1+𝛼
  

(22) 

The Equations (17) and (18) were used to update basis 

matrix W. 

 
2. 4. Subclass Discriminant Non-negative Matrix 
Factorization (SDNMF)         Nikitidis et al. [14] extend 

the NMF algorithm by modifying the decomposition 

using appropriate discriminant penalties. This method 

provides discriminant projections leading to both 

robustness against illumination changes and expression 

variations. It also enhances class separability in the 

reduced dimensional space. 
In this method, Subclass based discriminant 

constraints are incorporated in the NMF cost function 

leading to a specialized NMF-based method. Novel 

multiplicative update rules are used for optimizing 

SDNMF. The corresponding cost function for the 

SDNMF problem is represented as follows: 

𝐷𝑆𝐷𝑁𝑀𝐹 (𝑉||𝑊𝐻)  ≜  𝐷𝑁𝑀𝐹(𝑉||𝑊𝐻) +

 
𝛼

2
𝑡𝑟[∑ ]𝑤 − 

𝛽

2
𝑡𝑟[∑ ]𝑤   

(23) 

where α and β are positive constants, while 1/2 is used to 

simplify subsequent derivations. Where tr[ ∑ ]𝑤  is the 

matrix trace operator. The update rule for the weight 

coefficients ℎ𝑘,𝑙 which for the t-th iteration is defined as 

ℎ𝑘,𝑙
(𝑡)

=

 

𝐴+√𝐴2+4(𝛼−[𝛼+
𝛽

𝑁(𝑟)(𝜃)
(𝐶−𝐶𝑟)]

1

𝑁(𝑟)(𝜃)
)ℎ𝑘,𝑙

(𝑡−1) ∑ 𝑤𝑖,𝑘
(𝑡−1) 𝑣𝑖,𝑙

∑ 𝑤
𝑖,𝑛
(𝑡−1)

ℎ
𝑛,𝑙
(𝑡−1)

𝑛
𝑖

2(𝛼−[𝛼+
𝛽

𝑁(𝑟)(𝜃)
(𝐶−𝐶𝑟)]

1

𝑁(𝑟)(𝜃)
)

  
(24) 

here ℎ𝑘,𝑙  can be also considered as the k-th feature 

element, in the projection subspace, of the l-th image 

belonging to the y-th cluster of the r-th facial class, 𝐶𝑟 is 

the number of subclasses composing the r-th class , C is 

the total number of formed subclasses in the database and 

parameter A is defined as: 

𝐴 = (𝛼 +
𝛽

𝑁(𝑟)(𝜃)
(𝐶 − 𝐶𝑟)

1

𝑁(𝑟)(𝜃)

∑ ℎ𝑘,𝜆
(𝑡−1)

−𝜆,𝜆≠1

𝛽

𝑁(𝑟)(𝜃)

∑ ∑ 𝜇(𝑚)(𝑔) − 1
𝑐𝑚
𝑔=1

𝑛
𝑚,𝑚≠𝑟   

(25) 

For more info and a proof that the objective function is 

guaranteed to have a non-increasing behavior can be 

found in [14]. 

 

2. 5. Non-Smooth Non-Negative Matrix 
Factorization (nsNMF)        Pascual-Montano et al. [8] 

proposed a method for optimizing a cost function which 

is designed for expressing sparsity in the form of non-

smoothness controlled by a parameter. The model 

proposed in [8] is defined as:  

𝑉 ≈ 𝑊𝑆𝐻  (26) 

where V, W, and H are input data, basis, and coefficient 

matrices, respectively. The positive symmetric matrix 

𝑆 ∈ 𝑅𝑞×𝑞 is a smoothing matrix defined as: 

𝑆 = (1 − 𝜃)𝐼 +
𝜃

𝑞
11𝑇  (27) 

I is the identity matrix, 1is a vector of all ones, and 

variable θ meets 0 <θ< 1. More details about the 

algorithm and pseudo-code can be read from [8]. 
 

 

3. PROPOSED ITERATIVE WEIGHTED NON-
SMOOTH NMF (IWNS-NMF) 
 
One of the main drawbacks of nsNMF is leaving weak 

features that do not contribute significantly in the 

classification process. In fact, if one can gradually assess 

the features strength and remove those that are 

insignificant the resultant classification rate will be 

increased. To do this, here we propose a modification to 

nsNMF method for facial recognition called Iterative 

Weighted nsNMF (IWNS-NMF).The schema of the 

proposed method is shown in Figure 1.The objective is to 

apply sparseness to both the basis and encoding vectors 

which is defined by Equation (27). The proposed 

algorithm is:  

Repeat until convergence: 

For a = 1...q do begin 

For b = 1...n do 

𝐻𝑎𝑏 = 𝐻𝑎𝑏

∑ ((𝑊𝑖𝑎𝑆)𝑉𝑖𝑏)𝑝
𝑖=1

∑ (𝑊𝑖𝑘𝑆)𝐻𝑘𝑏
𝑞
𝑘=1

⁄

∑ (𝑊𝑖𝑎
𝑝
𝑖=1 𝑆)

  
(28) 

For c=1...p do begin 

𝑊𝑐𝑎 = 𝑊𝑐𝑎

∑
((𝐻𝑎𝑗𝑆)𝑉𝑐𝑗)

∑ (𝑊𝑐𝑘𝑆)𝐻𝑘𝑗
𝑞
𝑘=1

⁄𝑛
𝑗=1

∑ (𝑆𝐻𝑎𝑗
𝑛
𝑗=1 )

  
(29) 

𝑊𝑐𝑎 =
𝑊𝑐𝑎

∑ 𝑊𝑗𝑎
𝑛
𝑗=1

  (30) 

End 

End 

where the parameter 𝜃  is proposed to be defined 

iteratively. Therefore, positive symmetric matrix S as a 

smooth matrix is defined as: 
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𝑆 = (1 − 𝐼𝑡𝑒𝑟_𝜃)𝐼 +
𝐼𝑡𝑒𝑟_𝜃

𝑞
11𝑇  (31) 

𝐼𝑡𝑒𝑟_𝜃 is the smooth parameter that is updated in each 

iteration that defines as:  

𝐼𝑡𝑒𝑟𝜃𝑖 = 𝑖 (𝜃
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

⁄ )  

 𝑖 = 0,1, … , 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟   

(32)  

I,1 and θ are defined above. 𝑖 and 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟, are iteration 

index and the maximum number of  iterations 

respectively. As mentioned before, 𝐼𝑡𝑒𝑟_𝜃𝑖  increments 

within [0 , 𝜃] at various iterations, leading to changes in 

the elements of smooth matrix S. It is important to note 

that we propose weighted smoothing function using the 

iterative smooth matrix that keeps and strengthens 

important features and weakens or removes insignificant 

features, iteratively and gradually. In contrast, the smooth 

matrix S in [8] has constant elements depending on a fix 

θ which cannot adaptively control the smoothness. 

Therefore, it is not possible to control the feature 

coefficients and to check which feature is more important 

to be sparse. This has been resolved by the proposed 

method in this paper. In other words, the proposed S 

matrix has dynamic elements depending on θ and 

iteration number, which calculates weights of H and then 

multiplied by S. This procedure causes strong features to 

become stronger and reversely weak features to become 

weaker. 

As shown in our experimental results, the proposed 

method outperforms NS-NMF and provides improved 

sparsity conditions. Figure 2 shows three columns of H 

matrix in NMF, NS-NMF (θ=0.5), and IWNS-

NMF(θ=0.5) algorithms. It is obvious that IWNS-NMF 

keeps the strong features with higher coefficient and 

remove or weaken the undesirable features (notice the 

low-amplitude coefficients in both graphs in Figure 2). 

 

 

4. EXPERIMENTS 
 
The experiments for face recognition application were 

conducted for two well-known databases, the ORL 48 × 

48 database and YALE 32 × 32 databases. The ORL [29] 

is composed of 400 images, 10 different images per 

person for 40 persons. For some individuals, the images 

were acquired at different times. The facial expressions 

in these images are different, e.g. open or closed eyes and 

smiling or non-smiling. Other facial details such as 

glasses or no glasses also exist. 

 

 

 
Figure 1. IWNS-NMF face recognition algorithm diagram 

YALE [2] database is more challenging than ORL. It has 

165 gray-scale images of 15 individuals. The images 

introduce various lighting condition such as left-light, 

center-light, and right-light. It also represents facial 

expressions, e.g. normal, happy, sad, sleepy, and 

surprised. Similar to ORL it has facial details as glasses 

or no glasses. The Japanese Female Facial Expressions 

(JAFFE) dataset [30] consists of 213 grayscale images 

presenting seven facial expressions (happiness, sadness, 

fear, anger, surprise, disgust, and neutrality (that were 

posed by 10 Japanese female models. Each image size is 

of 256 × 256 pixels, and each model has 2–4 samples for 

each expression. Each cropped facial image in the 

datasets was isotopically scaled to the fixed size of 32 × 

32 pixels. These algorithms are utilized here for 

comparing with the proposed method: NMF [4], LNMF 

[26], SNMF [27], and NS-NMF [8]. In these simulations, 

a metric called “sparseness metric” (SP) [31] are used to 

evaluate the sparsity of basis matrix as well as 

coefficients matrix. SP, which is defined as a 

combination of L1 norm and the L2 norm, is written as 

follows 

𝑆𝑃(𝐻) =

√𝑁−(
∑|ℎ𝑖|

√∑ ℎ𝑖
2⁄

)

√𝑁−1
  

(33) 

where h𝑖 is i-th column of matrix H. If all samples of h𝑖 

are the same, SP(H) would be zero; if h𝑖 contains merely 

one nonzero sample, SP(H) would become one. In 

addition, N is the number of elements in a vector. Table-

1 shows the sparseness of these columns. In this table, we 

see that sparseness value of IWNS-NMF is higher than 

NS-NMF and NMF. NMF family methods should lead to 

decomposition matrix V into the matrix W and H. In each 

iteration, W and H are updated until convergence. After 

feature extraction by IWNS-NMF, they are projected to 

higher features variance axes to calculate eigen values by 

PCA and to reduce dimension. These features are then 

ready for classification, in which linear SVM kernel is 

used. The classification results are presented next. 

IWNS-NMF was evaluated on the ORL facial 

database. Different sparseness parameters, i.e. 0.1, 0.3 

and 0.7, were used with 60 features. The reason of giving 

this example is to make the effects of signals sparsity 

visible (while increasing θ). 

 

 
TABLE 1. The sparseness of three column Of H matrix in 

NMF, NS-NMF (Θ=0.5), IWNS-NMF (Θ=0.5) 

Sparseness of H 

column 
Column 1 Column 2 Column 3 

NMF 0.5893 0.5586 0.8129 

NS-NMF 0.7990 0.7733 0.8105 

IWNS-NMF 0.8163 0.7928 0.8437 
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Figure 3 shows the results. These results show the effect 

of IWNS-NMF to achieve more localized features while 

increasing the sparseness parameter. Increasing the value 

of θ corresponds to sparse encoding vectors. Figures 4, 5 

and 6 show the basis images of NMF, LNMF, SNMF, 

NS-NMF (θ=0.1), IWNS-NMF (θ=0.1) on YALE, ORL, 

and JAFEE database. And Figures 7, 8 and 9 shows the 

five reconstruction effects by NMF, LNMF, SNMF, NS-

NMF (θ=0.1), IWNS-NMF (θ=0.1) on YALE, ORL and 

JAFEE databases respectively.

   
a) NMF b) NS-NMF c) IWNS-NMF 

Figure 2.Three column of H matrix in NMF, NS-NMF (θ=0.5), IWNS-NMF (θ=0.5) 

 

   
(a) θ = 0.1 (b) θ=0.3 (c) θ=0.7 

Figure 3. Encoding vectors for 25 sample images and different values of sparseness: (a) θ=0:1, (b) θ= 0:3, (c) θ= 0:7. 

 

 
a) NMF 

 
b) SNMF 

 
c) LNMF 

 
d) NS-NMF – (θ=0.1) 

 
e) IWNS-NMF – (θ=0.1) 

Figure 4. 3×3 basis images of NMF, LNMF, SNMF, NS-NMF (θ=0.1), IWNS-NMF (θ=0.1) on YALE database. 

 

 
a) NMF 

 
b) SNMF 

 
c) LNMF 

 
d) NS-NMF – (θ=0.1) 

 
e) IWNS-NMF – (θ=0.1) 

Figure 5. 3×3 basis images of NMF, LNMF, SNMF, NS-NMF (θ=0.1), IWNS-NMF (θ=0.1) on ORL database. 

 

 
a) NMF 

 
b) SNMF 

 
c) LNMF 

 
d) NS-NMF – (θ=0.1) 

 
e) IWNS-NMF – (θ=0.1) 

Figure 6. 3×3 basis images of NMF, LNMF, SNMF, NS-NMF (θ=0.1), IWNS-NMF (θ=0.1) on JAFFE database 
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a) original (32 × 32) 

 
b) NMF 

 
c) SNMF 

 
d) LNMF 

 
e) NS-NMF(θ=0.1) 

 
f) IWNS-NMF(θ=0.1) 

Figure 7. Three reconstruction effects by NMF, LNMF, SNMF, NS-NMF (θ=0.1), IWNS-NMF (θ=0.1) on YALE database. 

 

 
a) original (32 × 32) 

 
b) NMF 

 
c) SNMF 

 
d) LNMF 

 
e) NS-NMF(θ=0.1) 

 
f) IWNS-NMF (θ=0.1) 

Figure 8. Three reconstruction effects by NMF, LNMF, SNMF, NS-NMF (θ=0.1), IWNS-NMF (θ=0.1) on ORL database. 

 

 
a) original (32 × 32) 

 
b) NMF 

 
c) SNMF 

 
d) LNMF 

 
e) NS-NMF(θ=0.1) 

 
f) IWNS-NMF (θ=0.1) 

Figure 9. Three reconstruction effects by NMF, LNMF, SNMF, NS-NMF (θ=0.1), IWNS-NMF (θ=0.1) on JAFFE database. 
 

According to Sokolova and Lapalme [32] we compared 

recall and precision curves by following equations 

between IWNS-NMF and nsNMF. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑

𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑃𝑖

𝐿
𝑖=1

𝐿
  (34) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑

𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑁𝑖

𝐿
𝑖=1

𝐿
  (35) 

where TP is the number of true positives, FP is the 

number of false positives; FN is the number of true 

negatives, while L is the number of classes in dataset. In 

information retrieval, precision is a measure of result 

relevancy, while recall is a measure of how many truly 

relevant results are returned, so high precision relates to 

a low false positive rate, and high recall relates to a low 

false negative rate. High scores for both precision and 

recall indicate that the system is returning accurate results 

(high precision), as well as returning a majority of all 

positive results (high recall). In Figure 10, we compared 

methods in terms of computation time. The given values 

are convergence time after 100 iterations. According to 

this figure, the computation time of the proposed method 

is comparable to nsNMF and better than conventional 

NMF. Figures 11 and 12 show the recall and precision 

curves in different feature number and theta parameter 

respectively. These curves show that our propose 

algorithm (IWNS-NMF) improve previous algorithm 

(NS-NMF) as well as possible. 

Next, we list the best recognition rates of two face 

databases in Table 2. On ORL, YALE, and JAFEE, the 

samples of each individual are split into 6/4 for 

training/testing. The size of each subject is set to 50 for 

ORL, YALE, and JAFEE, and iteration number is 100 in 

IWNS-NMF. 

 

 

 
Figure 10. Convergence time comparison 
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After finding the best feature by PCA then we use linear 

SVM for classification. It shows that the IWNS-NMF is 

the best on both ORL, YALE and JAFEE datasets. For 

extra evaluation, the result of applying Convolutional 

Neural Network (CNN) has also been added to this table. 

CNN has a wide range of application especially in the 

field of image processing and pattern recognition [33]. A 

multilayer CNN (including input, convolutional, 

maxpooling, sigmoid, and softmax) was used for this 

purpose. As seen, although performance of CNN is 

comparable still the proposed method show higher 

recognition rate. 

Finally, in Table 3 we demonstrate the recognition rate 

for different training set shares. For instance, “training set 

share =0.1” means 10% of total images are considered for 

training and the rest for test.In this experiment, the 

number of face images used for test and train is varied 

and the recognition rate was calculated in each case. As 

expected, when the size of training set is increases the 

performance is also improved. Moreover, the proposed 

algorithm is robust against changes in the dataset size and 

provides acceptable performance in average. 

 

 
 

  

  
(a) (b) 

Figure 11. Recall and precision applied to different feature 

number and theta parameter in IWNS-NMF and NS-NMF 

(ORL Dataset). 
 

  

  
(a) (b) 

Figure 12. Recall and precision applied to different feature 

number and theta parameter in IWNS-NMF and NS-NMF 

(YALE Dataset) 
 

TABLE 2. Recognition rates on two face databases 

Method ORL, % YALE, % JAFFE, % 

IWNS-NMF + PCA 97.5 (θ=0.001) 93.33 (θ=0.2) 87.8 (θ=0.1) 

NS-NMF + PCA 96.88 (θ=0.001) 90 (θ=0.2) 75.3 (θ=0.1) 

NMF + PCA 95.00 88.33 66.7 

LNMF + PCA 81.36 75 60.5 

SNMF + PCA 93.33 90 69.1 

CNN 93.21 89.82 68.5 

SDNMF (c=2) [14] - 92.7 48.32 

SDNMF (c=3) [14] - 90.1 49.26 

AKELM [19] - - 60 

 
TABLE 3. Recognition rates of the proposed method on two face databases for different variations in training set size 

Training set share ORL, % YALE, % JAFEE, % 

0.1 49.4 83.7 63.2 

0.3 78.9 89.5 71.7 

0.5 94.5 93.3 84.6 

0.8 97.5 96.6 90 
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5. CONCLUSION 
 
In this paper, we have presented a novel NMF method 

that attempts to augment the strong features and remove 

weak features during data decomposition process. This is 

achieved by taking part the weights of the coefficients, 

followed by PCA to decrease dimension of features. The 

experimental results on real datasets have demonstrated 

that the proposed IWNS-NMF algorithm is superior to 

traditional sparse NMF and its variants. We verified its 

performance for pattern classification with high 

dimension problem such as face recognition. As the 

future work, the following topics can be addressed; 1) 

this method works well for limited face conditions, thus, 

improving the method performance for recognizing face 

images in nonstandard conditions can be followed 

further; 2) its application for other data types, e.g. 

handwritten recognition, and 3) its performance for real-

time application such as video face recognition could also 

be investigated in the future. 
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 چکیده

 

 که ردیگیم نشأت یادهیاروش از  نیاست. ا یبندبخشبر  یمبتن ریروش ارائه تصو کی (NMF) ینامنف یهاسیماتر هیتجز

 افتنیچهره با استفاده از  صیتشخ یبرا یمقاله به ارائه روش نی. در اازدسیمچند بخش  بیاز ترکرا چهره  کی ریتصو

. در میپردازیم" (IWNS-NMF) با اوزان تکرارشونده ینامنف یهاسیماتر هیتجز" مشده به نا یبندبخش یمحل یهاهینما

را کنترل  یسازتنک زانیم هایژگیو بیضراپارامتر و اوزان  کیکه با استفاده از  شودیشنهاد میپ نهیتابع هز کیروش  نیا

. بعد از مرحله بخشدیمه را بهبود چهر صیو دقت تشخ تیقابل یمحل تیاهم با یروش با استخراج الگوها نیا. کندیم

بهره برده و  (PCA) یاصل یهامؤلفه زیاز روش آنال هایژگیوکاهش ابعاد  منظوربه، شدهارائهاستخراج الگوها توسط روش 

و  ORL ،YALEداده  یهاگاهیپاچهره در  یی. نرخ شناسامیاکردهاستفاده  یبندطبقه یبرا یخط SVMدر ادامه از روش 

JAFFE که روش  دیرس جهینت نیبه ا توانیم نیشیمشابه پ یهاروش سهیاست. با مقا %8/89و  %33/73،  %5/79 بیه ترتب

-NMF  ،NS-NMF ،Localرینظ ییهاروشنسبت به  یشتریو دقت ب ییچهره از کارا صیدر تشخ IWNS-NMF شدهارائه

NMF  وSNMF .برخوردار است 

doi: 10.5829/ije.2018.31.10a.12 
 

 


